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Preface

This book, entitled simply DSP First, is the second edition of the text DSP First: A
Multimedia Approach (1998) which was packaged with a CD-ROM that provided many
resources to extend the boundaries of a traditional textbook. In 2003, a second book
entitled Signal Processing First was produced with a broader set of topics that included
four new chapters on continuous-time signal processing and the Fourier transform, as well
as updated versions of the first eight chapters of DSP First. New material was produced
for the CD-ROM bundled with the 2003 textbook, and all the supporting resources have
now moved to a website for easier access.

These three books and the Companion Website are the result of more than 20 years
of work grounded on the premise that digital signal processing (DSP) is an ideal starting
point for the study of both electrical engineering and computer engineering. In the summer
of 1993, two of us (JHMc and RWS) began to develop a one-quarter course that was to
become the required introductory course for Georgia Tech computer engineering (CmpE)
students. We argued that the subject of digital signal processing had everything we
wanted in a first course for computer engineers: it introduced the students to the use
of mathematics as a language for thinking about and solving engineering problems; it
laid useful groundwork for subsequent courses; it made a strong connection to digital
computation as a means for implementing systems; and it provided the tools to discuss
interesting applications that would motivate beginning engineers to do the hard work of
connecting mathematics and computation to problem solving. Nothing has happened in
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the past 22 years to change our minds on this point. Indeed, our teaching experience
with more than 6,000 students at Georgia Tech has only strengthened our conviction that
digital signal processing, distilled to its essence, is an ideal introductory subject for both
electrical and computer engineering students.1 In fact, we have become firmly convinced
that a course on DSP at the level of this text should be required of every engineering and
computer science student.

From the beginning, we believed that “hands-on” experience with real signals was
crucial, so we expended considerable effort on developing additional material for labora-
tory exercises and projects based on MATLAB. In the laboratory assignments, students
can experience the effects of signal processing operations that they have implemented on
sound and image signals. For example, they can synthesize music from sinusoids, but they
can also see that those same sinusoids are the basis for the wireless systems that they use
routinely to access the Internet. These experiences, available on the Companion Website,
will augment and reinforce the mathematical concepts that form the basis of DSP.

In addition to the 25 detailed lab assignments, the Companion Website includes many
resources that extend the printed textbook with material such as demonstrations and ani-
mations used in classes, and hundreds of solved homework problems. The impetus for hav-
ing this website came from MarkYoder who, in 1995, while on sabbatical leave at Georgia
Tech from Rose-Hulman, had the idea to put all of this material into a form that other teach-
ers (and students) could access easily. Interactive MATLAB demonstrations have been
created for demonstrating specific topics such as convolution and frequency response, and
most of these are now used as the basis for some of the laboratory exercises. As teachers,
all this material has changed the way we present ideas, because it expands the ways to visu-
alize a concept “beyond the equations.” Over the years, the collection of resources on our
website has continued to grow. In the future, we will explore new ideas for presenting the
concepts of DSP, and hope to move beyond the printed page to an e-Text version that would
truly integrate the narrative of the book with the visualizations of the companion website.

The distinguishing feature of this text (and its progenitors) is that it presents signal
processing at a level consistent with an introductory ECE course, i.e., the sophomore
level (second year) in a typical U.S. university. The list of topics in the book is not
surprising given its emphasis on discrete-time signal processing, but since we want a
course that is broadly accessible to sophomores, we feel that we must combine signal
processing concepts with some introductory ideas. Part of the reason for this is that in
many electrical engineering curriculums, signals and systems and DSP typically have
been treated as junior- and senior-level courses, for which a traditional background of
linear circuits and linear systems is assumed. Our approach, on the other hand, makes
the subject much more accessible to students in other majors such as computer science

1In our development of these ideas, two books by Professor Ken Steiglitz of Princeton University had a
major impact on our thinking: An Introduction to Discrete Systems, John Wiley & Sons, 1972, and A Digital
Signal Processing Primer: With Applications to Computer Music, Addison-Wesley Publishing Company,
1996. Steiglitz’s 1972 book was well ahead of its time, since DSP had few practical applications, and even
simple simulations on then-available batch processing computers required significant programming effort.
However, by 1993 when we began our work, easy-to-use software environments such as MATLAB were
widely available for implementing DSP computations on powerful personal computers.
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and other engineering fields. This point is increasingly important because non-specialists
need to use DSP techniques routinely in many areas of science and technology.

Content of the New Edition. This new edition has an organization similar to the first
edition of DSP First. A look at the table of contents shows that the book begins very
simply (Chapter 2) with a detailed discussion of continuous-time sinusoidal signals and
their representation by complex exponentials. This is a topic traditionally introduced in
a linear circuits course, but including it here makes it immediately accessible for the rest
of this book, especially for students who come from other backgrounds. If students have
already studied linear circuits, this chapter can be skipped, or rapidly covered. We then
proceed to introduce the spectrum concept (Chapter 3) by considering sums of sinusoidal
signals, culminating with a brief introduction to Fourier series. Although Chapter 3 of
the first edition covered the same basic ideas, this chapter has some new material.2

Next we make the transition to discrete-time signals by considering sampled
sinusoidal signals (Chapter 4). We have found that it is not necessary to invoke the
continuous-time Fourier transform to make the important issues in sampling clear. All
that is needed is the simple trigonometric identity cos(θ + 2π) = cos(θ). In fact, in
Chapters 2–4 (with the exception of Fourier Series), we have only needed to rely on the
simple mathematics of sine and cosine functions. The basic linear system concepts are
then introduced with running average systems and other simple FIR filters (Chapter 5).
Impulse sequences are introduced which leads to the impulse response characterizing a
filter. Convolution is treated as a numerical operation in the first pass at this idea. The
key concept of frequency response is derived and interpreted for FIR filters (Chapter 6).
Sinusoids are the primary signals of interest, and we emphasize the magnitude and phase
change experienced by a sinusoid when filtered by a linear time-invariant system.

At this point we depart significantly from the first edition by introducing (Chapter 7)
the concept of discrete-time Fourier transform (DTFT), which arises naturally from the
frequency response of a discrete-time system. The concept of the inverse DTFT completes
the description of an invertible transform and also enables us to describe ideal filters. It
is then natural to move from the DTFT to the discrete Fourier transform (DFT), which
is simply a sampled version of the DTFT and thus computable through fast algorithms
that are readily available (Chapter 8). Chapters 7 and 8 are completely new. They are
a response to frequent requests from teachers who want to expose their students to the
powerful concept of the Fourier transform, and we have found that sophomores are fully
capable of understanding these concepts and putting them to use. These two chapters bring
many of the ideas of practical spectrum analysis into focus with the goal of providing the
knowledge to successfully employ the powerful spectrum analysis tools readily available
in software environments such as MATLAB.

Finally, the last two chapters return to the flow of the first edition. We introduce
z-transforms (Chapter 9) and IIR systems (Chapter 10). At this stage, a student who
has faithfully read the text, worked homework problems, and done the laboratory
assignments will be rewarded with the ability to understand applications involving the

2Furthermore, for instructors who prefer to dive deeper into Fourier analysis of periodic signals,Appendix
C on Fourier series is essentially another entire chapter on that topic.
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sampling theorem, discrete-time filtering, and spectrum analysis. Furthermore, they are
well prepared to move on to courses in linear analog circuits, continuous-time signals and
systems, and control systems. All of these courses can build on the foundation established
through the study of this text.

Summary of What’s New in This Edition

• New material on the Discrete-Time Fourier Transform (DTFT) has been developed
and is presented in Chapter 7. The presentation makes an easy transition from the
frequency response concept to begin the study of the general idea of a Fourier
transform.

• New material on ideal filters and digital filter design is presented in Chapter 7 as a
very useful application of the DTFT. The window method for FIR filter design is
presented in detail.

• New material on the Discrete Fourier Transform (DFT) has been developed and is
presented in Chapter 8. The presentation adopts the point of view that the DFT is
a sampled version of the DTFT, and also develops the relationship of the DFT to
the discrete Fourier series (DFS).

• New material on spectrum analysis and the spectrogram has been developed for
the last sections of Chapter 8. This provides a solid foundation for understanding
time-frequency analysis of signals as is commonly done with the FFT algorithm,
as well as the role of windowing in frequency resolution.

• Chapters 7 and 8 are derived from Chapter 9 in the first edition and Chapter 13
in Signal Processing First. The new chapters are a significant rewrite to make this
material accessible at the introductory level. The benefit is that students can learn
the ideas of practical spectrum analysis which can then be reinforced with a lab
experience where actual signals are processed with the tools available in MATLAB.

• The presentation of the spectrum in Chapter 3 has been expanded to include a formal
discussion of properties of the spectrum (e.g., time-delay, frequency shifting). This
sets the stage for later discussions of the DTFT and DFT.

• The material on Fourier Series which was part of Chapter 3 has been expanded, but
most of it is now placed in Appendix C. Chapter 3 contains a sufficient description
of the Fourier series to present the spectrum of one periodic signal, the full wave
rectified sine. Appendix C provides an in-depth presentation for instructors who
choose to emphasize the topic. Details of other periodic signals (square wave,
triangular wave, and half-wave rectified sine) are given along with a derivation
of Parseval’s theorem and a heuristic discussion of convergence. Properties of the
Fourier Series are also developed.

• Extensive changes have been made to the end-of-chapter problems. There are a
total of 241 problems in the book: 83 are new, 86 are different from the first edition
by virtue of changing the details, and 72 are the same as in the first edition.
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• The Companion Website contains new material for labs, MATLAB visualizations,
and solved homework problems. The Companion Website may be found at
www.pearsonglobaleditions.com/McClellan.

At Georgia Tech, our sophomore-level, 3 credit course covers most of the content of
Chapters 2–10 in a format involving two one-hour lectures, one 1.5 hour recitation, and
one 1.5 hour laboratory period per week. As mentioned previously, we place considerable
emphasis on the lab because we believe that it is essential for motivating our students
to learn the mathematics of signal processing, and because it introduces our students to
the use of powerful software in engineering analysis and design. At Rose-Hulman, we
use DSP First in a freshman-level, 10-week course that covers Chapters 1–6, 9, and 10.
The Rose format is 3 one-hour lectures per week and one three-hour lab. The students
use MATLAB throughout the course. The entire content of the present text was used by
RWS for a 10-week, four credit course at Stanford University. Since this course followed
quarter-long courses in continuous-time signals and systems and linear circuits, it was
possible to skip Chapters 2 and 3 and move immediately into a focus on discrete-time
signals and systems using the remaining chapters. One credit was devoted to a weekly
lab assignment which was done individually without a regularly scheduled laboratory
period.

These examples from our own teaching experience show that the text and its associated
supporting materials can be used in many different ways depending on instructor
preference and number of course hours. As can be seen from the previous discussion,
the second edition of DSP First is not a conventional signals and systems book. One
difference is the inclusion of a significant amount of material on sinusoids and complex
phasor representations. In a traditional electrical engineering curriculum, these basic
notions are covered under the umbrella of linear circuits taken before studying signals
and systems. Indeed, our choice of title for this book and the first edition is designed
to emphasize this departure from tradition. An important point is that teaching signal
processing first also opens up new approaches to teaching linear circuits, since there is
much to build upon that will allow redirected emphasis in the circuits course.

A second difference from conventional signals and systems texts is that DSP First
emphasizes topics that rely on “frequency domain” concepts. This means that, in
an electrical engineering curriculum, topics like Laplace transforms, state space, and
feedback control, would have to be covered in later courses such as linear circuits or an
upper-level course on control systems. Although our text has clearly been shaped by a
specific point of view, this does not mean that it and the associated website can be used in
only one way. Indeed, as our own experience shows, by appropriate selection of topics,
our text can be used for either a one-quarter or one-semester signals and systems course
that emphasizes communications and signal processing applications from the frequency
domain point of view. For most electrical engineering curricula, the control-oriented
topics would be covered in another course.

In other disciplines such as computer science and computer engineering, DSP First
emphasizes those topics that are most relevant to computing for signal analysis. This is

../../../../../www.pearsonglobaleditions.com/McClellan
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also likely to be true in other engineering fields where data acquisition and frequency
domain analysis play an important role in modern engineering analysis and design.

This text and its Companion Website represents an untold amount of work by the
three authors, numerous colleagues, and many students. Fortunately, we have been able
to motivate a number of extremely talented students to contribute MATLAB demos to this
project. There are so many that to name them all would be impractical. We simply thank
them all for their valuable contributions to our project. Greg Krudysz who authored
several of the demos has now taken over the primary role of developing new demos
and visualizations with GUIs and updating the existing ones. Since the beginning in
1993, many professors have participated in the sophomore course ECE-2025 (and now
ECE-2026) at Georgia Tech as lecturers and recitation instructors. Once again, naming
all the recitation instructors would be impractical, but their comments and feedback have
given life to the course as it evolved during the past 12 years. For example, Pamela
Bhatti developed a laboratory on simulating the filter bank of a Cochlear Implant hearing
system. Recently, the lecturing and administration of the course has been shared by
Russ Mersereau, Fred Juang, Chin Lee, Elliot Moore, Mark Clements, Chris Rozell,
G. K. Chang, David Taylor, David Anderson, John Barry, Doug Williams, and Aaron
Lanterman. We are indebted to them for their many suggestions that have made a positive
impact on this second edition, especially the new material on the DFT and DTFT. We
are also indebted to Wayne Padgett and Bruce Black, who have taught ECE-380 at
Rose-Hulman and have contributed many good ideas, and we appreciate the work of
Ed Doering who created a whole new set of labs for ECE-180, the new freshman-level
DSP First. These labs start with traditional audio processing and end with video object
tracking. A new first for freshman.

We also want to acknowledge the contributions of Tom Robbins (formerly at Pearson
Prentice-Hall) who was an early supporter of our efforts to bring DSP to the fore in
ECE education. Tom bought into our concept of DSP First from the beginning, and he
encouraged us during the initial project, as well as the 2003 book. More recently, Andrew
Gilfillan and Julie Bai have been the editors who helped make this second edition a reality.

Finally, we want to recognize the understanding and support of our wives (Carolyn
McClellan, Dorothy Schafer, and Sarah Yoder). Carolyn’s photo of the cat Kilby appears
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1

Introduction

This is a book about signals and systems. In this age of multimedia gaming computers,
audio and video entertainment systems, and smartphones, it is almost certain that you,
the reader of this text, have formed some impression of the meaning of the terms signal
and system, and you probably use the terms often in daily conversation.

It is likely that your usage and understanding of the terms are correct within some
rather broad definitions. For example, you may think of a signal as “something” that
carries information. Usually, that something is a pattern of variations of a physical quantity
that can be manipulated, stored, or transmitted by physical processes. Examples include
speech signals, audio signals, video or image signals, biomedical signals, radar signals,
and seismic signals, to name just a few. An important point is that signals can take many
equivalent forms or representations. For example, a speech signal is produced as an
acoustic signal, but it can be converted to an electrical signal by a microphone, and then
to a string of numbers as in digital audio recording.

The term system may be somewhat more ambiguous and subject to interpretation.
For example, we often use “system” to refer to a large organization that administers
or implements some process, such as the “Social Security system” or the “airline
transportation system.” However, we are interested in a much narrower definition that is
very closely linked to signals. More specifically, a system, for our purposes, is something
that can manipulate, change, record, or transmit signals. For example, a DVD recording
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stores or represents a movie or a music signal as a sequence of numbers. A DVD player is
a system for converting the numbers stored on the disc (i.e., the numerical representation
of the signal) to a video and/or acoustic signal. In general, systems operate on signals to
produce new signals or new signal representations.

Our goal in this text is to develop a framework wherein it is possible to make
precise statements about both signals and systems. Specifically, we want to show that
mathematics is an appropriate language for describing and understanding signals and
systems. We also want to show that the representation of signals and systems by
mathematical equations allows us to understand how signals and systems interact and
how we can design and implement systems that achieve a prescribed purpose.

1-1 Mathematical Representation of Signals

Signals are patterns of variations that represent or encode information. Many signals
are naturally thought of as a pattern of variations in time. A familiar example is a speech
signal, which initially arises as a pattern of changing air pressure in the vocal tract.
This pattern, of course, evolves with time, creating what we often call a time waveform.
Figure 1-1 shows a plot of a recorded speech waveform. In this plot, the vertical axis
represents microphone voltage (proportional to air pressure), and the horizontal axis
represents time. Notice that there are four plots in the figure corresponding to four
contiguous time segments of the speech waveform. The second plot is a continuation of the
first, and so on, with each graph corresponding to a time interval of 50 milliseconds (ms).
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Figure 1-1 Strip plot of a speech signal
where each row is a continuation of the row
above. This signal s(t) can be represented as
a function of a single (time) variable. The
shaded region is shown in more detail in
Fig. 1-2.
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The speech signal in Fig. 1-1 is an example of a one-dimensional continuous-
time signal. Such signals can be represented mathematically as a function of a single
independent variable, which is normally called time and denoted t . Although in this
particular case we cannot write a simple equation that describes the graph of Fig. 1-1 in
terms of familiar mathematical functions, we can nevertheless associate a function s(t)
with the graph. Indeed, the graph itself can be taken as a definition of the function that
assigns a number s(t) to each instant of time (each value of t).

Many, if not most, signals originate as continuous-time signals. However, for reasons
that will become increasingly obvious as we progress through this text, it is often desirable
to obtain a discrete-time representation of a signal. This can be done by sampling a
continuous-time signal at isolated, equally spaced points in time. The result is a sequence
of numbers that can be represented as a function of an index variable that takes on only
integer values. This can be represented mathematically as s[n] = s(nTs), where n is an
integer (i.e., {. . . ,−2,−1, 0, 1, 2, . . . }), and Ts is the sampling period. Note that our
convention is to use parentheses ( ) to enclose the independent variable of a continuous-
variable function such as s(t), and square brackets [ ] to enclose the independent variable
of a discrete-variable function, e.g., the sequence s[n]. Sampling is, of course, exactly
what we do when we plot values of a function on graph paper or on a computer screen.
We cannot evaluate the function at every possible value of a continuous variable, but
only at a set of discrete points. Intuitively, we know that the closer the spacing in time
of the points, the more the sequence retains the shape of the original continuous-variable
function. Figure 1-2 shows an example of a short segment of a discrete-time signal that
was derived by sampling the speech waveform of Fig. 1-1 with a sampling period of
Ts = 1/8 ms. In this case, the dots show the sample values for the sequence s[n].

While many signals can be thought of as evolving patterns in time, many other signals
are not time-varying patterns. For example, an image formed by focusing light through a
lens is a spatial pattern, and thus is appropriately represented mathematically as a function
of two spatial variables. Such a signal would be considered, in general, as a function of
two independent variables [i.e., a picture might be denoted p(x, y)]. A photograph is
another example, such as the gray-scale image shown in Fig. 1-3. In this case, the value
p(x0, y0) represents the shade of gray at position (x0, y0) in the image.

Images such as that in Fig. 1-3 are generally considered to be two-dimensional
continuous-variable signals, since we normally consider space to be a continuum.
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Figure 1-2 Discrete-time signal represented as
a one-dimensional sequence which is a
function of a discrete variable n. Signal
samples are taken from the shaded region of
Fig. 1-1. The continuous-time speech signal
s(t) is shown in gray.
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Figure 1-3 Example of a signal that can be
represented by a function of two spatial variables.

However, sampling can likewise be used to obtain a discrete-variable two-dimensional
signal from a continuous-variable two-dimensional signal. In a digital camera, this
sampling is done by recording light values which have been focused on a sensor array
composed of millions of points, or mega-pixels. In a color camera, there would be three
separate arrays for RGB: red, green, and blue. A two-dimensional gray-scale image like
Fig. 1-3 would be represented by a two-dimensional discrete-variable sequence or an
array of numbers, and would be denoted p[m, n] = p(m�x, n�y), where both m and n
would take on only integer values, and�x and�y are the horizontal and vertical sampling
periods, respectively.

Two-dimensional functions are appropriate mathematical representations of still
images that do not change with time; on the other hand, videos are time-varying images
that would require a third independent variable for time, so a video signal would be
denoted v(x, y, t). In analog television, time is discrete (30 frames/s), each horizontal
line (x) is continuous, but there are a finite number of horizontal lines, so y is discrete.
In present day digital video, all three variables of the video signal v(x, y, t) are discrete
since the signal is a sequence of discrete images.

Our purpose in this section has been to introduce the idea that signals can be
represented by mathematical functions. Although we will soon see that many familiar
functions are quite valuable in the study of signals and systems, we have not even
attempted to demonstrate that fact. Our sole concern is to make the connection between
functions and signals, and, at this point, functions simply serve as abstract symbols for
signals. Thus, for example, now we can refer to “the speech signal s(t)” or “the sampled
image p[m, n].” Although this may not seem highly significant, we will see in the next
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section that it is indeed a very important step toward our goal of using mathematics to
describe signals and systems in a systematic way.

1-2 Mathematical Representation of Systems

As we have already suggested, a system is something that transforms signals into new
signals or different signal representations. This is a rather vague definition, but it is useful
as a starting point. To be more specific, we say that a one-dimensional continuous-time
system takes an input signal x(t) and produces a corresponding output signal y(t). This
can be represented mathematically by

y(t) = T {x(t)} (1.1)

which means that the input signal (waveform, image, etc.) is operated on by the system
(symbolized by the operator T ) to produce the outputy(t).While this sounds very abstract
at first, a simple example shows that this need not be mysterious. Consider a system such
that the output signal is the square of the input signal. The mathematical description of
this system is simply

y(t) = [x(t)]2 (1.2)

which says that at each time instant the value of the output is equal to the square of the
input signal value at that same time. Such a system would logically be termed a “squarer
system.” Figure 1-4 shows the output signal of the squarer for the input of Fig. 1-1. As
would be expected from the properties of the squaring operation, we see that the output
signal is always nonnegative and the larger signal values are emphasized relative to the
smaller signal values.

The squarer system defined by (1.2) is a simple example of a continuous-time system
(i.e., a system whose input and output are continuous-time signals). Can we build a
physical system that acts like the squarer system? The answer is yes; the system of (1.2)
can be approximated through appropriate connections of electronic circuits. On the other
hand, if the input and output of the system are both discrete-time signals (sequences of
numbers) related by

y[n] = (x[n])2 (1.3)

then the system would be a discrete-time system. The implementation of the discrete-
time squarer system would be trivial given a digital computer; one simply multiplies each
discrete signal value by itself.

In thinking and writing about systems, it is often useful to have a visual representation
of the system. For this purpose, engineers use block diagrams to represent operations
performed in an implementation of a system and to show the interrelations among the
many signals that may exist in an implementation of a complex system. An example of
the general form of a block diagram is shown in Fig. 1-5. What this diagram shows is
simply that the signal y(t) is obtained from the signal x(t) by the operation T { }.
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Figure 1-4 Output of a squarer system for
the speech signal input of Fig. 1-1. The
squarer system is defined by the equation
y(t) = [x(t)]2.

A specific example of a system was suggested earlier when we discussed the sampling
relationship between continuous-time signals and discrete-time signals. A sampler is
defined as a system whose input is a continuous-time signal x(t) and whose output is the
corresponding sequence of samples, defined by the equation

x[n] = x(nTs) (1.4)

which simply states that the sampler “takes an instantaneous snapshot” of the continuous-
time input signal once every Ts s.1 Thus, the operation of sampling fits our definition of
a system, and it can be represented by the block diagram in Fig. 1-6. Often we will refer
to the sampler system as an “ideal continuous-to-discrete converter” or ideal C-to-D
converter. In this case, as in the case of the squarer, the name that we give to the system
is really just a description of what the system does.

T f � g
x.t/ y.t/D T fx.t/g

Figure 1-5 Block diagram representation
of a continuous-time system.

Ideal
C-to-D

Converter

x.t/ xŒn� D x.nTs/

Ts

Figure 1-6 Block diagram representation of a
sampler.

1The units of time in seconds are abbreviated as s.
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1-3 Systems as Building Blocks

Block diagrams are useful for representing complex systems in terms of simpler systems,
which are more easily understood. For example, Fig. 1-7 shows a block diagram
representation of the process of recording and playback of music using MP3 compression.
This block diagram breaks the operation down into four subsystems, each of which could
be broken down further into smaller subsystems. The first operation is A-to-D (analog-
to-digital) conversion to acquire the music waveform in digital form. The A-to-D system
is a physical approximation to the ideal C-to-D converter defined in (1.4). An A-to-D
converter produces finite-precision numbers as samples of the input signal (quantized to
a limited number of bits), while the ideal C-to-D converter produces samples with infinite
precision. For the high-accuracy A-to-D converters used in precision audio systems, the
difference between an A-to-D converter and our idealized C-to-D converter is slight, but
the distinction is very important—only finite-precision quantized sample values can be
stored in digital memory of finite size.

Figure 1-7 shows that the output of the A-to-D converter is the input to a system that
compresses the numbers x[n] into a much smaller bit stream using the MP3 method. This
is a complex process, but for our purposes it is sufficient to show it as a single operation.
The output is a compressed digital representation that may be efficiently stored as data
on a server or transmitted to a user. Once another user has the compressed data file,
the MP3 compression must be reversed in order to listen to the audio signal. Since
MP3 is a “lossy” compression scheme, the signal synthesized by the MP3 decoder is
only an approximation to the original. The value of MP3 is that this approximation is
audibly indistinguishable from the original because the MP3 encoding method exploits
aspects of human hearing that render certain coding errors inaudible. Once the music
waveform is reconstituted in digital form as x̂[n], the last block does the conversion of the
signal from discrete-time form to continuous-time (acoustic) form using a system called a
D-to-A (digital-to-analog) converter. This system takes finite-precision binary numbers
in sequence and fills in a continuous-time function between the samples. The resulting
continuous-time electrical signal could then be fed to other systems, such as amplifiers,
loudspeakers, and headphones, for conversion to sound. In Chapter 4, we will discuss the
ideal D-to-C converter, which is an idealization of the physical device called an D-to-A
converter.

Systems like MP3 audio are all around us. For example, digital cameras use JPEG
encoding to reduce digital image file sizes prior to storage, and JPEG decoding to view
pictures. Most of the time we do not need to think about how such systems work, but this
example illustrates the value of thinking about a complex system in a hierarchical form.

A-to-D
Converter

MP3
Audio

Encoder

MP3
Audio

Decoder

D-to-A
Converter

Compressed
Audio Filex.t/ xŒn� Ox.t/OxŒn�

Figure 1-7 Simplified block diagram for MP3 audio compression and playback system.
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In this way, we can first understand the individual parts, then the relationship among the
parts, and finally the whole system. By looking at the MP3 audio system in this manner,
we can discuss two things. First of all, the conversion from continuous-time to discrete-
time and back to continuous-time can be considered separately from the other parts of
the system. The effect of connecting these blocks to the system is then relatively easy
to understand because they provide the input and output interface to real audio signals.
Secondly, details of some parts can be hidden and left to experts who, for example, can
develop more detailed breakdowns of the MP3 encoder and decoder subsystems. In fact,
those systems involve many signal processing operations, and it is possible to specify
their operations by connecting several canonical DSP blocks that we will study in this
text.

1-4 The Next Step

The MP3 audio coding system is a good example of a relatively complicated discrete-
time system. Buried inside the blocks of Fig. 1-7 are many discrete-time subsystems
and signals. While we do not promise to explain all the details of MP3 coders or any
other complex system, we do hope to establish the foundations for the understanding of
discrete- and continuous-time signals and systems so that this knowledge can be applied
to understanding components of more complicated systems. In Chapter 2, we will start
at a basic mathematical level and show how the well-known sine and cosine functions
from trigonometry play a fundamental role in signal and system theory. Next, we show
how complex numbers can simplify the algebra of trigonometric functions. Subsequent
chapters introduce the concept of the frequency spectrum of a signal and the concept of
filtering with a linear time-invariant system. By the end of the book, if you have diligently
worked the problems, experienced the demonstrations, and done the laboratory exercises
on the Companion Website (which are marked with icons), you will be rewarded with
a solid understanding of many of the key concepts underlying much of modern signal
processing technology.

NOTE
Companion Website
has many labs,
demonstrations and
homework problems
with solutions
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2

Sinusoids

We begin our discussion by introducing a general class of signals that are commonly
called cosine signals or, equivalently, sine signals, which are also commonly referred to
as cosine or sine waves, particularly when speaking about acoustic or electrical signals.
Collectively, such signals are called sinusoidal signals or, more concisely, sinusoids.
Sinusoidal signals are the basic building blocks in the theory of signals and systems, and
it is important to become familiar with their properties. The most general mathematical
formula for a sinusoid is

x(t) = A cos(ω0t + ϕ) (2.1)

where cos(·) denotes the cosine function that is familiar from the study of trigonometry.
When defining a continuous-time signal, we typically use a function whose independent
variable is t , a continuous real variable that represents time. From (2.1) it follows that
x(t) is a mathematical function in which the angle (or argument) of the cosine function
is, in turn, a function of the variable t . Since we normally think of time as increasing
uniformly, the angle of the cosine function likewise increases in proportion to time. The
parameters A, ω0, and ϕ are fixed numbers for a particular cosine signal. Specifically,
A is called the amplitude, ω0 the radian frequency, and ϕ the phase of the cosine
signal.
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10 Figure 2-1 Sinusoidal signal generated from
the formula: x(t) = 10 cos(2π(440)t − 0.4π).

Figure 2-1 shows a plot of the continuous-time sinusoid

x(t) = 10 cos(2π(440)t − 0.4π)

whereA = 10,ω0 = 2π(440), and ϕ = −0.4π in (2.1). Note that x(t) oscillates between
A and −A, and repeats the same pattern of oscillations every 1/440 = 0.00227 s
(approximately). This time interval is called the period of the sinusoid. We will show
later in this chapter that most features of the sinusoidal waveform are directly dependent
on the choice of the parameters A, ω0, and ϕ.

2-1 Tuning-Fork Experiment

One of the reasons that cosine waves are so important is that many physical systems
generate signals that can be modeled (i.e., represented mathematically) as sine or cosine
functions versus time. Among the most prominent of these are signals that are audible to
humans. The tones or notes produced by musical instruments are perceived as different
pitches. Although it is an oversimplification to equate notes to sinusoids and pitch
to frequency, the mathematics of sinusoids is an essential first step to understanding
complicated sound signals and their perception by humans.

To provide some motivation for our study of sinusoids, we will begin by considering
a very simple and familiar system for generating a sinusoidal signal. This system
is a tuning fork, an example of which is shown in Fig. 2-2. When struck sharply,
the tines of the tuning fork vibrate and emit a “pure” tone. This tone has a single
frequency, which is usually stamped on the tuning fork. It is common to find
“A–440” tuning forks, because 440 hertz (Hz) is the frequency of A above middle C
on a musical scale, and is often used as the reference note for tuning a piano and
other musical instruments. If you can obtain a tuning fork, perform the following
experiment which is shown in a movie on the Companion Website.

DEMO
Tuning Fork

Strike the tuning fork against your knee, and then hold it close to your ear.
You should hear a distinct “hum” at the frequency designated for the tuning
fork. The sound will persist for a rather long time if you have struck the
tuning fork properly; however, it is easy to do this experiment incorrectly.
If you hit the tuning fork sharply on a hard surface such as a table, you will
hear a high pitched metallic “ting” sound. This is not the characteristic sound
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Figure 2-2 Picture of a tuning fork for 440 Hz.

that you are seeking. If you hold the tuning fork close to your ear, you will
hear two tones: The higher-frequency “ting” will die away rapidly, and then
the desired lower-frequency “hum” will be heard.

With a microphone and a computer equipped with an A-to-D converter, we can make
a digital recording of the signal produced by the tuning fork. The microphone converts
the sound into an electrical signal, which in turn is converted to a sequence of numbers
stored in the computer. Then these numbers can be plotted as a waveform in MATLAB.
A typical plot of a short section of the signal taken well after the initial strike of the
tuning fork is shown in Fig. 2-3(a) for an A–440 tuning fork. In this case, the A-to-D
converter sampled the output of the microphone at a rate of 10,000 samples/s. The signal
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(a) A−440 Tuning-Fork Signal

(b) Sample Values at 10,000 Hz

Figure 2-3 (a) Recording of an A–440
tuning-fork signal sampled at a sampling rate
of 10,000 samples/s. (b) Zoom in to the first
3 ms taken from the top plot (shaded region),
showing the individual sample values
(connected by a thin gray line).
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samples for the initial 3 ms of the signal are shown on a finer scale in Fig. 2-3(b). The
“continuous looking” plot in Fig. 2-3(a) was constructed by connecting the sample values
by straight lines. It appears that the signal generated by the tuning fork is very much like
the cosine signal of Fig. 2-1. It oscillates between symmetric limits of amplitude and it
also repeats periodically with a period of about 2.27 ms (0.00227 s). As we will see in
Section 2-3.1, this period is proportional to the reciprocal of ω0 (i.e., 2π/(2π(440)) ≈
0.00227).

This experiment shows that common physical systems produce signals whose
graphical representations look very much like cosine signals, as in the graphical plots of
the mathematical functions defined in (2.1). Later, in Section 2-7, we will add further
credence to the sinusoidal model for the tuning-fork sound by showing that cosine
functions arise as solutions to the differential equation that (through the laws of physics)
describes the motion of the tuning fork’s tines. Before looking at the physics of the tuning
fork, however, we should become more familiar with sinusoids and sinusoidal signals.

2-2 Review of Sine and Cosine Functions

Sinusoidal signals are defined in terms of the familiar sine and cosine functions of
trigonometry. A brief review of the properties of these basic trigonometric functions
is useful for understanding the properties of sinusoidal signals.

The sine and cosine functions are often introduced and defined through a triangle
diagram like Fig. 2-4. The trigonometric functions sine and cosine take an angle as their
argument. We often think of angles in degrees, but where sine and cosine functions are
concerned, angles must be dimensionless. Angles are therefore specified in radians. If
the angle θ is in the first quadrant (0 ≤ θ < π/2 rad), then the sine of θ is the length y
of the side of the triangle opposite the angle θ divided by the length r of the hypotenuse
of the right triangle. Similarly, the cosine of θ is the ratio of the length of the adjacent
side x to the length of the hypotenuse.

Note that as θ increases from 0 to π/2, cos θ decreases from 1 to 0 and sin θ increases
from 0 to 1. When the angle is greater than π/2 radians, the algebraic signs of x and y
come into play, x being negative in the second and third quadrants and y being negative
in the third and fourth quadrants. This is most easily shown by plotting the values of sin θ

x

y

r

θ 

y
r

x
r

Figure 2-4 Definition of sine and cosine
of an angle θ within a right triangle.
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Figure 2-5 (a) Sine function and (b) cosine
function plotted versus angle θ . Both functions
have a period of 2π .

and cos θ as a function of θ , as in Fig. 2-5. Several features of these plots1 are worthy
of comment. The two functions have exactly the same shape. Indeed, the sine function is
just a cosine function that is shifted to the right by π/2 (i.e., sin θ = cos(θ −π/2)). Both
functions oscillate between +1 and −1, and they repeat the same pattern periodically
with period 2π . Furthermore, the sine function is an odd function of its argument, and
the cosine is an even function. A summary of these and other properties is presented in
Table 2-1.

Table 2-2 shows that the sine and cosine functions are very closely related. This often
leads to opportunities for simplification of expressions involving both sine and cosine
functions. In calculus, we have the interesting property that the sine and cosine functions
are derivatives of each other:

d sin θ

dθ
= cos θ and

d cos θ

dθ
= − sin θ

Table 2-1 Basic properties of the sine and cosine functions.

Property Equation
Equivalence sin θ = cos(θ − π/2) or cos(θ) = sin(θ + π/2)
Periodicity cos(θ + 2πk) = cos θ , when k is an integer
Evenness of cosine cos(−θ) = cos θ
Oddness of sine sin(−θ) = − sin θ
Zeros of sine sin(πk) = 0, when k is an integer
Ones of cosine cos(2πk) = 1, when k is an integer

Minus ones of cosine cos[2π(k + 1
2 )] = −1, when k is an integer

1It is a good idea to memorize the form of these plots and be able to sketch them accurately.
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Table 2-2 Some basic trigonometric identities.

Number Equation

1 sin2 θ + cos2 θ = 1

2 cos 2θ = cos2 θ − sin2 θ

3 sin 2θ = 2 sin θ cos θ
4 sin(α ± β) = sin α cosβ ± cosα sin β
5 cos(α ± β) = cosα cosβ ∓ sin α sin β

In trigonometry, there are many identities that can be used in simplifying expressions
involving combinations of sinusoidal signals. Table 2-2 gives a brief list of trigonometric
identities that will be useful. Recall from your study of trigonometry that these identities
are not independent: e.g., identity #3 can be obtained from identity #4 by substituting
α = β = θ .Also, these identities can be combined to derive other identities. For example,
adding identity #5 with plus sign to identity #5 with minus sign leads to the identity

cosα cosβ = 1
2 cos(α + β)+ 1

2 cos(α − β)
A more extensive table of trigonometric identities may be found online, or in any bookNOTE

Exercise solutions
are available on
Companion Website

of mathematical tables. However, once we introduce the complex phasor notation for
sinusoids, there will be little or no need for these identities.

EXERCISE 2.1 Use trigonometric identity #5 to derive an expression for cos 8θ in terms of cos 9θ ,
cos 7θ , and cos θ .

2-3 Sinusoidal Signals

The most general mathematical formula for a sinusoidal time signal is obtained by making
the argument (i.e., the angle) of the cosine function be a function of t . The following
equation gives two equivalent forms:

x(t) = A cos(ω0t + ϕ) = A cos(2πf0t + ϕ) (2.2)

which are related by defining ω0 = 2πf0. In either form, there are three independent
parameters. The names and interpretations of these parameters are as follows:

(a) A is called the amplitude. The amplitude is a scaling factor that determines how
large the cosine signal will be. Since the function cos θ oscillates between +1 and
−1, the signal x(t) in (2.2) oscillates between +A and −A.

(b) ϕ is called the phase. The units of phase must be radians, since the argument
of the cosine must be in radians. We generally prefer to use the cosine function
when defining the phase. If we happen to have a formula containing sine, e.g.,
x(t) = A sin(ω0t + ϕ′), then we can rewrite x(t) in terms of cosine if we use the
equivalence property in Table 2-1. The result is:

x(t) = A sin(ω0t + ϕ′) = A cos(ω0t + ϕ′ − π/2)
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so we define the phase to be ϕ = ϕ′ − π/2 in (2.2). For simplicity and to prevent
confusion, we often avoid using the sine function.

(c) ω0 is called the radian frequency. Since the argument of the cosine function must
be in radians, which is dimensionless, the quantity ω0t must likewise be
dimensionless. Thus,ω0 must have units of rad/s if t has units of seconds. Similarly,
f0 = ω0/2π is called the cyclic frequency, and f0 must have units of s−1, or hertz.

DEMO
Sinusoids

EXAMPLE 2-1 Plotting Sinusoids

Figure 2-6 shows a plot of the signal

x(t) = 20 cos(2π(40)t − 0.4π) (2.3)

In terms of our definitions, the signal parameters are A = 20, ω0 = 2π(40) rad/s,
f0 = 40 Hz, and ϕ = −0.4π rad. The signal size depends on the amplitude parameter
A; its maximum and minimum values are +20 and −20, respectively. In Fig. 2-6 the
maxima occur at

t = . . . ,−0.02, 0.005, 0.03, . . .

and the minima at

. . . ,−0.0325,−0.0075, 0.0175, . . .

The time interval between successive maxima in Fig. 2-6 is 0.025 s, which is equal
to 1/f0. To understand why the signal has these properties, we will need to do more
analysis.

2-3.1 Relation of Frequency to Period

The sinusoid plotted in Fig. 2-6 is a periodic signal. The period of the sinusoid, denoted
by T0, is the time duration of one cycle of the sinusoid. In general, the frequency of
the sinusoid determines its period, and the relationship can be found by applying the
definition of periodicity x(t + T0) = x(t) as follows:

A cos(ω0(t + T0)+ ϕ) = A cos(ω0t + ϕ)
cos(ω0t + ω0T0

︸︷︷︸

=2π?

+ϕ) = cos(ω0t + ϕ)

0 0.01 0.02 0.03 0.04

0

10

20

Time t (s)

x.t/

0:010:020:03

10

20
Figure 2-6 Sinusoidal signal with parameters
A = 20, ω0 = 2π(40), f0 = 40 Hz, and
ϕ = −0.4π rad.
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Since the cosine function has a period of 2π , the smallest positive value for ω0T0 is 2π ,
which gives a simple relationship between T0 and the frequency f0 in hertz,

T0 = 2π

ω0
= 2π

2πf0
= 1

f0
(2.4)

Since T0 is the duration of one period of the signal, f0 = 1/T0 is the number of periods
(cycles) per second. Therefore, cycles per second is an appropriate unit for f0, and it
was in general use until the 1960s when the unit hertz (abbreviated Hz) was adopted
worldwide.2 For ω0, the radian frequency, the units are rad/s. The units of hertz, or cycles
per second, for f0 are often more convenient when describing the plot of a sinusoid,
because the factor of 2π is not involved.

It is relatively easy to understand the effect of the frequency parameter because a
higher value is more cycles per unit time. Figure 2-7 shows this effect for three choices of
f0 in the signal x(t) = 5 cos(2πf0t). The sinusoid in Fig. 2-7(a) has a higher frequency
than the one in Fig. 2-7(b). As we expect, the waveform shape is similar for both, but the
higher frequency signal varies more rapidly with time (i.e., the cycle length (period) is
a shorter time interval). We have already seen in (2.4) that this is true because the period of

−10 −5 0 5 10 15 20
−5

0

5

−10 −5 0 5 10 15 20
−5

0

5

−10 −5 0 5 10 15 20
−5

0

5

Time t (ms)

(a) Cosine Signal: f0 = 200 Hz

(b) Cosine Signal: f0 = 100 Hz

(c) Cosine Signal: f0 = 0 Hz

Figure 2-7 Cosine signals
x(t) = 5 cos(2πf0t) for several
values of f0: (a) f0 = 200 Hz;
(b) f0 = 100 Hz; (c) f0 = 0.

2The unit hertz was proposed in 1933 by the Electrotechnical Commission in honor of Heinrich Hertz,
who first demonstrated the existence of radio waves.
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a cosine signal is the reciprocal of the frequency. Note that when the frequency doubles
(100 Hz→ 200 Hz), the period is halved. This is an illustration of the general principle
that the higher the frequency, the more rapid the signal waveform changes with time.
Throughout this book, we will see more examples of this inverse relationship between
time and frequency.

Finally, notice that f0 = 0 is a perfectly acceptable frequency value, and when
this value is used, the resulting signal is constant (Fig. 2-7(c)), since 5 cos(2π(0)t) =
5 cos(0) = 5 for all values of t . Thus, the constant signal, often called DC,3 is, in fact, a
sinusoid of zero frequency.

2-3.2 Phase and Time Shift

The phase parameter ϕ (together with the frequency) determines the time locations of
the maxima and minima of a cosine wave, as well as the zero crossings in-between. To
be specific, notice that the sinusoid (2.2) with ϕ = 0 has a positive peak at t = 0. When
ϕ �= 0, the phase determines how much the maximum of the cosine signal is shifted away
from t = 0.

Before we examine this point in detail for sinusoids, it is useful to become familiar
with the general concept of time-shifting a signal. Suppose that a signal s(t) is defined
by a known formula or graph. A simple example is the following triangularly shaped
function:

s(t) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

2t 0 ≤ t ≤ 1
2

− 2
3(t − 2) 1

2 ≤ t ≤ 2

0 elsewhere

(2.5)

This simple function, shown in Fig. 2-8(a), has a slope of 2 for 0 ≤ t < 1
2 and a negative

slope of− 2
3 for 1

2 < t ≤ 2. Now consider the functionx1(t) = s(t−2). From the definition
of s(t), it follows that x1(t) is nonzero for

0 ≤ (t − 2) ≤ 2 =⇒ 2 ≤ t ≤ 4

Within this time interval, the formula for the shifted signal is:

x1(t) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

2(t − 2) 2 ≤ t ≤ 2 1
2

− 2
3(t − 4) 2 1

2 ≤ t ≤ 4

0 elsewhere

(2.6)

In other words, x1(t) is simply the s(t) function with its origin (and peak) shifted to the
right by 2 s; see Fig. 2-8(b). Similarly, x2(t) = s(t + 1) is the s(t) function shifted to the
left by 1 s in Fig. 2-8(c); its nonzero portion is located in the interval −1 ≤ t ≤ 1.

3Electrical engineers use the abbreviation DC standing for direct current, which is a constant current.
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Figure 2-8 Illustration of time-shifting: (a) the triangular signal s(t); (b) shifted to the right
by 2 s, x1(t) = s(t − 2); (c) shifted to the left by 1 s, x2(t) = s(t + 1).

EXERCISE 2.2 Derive the equations for the shifted signal x2(t) = s(t + 1).

We will have many occasions to consider time-shifted signals. Whenever a signal can
be expressed in the form x1(t) = s(t − t1), we say that x1(t) is a time-shifted version of
s(t). If t1 is a positive number, then the shift is to the right, and we say that the signal s(t)
has been delayed in time. When t1 is a negative number, then the shift is to the left, and
we say that the signal s(t)was advanced in time. In summary, time shifting is essentially
a redefinition of the time origin of the signal. In general, any function of the form s(t− t1)
has its time origin moved to the location t = t1.

For a sinusoid, the time shift is defined with respect to a zero-phase cosine that has
a positive peak at t = 0. Since a sinusoid has many positive peaks, we must pick one to
define the time shift, so we pick the positive peak of the sinusoid that is closest to t = 0.
In the plot of Fig. 2-6, the time where this positive peak occurs is t1 = 0.005 s. Since the
peak in this case occurs at a positive time (to the right of t = 0), we say that the time shift
is a delay of the zero-phase cosine signal. Now we can relate the time delay to phase.
Let x0(t) = A cos(ω0t) denote a cosine signal with zero phase. A delay of x0(t) can be
converted to a phase ϕ by making the following comparison:

x0(t − t1) = A cos (ω0(t − t1)) = A cos(ω0t + ϕ)
⇒ cos(ω0t − ω0t1) = cos(ω0t + ϕ)

Since the second equation must hold for all t , we conclude that ϕ = −ω0t1. Notice that
the phase is negative when the time shift t1 is positive (a delay). We can also express the
phase in terms of the period (T0 = 1/f0) where we get the more intuitive formula

ϕ = −ω0t1 = −2π

(

t1

T0

)

(2.7a)

which states that the phase is 2π times the fraction of a period given by the ratio of the
time shift to the period. If we need to get the time shift from the phase, we solve for t1

DEMO
Sine Drill t1 = − ϕ

ω0
= − ϕ

2πf0
= −ϕT0

2π
(2.7b)

Since the positive peak nearest to t = 0 must always lie within the interval
[− 1

2T0,
1
2T0], the phase calculated in (2.7a) will always satisfy −π < ϕ ≤ π . However,
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the phase is also ambiguous because adding a multiple of 2π to the argument of a cosine
function does not change the value of the cosine. This is a direct consequence of the fact
that the cosine is periodic with period 2π . Each different multiple of 2π corresponds to
picking a different peak of the periodic waveform. Thus, another way to compute the
phase is to find any positive peak of the sinusoid and measure its corresponding time
location. After the time location is converted to phase using (2.7a), an integer multiple of
2π can be added to or subtracted from the phase to produce a final result between−π and
+π . This gives a final result identical to locating the peak that is within half a period of
t = 0. The operation of adding or subtracting multiples of 2π is referred to as reducing
modulo 2π, because it is similar to modulo reduction in mathematics, which amounts to
dividing by 2π and taking the remainder. The value of phase that falls between −π and
+π is called the principal value of the phase.

EXERCISE 2.3 In Fig. 2-6, it is possible to measure both a positive and a negative value of t1 and then
calculate the corresponding phases. Which phase is within the range −π < ϕ ≤ π?
Verify that the two phases differ by 2π .

EXERCISE 2.4 Starting with the plot in Fig. 2-6, sketch a plot of x(t− t1)when t1 = 0.0075. Repeat
for t1 = −0.01. Make sure that you shift in the correct direction. For each case,
compute the phase of the resulting time-shifted sinusoid.

EXERCISE 2.5 For the signal in Fig. 2-6, x(t) = 20 cos(2π(40)t − 0.4π), find G and t1 so that the
signal y(t) = Gx(t − t1) is equal to 5 cos(2π(40)t).

2-4 Sampling and Plotting Sinusoids

All of the plots of sinusoids in this chapter were created using MATLAB. This had to be
done with care, because MATLAB deals only with discrete signals represented by row
or column vectors, but we actually want to plot a continuous function x(t). For example,
if we wish to plot a function such as

x(t) = 20 cos(2π(40)t − 0.4π) (2.8a)

which is shown in Fig. 2-6, we must evaluate x(t) at a discrete set of times. Usually we
pick a uniform set tn = nTs , where n is an integer. Then from x(t)we obtain the sequence
of samples

x(nTs) = 20 cos(80πnTs − 0.4π) (2.8b)

where Ts is called the sample spacing or sampling period. When plotting the function
x(nTs) using the plot function in MATLAB, we must provide a pair of row or column
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vectors, one containing the time values and the other the computed function values to be
plotted. For example, the MATLAB statements

n = -6:9;
Ts = 0.005;
tn = n*Ts;
xn = 20*cos(80*pi*tn - 0.4*pi);
plot(tn,xn)

would create a row vector tn of 16 numbers between −0.03 and 0.045 spaced by the
sampling period 0.005, and a row vector xn of samples of x(t). Then the MATLAB
function plot draws the corresponding points, connecting them with straight line
segments. Constructing the curve between sample points in this way is called linear
interpolation. The solid gray curve in Fig. 2-9(a) shows the result of linear interpolation
when the sample spacing is Ts = 0.005. Intuitively, we realize that if the points are very
close together, we will see a smooth curve. The important question is, “How small must
we make the sample spacing, so that the cosine signal can be accurately reconstructed
between samples by linear interpolation?”A qualitative answer to this question is provided
by Fig. 2-9, which shows plots produced by three different sampling periods.
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(a) Samples of Sinusoid: Ts D 0:005 s

(b) Ts D 0:0025 s

(c) Ts D 0:0005 s

Figure 2-9 Plotting the 40-Hz sampled cosine
2.8(b) for (a) Ts = 0.005 s; (b) Ts = 0.0025 s;
(c) Ts = 0.0005 s.
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Obviously, the sample spacing of Ts = 0.005 in Fig. 2-9(a) is not sufficiently close
to create an accurate plot when the sample points are connected by straight lines.4 With a
spacing of Ts = 0.0025 in Fig. 2-9(b), the plot starts to look more like a cosine, but it is
still possible to see places where the points are connected by straight lines rather than the
smooth cosine function. Only in the plot of Fig. 2-9(c), where the spacing is Ts = 0.0005,
does the sampling spacing become so dense that our eye can easily visualize a curve that
is a faithful representation of the cosine function. A precise answer to the question posed
above would require a mathematical definition of accuracy; our subjective judgment
would be too prone to variability among different observers. However, we learn from this
example that as the sampling period decreases, more samples are taken during one period
of the sinusoid. When Ts = 0.005, there are 5 samples per period; when Ts = 0.0025
there are 10 samples per period; and when Ts = 0.0005, there are 50 samples per period.
It seems that 10 samples per period is not quite enough, and 50 samples per period is
probably more than necessary, but, in general, the more samples per period, the smoother
and more accurate is the linearly interpolated curve.

The choice of Ts also depends on the frequency of the cosine signal, because it is
the number of samples per period that matters in plotting. For example, if the frequency
of the cosine signal were 400 Hz instead of 40 Hz, then the period is ten times shorter
and a sample spacing of Ts = 0.0005 would yield only 5 samples per period. The key to
accurate reconstruction is to sample frequently enough so that the cosine signal does not
change very much between sample points.

The problem of plotting a cosine signal from a set of discrete samples also depends
on the interpolation method used. With MATLAB’s built-in plotting function, linear
interpolation is used to connect points by straight-line segments. This raises the question
“If a more sophisticated interpolation method can be used, how large can the sample
spacing be such that the cosine signal can be reconstructed accurately from the samples?”
Surprisingly, the theoretical answer to this question is that the cosine signal can be
reconstructed exactly from its samples if the sample spacing is less than half the period
(i.e., the average number of samples per period need be only slightly more than two)!
Linear interpolation certainly cannot achieve this result, but, in Chapter 4, where we
examine the sampling process in more detail, we will explain how this remarkable result
can be achieved. For now, our observation that smooth and accurate sinusoidal curves can
be reconstructed from samples if the sampling period is “small enough” will be adequate
for our purposes.

2-5 Complex Exponentials and Phasors

We have shown that cosine signals are useful mathematical representations for signals that
arise in a practical setting, and that they are simple to define and interpret. However, it turns
out that the analysis and manipulation of sinusoidal signals is often greatly simplified by

4The sample points are shown as dots in these three plots. This was achieved by adding a second plot
using MATLAB’s hold and stem functions.
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Figure 2-10 Representations of
complex numbers in the complex
plane. (a) Cartesian or rectangular
form. (b) Polar form.

dealing with related signals called complex exponential signals.Although the introduction
of the unfamiliar and seemingly artificial concept of complex exponential signals may
at first seem to be making the problem more difficult, we will soon see the value in this
new representation because we will avoid many tedious trigonometric manipulations that
arise when using sinusoidal signals. Before introducing the complex exponential signal,
we will first review some basic concepts concerning complex numbers.5

2-5.1 Review of Complex Numbers

A complex number z is an ordered pair of real numbers. Complex numbers may be
represented by the notation z = (x, y), where x = 	{z} is the real part and y = 
{z} is
the imaginary part of z. Electrical engineers use the symbol j for

√−1 instead of i, so we
can also represent a complex number as z = x+jy. These two representations are called
the Cartesian form of the complex number. Complex numbers are often represented as
points in a complex plane, where the real and imaginary parts are the horizontal and
vertical coordinates, respectively, as shown in Fig. 2-10(a). With the Cartesian notation
and the understanding that any number multiplied by j is included in the imaginary part,
the operations of complex addition, complex subtraction, complex multiplication, and
complex division can be defined in terms of real operations on the real and imaginary
parts. For example, the sum of two complex numbers is defined as the complex number
whose real part is the sum of the real parts and whose imaginary part is the sum of the
imaginary parts.

Since complex numbers can be represented as points in a plane, it follows that complex
numbers are analogous to vectors in a two-dimensional space. This leads to a useful
geometric interpretation of a complex number as a vector, shown in Fig. 2-10(b). Vectors
have length and direction, so another way to represent a complex number is the polar
form in which the complex number is represented by r , its vector length, together with θ ,
its angle with respect to the positive real axis. The length of the vector is also called the
magnitude of z (denoted |z|), and the angle is called the argument of z (denoted arg z).
This is indicated by the descriptive notation z↔ r∠θ , which is interpreted to mean that
the vector representing z has length r and makes an angle θ with the positive real axis.

5Appendix A provides a more detailed review of the fundamentals of complex numbers. Readers who
know the basics of complex numbers and how to manipulate them can skim Appendix A for review and skip
to Section 2-5.2.
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It is important to be able to convert between the Cartesian and polar forms of complex
numbers. Figure 2-10(b) shows a complex number z and the quantities involved in
both the Cartesian and polar representations. Using this figure, as well as some simple
trigonometry and the Pythagorean theorem, we can derive a method for computing the
Cartesian coordinates (x, y) from the polar variables r∠θ :

x = r cos θ and y = r sin θ (2.9)

and, likewise, for going from Cartesian to polar form

r =
√

x2 + y2 and θ = arctan
(y

x

)

(2.10)

where the arctangent used must return angles in all four quadrants. Many calculators
and computer programs have these two sets of equations built in, making the conversion
between polar and Cartesian forms simple and convenient.

The r∠θ notation is clumsy, and does not lend itself to ordinary algebraic rules.
A much better polar form is given by using Euler’s famous formula for the complex
exponential

ejθ = cos θ + j sin θ (2.11)

The Cartesian pair (cos θ, sin θ) can represent any point on a circle of radius 1, so a slight
generalization of (2.11) gives a representation valid for any complex number z

z = rejθ = r cos θ + jr sin θ (2.12)

The complex exponential polar form of a complex number is most convenient when
calculating a complex multiplication or division (see Appendix A for more details). It
also serves as the basis for the complex exponential signal, which is introduced in the
next section. A MATLAB GUI called zdrill is available (from the Companion Website)
for building skills with basic complex number operations.

DEMO
zdrill

2-5.2 Complex Exponential Signals

The complex exponential signal is defined as

z(t) = Aej(ω0t+ϕ) (2.13)

Observe that the signal z(t) is a complex-valued function of t , but its magnitude is always
constant (i.e., |z(t)| = A), and its angle is arg z(t) = (ω0t + ϕ). Using Euler’s formula
(2.11), the complex exponential signal can be expressed in Cartesian form as

Aej(ω0t+ϕ) = A cos(ω0t + ϕ)+ jA sin(ω0t + ϕ) (2.14)

As with the real sinusoid, A is the amplitude, and should be a positive real number; ϕ
is the phase; and ω0 is the frequency in rad/s. In (2.14) it is clear that the real part of
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the complex exponential signal is a real cosine signal as defined in (2.2), and that its
imaginary part is a real sine signal. Figure 2-11 shows a plot of the following complex
exponential signal:

z(t) = 20 ej (2π(40)t−0.4π)

= 20 ej (80πt−0.4π)

= 20 cos(80πt − 0.4π)+ j20 sin(80πt − 0.4π)

= 20 cos(80πt − 0.4π)+ j20 cos(80πt − 0.9π)

Plotting a complex signal as a function of time requires two graphs, one for the real part
and another for the imaginary part. Observe that the real and the imaginary parts of the
complex exponential signal are both real sinusoidal signals, and only their phases differ
by a phase shift of 0.5π rad.

The main reason that we are interested in the complex exponential signal is that it is an
alternative representation for the real cosine signal. This is because we can always write

x(t) = 	 {Aej(ω0t+ϕ)} = A cos(ω0t + ϕ) (2.15)

In fact, the real part of the complex exponential signal shown in Fig. 2-11 is identical
to the cosine signal plotted in Fig. 2-6. Although it may seem that we have complicated
things by first introducing the imaginary part to obtain the complex exponential signal and
then throwing it away by taking only the real part, we will see that many calculations are
simplified by using properties of the complex exponential representation. It is possible,
for example, to replace most trigonometric manipulations with algebraic operations on
the exponents.

EXERCISE 2.6 Demonstrate that equating the real parts of both sides of the equation ej (α+β) = ejαejβ
will lead to identity #5 in Table 2-2. Also, show that identity #4 is obtained from
equating the imaginary parts.
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Figure 2-11 Real and imaginary parts of the complex
exponential signal z(t) = 20ej (2π(40)t−0.4π). The phase
difference between the two sinusoids is 90◦ or π/2 rad.
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2-5.3 The Rotating Phasor Interpretation

When two complex numbers are multiplied, it is best to use polar form for both numbers
because we just multiply the magnitudes and add the angles. To justify this statement,
consider z3 = z1z2, where z1 = r1ejθ1 and z2 = r2ejθ2. Then the product is

z3 = r1ejθ1r2e
jθ2 = r1r2ejθ1ejθ2 =

r3
︷︸︸︷

r1r2 e
j (

θ3
︷ ︸︸ ︷

θ1 + θ2)

where we have used the law of exponents to combine the two complex exponentials. The
vectors illustrated in Fig. 2-12 show that complex multiplication involves rotation and
scaling.

This geometric view of complex multiplication leads to a useful interpretation of the
complex exponential signal as a complex vector that rotates as time increases. If we use
A and ϕ to define a complex number:

X = Aejϕ (2.16)

then the complex exponential (2.13) can be expressed as

z(t) = Xejω0t (2.17)

(i.e., z(t) is the product of the complex constantX and the complex-valued time function
ejω0t ). The complex numberX, which is aptly called the complex amplitude, has a polar
representation created from the amplitude and the phase of the complex exponential
signal. Taken together, the complex amplitude X = Aejϕ and the frequency ω0 are
sufficient to represent z(t), as well as the real cosine signal, x(t) = A cos(ω0t + ϕ),
using (2.15). The complex amplitude is also called a phasor. The phasor terminology
is common in electrical circuit theory, where complex exponential signals are used to
greatly simplify the analysis and design of circuits. Since it is a complex number, X can
be represented graphically as a vector in the complex plane, where the vector’s magnitude
(|X| = A) is the amplitude, and its angle (∠X = ϕ) is the phase of a complex exponential
signal defined by (2.17). In the remainder of the text, the term complex amplitude will
be used more often than phasor, but the two terms can be used interchangeably because
they refer to the same quantity defined in (2.16).

z1 z1

z2z3
z2

θ2 θ3 

θ1 

(a) (b)

Figure 2-12 Geometric view of complex
multiplication z3 = z1z2. The vector z3 is a rotated
and scaled version of z2 because ∠z3 = ∠z2 + θ1,
and the length of z3 is r1 times the length of z2.
Here, r1 = 1.72, r2 = 0.77, and r3 = 1.32.
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The complex exponential signal defined in (2.17) can also be written as

z(t) = Xejω0t = Aejϕejω0t = Aejθ(t)

where θ(t) is a time-varying angle function

θ(t) = ω0t + ϕ (radians)

At a given instant in time, t , the value of the complex exponential signal, z(t), is a complex
number whose magnitude is A and whose angle is θ(t). Like any complex number, z(t)
can be represented as a vector in the complex plane. In this case, the tip of the vector
always lies on the perimeter of a circle of radius A. Now, if t increases, the complex
vector z(t) will simply rotate at a constant rate, determined by the radian frequency ω0.
In other words, multiplying the phasor X by ejω0t as in (2.17) causes the phasor X to
rotate by an angular amount of ω0t . Since |ejω0t | = 1, no scaling occurs. Thus, another
name for the complex exponential signal is rotating phasor.

If the frequency ω0 is positive, the direction of rotation is counterclockwise, because
θ(t) will increase with increasing time. Similarly, when ω0 is negative, the angle θ(t)
changes in the negative direction as time increases, so the complex phasor rotates
clockwise. Thus, rotating phasors are said to have positive frequency if they rotate
counterclockwise, and negative frequency if they rotate clockwise.

A rotating phasor makes one complete revolution every time the angle θ(t) changes
by 2π radians. The time it takes to make one revolution is also equal to the period, T0, of
the complex exponential signal, so

ω0T0 = (2πf0)T0 = 2π =⇒ T0 = 1

f0

Notice that the phase ϕ defines where the phasor is pointing when t = 0. For example,
if ϕ = π/2, then the phasor is pointing straight up when t = 0, whereas if ϕ = 0, the
phasor is pointing to the right when t = 0.

The plots in Fig. 2-13(a) illustrate the relationship between a single complex rotating
phasor and the cosine signal waveform. The upper left plot shows the complex plane with
two vectors. The vector at an angle in the third quadrant represents the signal

z(t) = ej (t−π/4)

at the specific time t = 1.5π . The horizontal vector pointing to the left is equal to the real
part of the vector z(t) at the particular time t = 1.5π which is

x(1.5π) = 	{z(1.5π)} = cos(1.5π − π/4) = −
√

2

2

As t increases, the rotating phasor z(t) rotates in the counterclockwise direction, and its
real part x(t) oscillates left and right along the real axis. This is shown in the lower left
plot, which shows how the real part of the rotating phasor has varied over one period (i.e.,
0 ≤ t ≤ 2π ). We will return to discuss Fig. 2-13(b) in Sect. 2-5.4.
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Figure 2-13 Rotating phasors:
(a) single phasor rotating
counterclockwise; (b) complex
conjugate rotating phasors.

2-5.4 Inverse Euler Formulas

The inverse Euler formulas allow us to write the cosine function in terms of complex
exponentials as

cos θ = ejθ + e−jθ
2

(2.18)

and also the sine function can be expressed as

sin θ = ejθ − e−jθ
2j

(2.19)

(See Appendix A for more details.)

DEMO
Rotating Phasors

Equation (2.18) can be used to express cos(ω0t + ϕ) in terms of two complex
exponentials as follows:

A cos(ω0t + ϕ) = A
(

ej (ω0t+ϕ) + e−j (ω0t+ϕ)

2

)

= 1
2Xe

jω0t + 1
2X
∗e−jω0t

= 1
2z(t)+ 1

2z
∗(t)

= 	{z(t)}
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where ∗ denotes complex conjugation. This formula has an interesting interpretation. The
real cosine signal with frequency ω0 is actually composed of a positive frequency (ω0)

complex exponential and a negative frequency (−ω0) complex exponential. The complex
amplitude of the positive frequency complex exponential signal is 1

2X = 1
2Ae

jϕ , and the
complex amplitude of the negative frequency complex exponential is 1

2X
∗ = 1

2Ae
−jϕ . In

other words, the real cosine signal can be represented as the sum of two complex rotating
phasors that are rotating in opposite directions starting from phasors that are complexDEMO

Rotating Phasors conjugates of each other.
Figure 2-13(b) illustrates how the sum of the two half-amplitude complex conjugate

rotating phasors becomes the real cosine signal. In this case, the vector at an angle in the
third quadrant (heavy-orange line) is the complex rotating phasor 1

2z(t) at time t = 1.5π .
As t increases after that time, the angle would increase in the counterclockwise direction.
Similarly, the vector in the second quadrant (plotted with a light-orange line) is the
complex rotating phasor 1

2z
∗(t) at time t = 1.5π . As t increases after that time, the angle

of 1
2z
∗(t) will increase in the clockwise direction. The horizontal vector pointing to the

left is the sum of these two complex conjugate rotating phasors. The result is the same
as the real vector in the plot on the left, and therefore the real cosine wave traced out as
a function of time is the same in both cases. The lower right shows the variation of the
real values of cos(t − π/4) for 0 ≤ t ≤ 2π .

This representation of real sinusoidal signals in terms of their positive- and negative-
frequency components is a remarkably useful concept. The negative frequencies,
which arise due to the complex exponential representation, turn out to lead to many
simplifications in the analysis of signals and systems problems. We will develop this
representation further in Chapter 3, where we introduce the idea of the spectrum of a
signal.

EXERCISE 2.7 Show that the following representation can be derived for the real sine signal:

A sin(ω0t + ϕ) = 1
2Xe

−jπ/2ejω0t + 1
2X
∗ejπ/2e−jω0t

where X = Aejϕ . In other words, the sine signal is composed of two complex
exponentials with the same positive and negative frequencies, but the complex
coefficients multiplying the terms are different from those of the cosine signal.
Specifically, the sine signal requires additional phases of∓π/2 applied to the complex
amplitude X and X∗, respectively.

2-6 Phasor Addition

There are many situations in which it is necessary to add two or more sinusoidal signals.
When all signals have the same frequency, the addition simplifies. This addition problem
arises in electrical circuit analysis, and it will arise again in Chapters 5 and 6, where we
introduce the concepts of discrete-time filtering and frequency response. Thus it is useful
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to develop a short cut for adding several sinusoids having the same frequency, but with
different amplitudes and phases. Our goal is to prove that the following statement is true:

N
∑

k=1

Ak cos(ω0t + ϕk) = A cos(ω0t + ϕ) (2.20)

by showing how to get A and ϕ from the sum. Equation (2.20) states that a sum of
N cosine signals of differing amplitudes and phases, but with the same frequency, can
always be reduced to a single cosine signal of the same frequency. A proof of (2.20) could
be accomplished by using trigonometric identities such as

Ak cos(ω0t + ϕk) = Ak cosϕk cos(ω0t)− Ak sin ϕk sin(ω0t) (2.21)

but this approach is exceedingly tedious to carry out. As we will see, a much simpler
approach can be based on the complex exponential representation of the cosine
signals.

2-6.1 Addition of Complex Numbers

When two complex numbers are added, it is necessary to use the Cartesian form. If
z1 = x1+jy1 and z2 = x2+jy2, then z3 = z1+z2 = (x1+x2)+j (y1+y2) (i.e., the real
and imaginary parts of the sum are the sums of the real and imaginary parts, respectively).
Using the vector interpretation of complex numbers, where both z1 and z2 are viewed
as vectors with their tails at the origin, the sum z3 is the result of vector addition, and is
constructed as follows:

(a) Draw a copy of z1 with its tail at the head of z2. Call this displaced vector ẑ1.

(b) Draw the vector from the origin to the head of ẑ1. This is the sum z3.

This process is depicted in Fig. 2-14 for the case z1 = 4− j3 and z2 = 2+ j5.

2-6.2 Phasor Addition Rule

The phasor representation of cosine signals can be used to show that the following sum
of sinusoids:

x(t) =
N
∑

k=1

Ak cos(ω0t + ϕk) = A cos(ω0t + ϕ) (2.22)

can be carried out by adding complex amplitudes to get A and ϕ:

N
∑

k=1

Ake
jϕk = Aejϕ (2.23)
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Figure 2-14 Graphical construction of
complex number addition, z3 = z1 + z2, shows
that the process is the same as vector addition.

That is, the sum of two or more cosine signals each having the same frequency (2.22), but
having different amplitudes and phases, can be expressed as a single equivalent cosine
signal. The resulting amplitude (A) and phase (ϕ) of the term on the right-hand side
of (2.22) can be computed from the individual amplitudes (Ak) and phases (ϕk) on the
left-hand side by doing the complex addition in (2.23). This method is called the phasor
addition rule. Proof of the phasor addition rule requires the following two pieces of
information:

(a) Any sinusoid can be written in the form:

A cos(ω0t + ϕ) = 	{Aej(ω0t+ϕ)} = 	{Aejϕ ejω0t}

(b) For any set of complex numbers {Xk}, the sum of the real parts is equal to the real
part of the sum, so we have

	
{

N
∑

k=1

Xk

}

=
N
∑

k=1

	{Xk}

Proof of the phasor addition rule involves the following algebraic manipulations:

N
∑

k=1

Ak cos(ω0t + ϕk) =
N
∑

k=1

	 {Akej(ω0t+ϕk)}

= 	
{

N
∑

k=1

Ake
jϕkejω0t

}

= 	
{(

N
∑

k=1

Ake
jϕk

)

ejω0t

}

= 	 {(Aejϕ)ejω0t
} = 	 {Aej(ω0t+ϕ)} = A cos(ω0t + ϕ)
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Two steps (shown in color) are important in this proof. In the third line, the complex
exponential ejω0t is factored out of the summation because all the sinusoids have the
same frequency. In going from the third line to the fourth, the crucial step is replacing
the summation term in parentheses with a single complex number, Aejϕ , as defined in
(2.23), because we are adding N complex constants.

2-6.3 Phasor Addition Rule: Example

We now consider an example of adding two sinusoids, where

x1(t) = 1.7 cos(20πt + 70π/180)

x2(t) = 1.9 cos(20πt + 200π/180)

The frequency of both sinusoids is 10 Hz, so the period isT0 = 0.1 s. The sum x1(t)+x2(t)

is done via phasor addition (2.23) of the complex amplitudes which requires four
steps:

1. Represent x1(t) and x2(t) by the phasors:

X1 = A1e
jϕ1 = 1.7ej70π/180

X2 = A2e
jϕ2 = 1.9ej200π/180

2. Convert both phasors to rectangular form:

X1 = 0.5814+ j1.5975

X2 = −1.7854− j0.6498

3. Add the real parts and the imaginary parts:

X3 = X1 +X2

= (0.5814+ j1.5975)+ (−1.7854− j0.6498)

= −1.204+ j0.9477

4. Convert back to polar form, obtaining6

X3 = 1.5322ej141.79π/180

6With a modern scientific calculator, step 1 is data entry, and then a single button would be pushed to do
steps 2–4.



52 CHAPTER 2 SINUSOIDS

The resultant phasor X3 is converted back to a 10-Hz sinusoid, so the final formula
for x3(t) is

x3(t) = 1.5322 cos(20πt + 141.79π/180)

or x3(t) = 1.5322 cos(20π(t + 0.0394))

The waveforms of the three signals are shown Fig. 2-15(b) and the phasors used to
solve the problem are shown on the left in Fig. 2-15(a). Notice that the times where the
maximum of each cosine signal occurs can be derived from the phase through the formula

tm = −ϕT0

2π

which gives

tm1 = −0.0194, tm2 = −0.0556, tm3 = −0.0394 s

These times are marked with vertical dashed lines in the corresponding waveform plots
in Fig. 2-15(b).
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Figure 2-15 (a) Adding sinusoids by doing a phasor addition, which is actually a graphical vector sum. (b) The time of
the signal maximum is marked on each xi(t) plot.
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Table 2-3 Phasor addition example.

Z = X + jY Magnitude Phase Ph/pi Ph(deg)

Z1 0.5814 1.5975 1.7 1.222 0.389 70.00

Z2 -1.7854 -0.6498 1.9 -2.793 -0.889 -160.00

Z3 -1.204 0.9477 1.5322 2.475 0.788 141.79

2-6.4 MATLAB Demo of Phasors

The process of phasor addition can be accomplished easily using MATLAB. The answer
generated by MATLAB and printed with the special function zprint (provided on the
website) for this particular phasor addition is given in Table 2-3. Help on zprint gives

ZPRINT print out complex # in rect and polar form
usage: zprint(z)
z = vector of complex numbers; each one will be printed

in a format showing real, imag, mag and phase

DEMO
ZDrill

LAB
DSP-First Toolbox

The MATLAB code that generates the plots in Fig. 2-15 uses the special MATLAB
functions (provided on the Companion Website) zprint, zvect, zcat, ucplot, and
zcoords to make the vector plots.

2-6.5 Summary of the Phasor Addition Rule

In this section, we have shown how a real cosine signal can be represented as the real
part of a complex exponential signal (complex rotating phasor), and we have applied this
representation to show how to simplify the process of adding several cosine signals of
the same frequency.

x(t) =
N
∑

k=1

Ak cos(ω0t + ϕk) = A cos(ω0t + ϕ)

In summary, all we have to do to get the cosine signal representation of the sum is:

(a) Obtain the phasor representation Xk = Akejϕk of each of the individual signals.

(b) Add the phasors of the individual signals to get X = X1 +X2 + · · · = Aejϕ . This
requires polar-to-Cartesian-to-polar format conversions.

(c) Multiply X by ejω0t to get z(t) = Aejϕejω0t .

(d) Take the real part to get x(t) = 	{Aejϕejω0t} = A cos(ω0t + ϕ) = x1(t)+
x2(t)+ · · · .

In other words, A and ϕ must be calculated by doing a vector sum of all the Xk
phasors.
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6 Figure 2-16 Two sinusoids and their sum,

x3(t) = x1(t)+ x2(t).

EXERCISE 2.8 Consider the two sinusoids,

x1(t) = 5 cos(2π(100)t + π/3)
x2(t) = 4 cos(2π(100)t − π/4)

Obtain the phasor representations of these two signals, add the phasors, plot the two
phasors and their sum in the complex plane, and show that the sum of the two signals is

x3(t) = 5.536 cos(2π(100)t + 0.2747)

In degrees the phase should be 15.74◦. Examine the plots in Fig. 2-16 to see whether
you can identify the cosine waves x1(t), x2(t), and x3(t) = x1(t)+ x2(t).

2-7 Physics of the Tuning Fork

In Section 2-1, we described a simple experiment in which a tuning fork was seen to
generate a signal whose waveform looked very much like that of a sinusoidal signal.
Now that we know a lot more about sinusoidal signals, it is worthwhile to take up
this issue again. Is it a coincidence that the tuning-fork signal looks like a sinusoid,
or is there a deeper connection between vibrations and sinusoids? In this section, we
present a simple analysis of the tuning-fork system that shows that the tuning fork does
indeed vibrate sinusoidally when given a displacement from its equilibrium position. The
sinusoidal motion of the tuning-fork tines is transferred to the surrounding air particles,
thereby producing the acoustic signal that we hear. This simple example illustrates how
mathematical models of physical systems that are derived from fundamental physical
principles can lead to concise mathematical descriptions of physical phenomena and of
signals that result.

2-7.1 Equations from Laws of Physics

A simplified drawing of the tuning fork and its motion is shown in Fig. 2-17. As we have
seen experimentally, when struck against a firm surface, the tines of the tuning fork vibrate
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Figure 2-17 (a) Tuning fork. (b) The coordinate
system needed to write equations for the vibration
of the tine.

and produce a “pure” tone. We are interested in deriving the equations that describe the
physical behavior of the tuning fork so that we can understand the basic mechanism by
which the sound is produced.7 Newton’s second law, F = ma, will lead to a differential
equation whose solution is a sine or cosine function, or a complex exponential.

When the tuning fork is struck, one of the tines is deformed slightly from its rest
position, as depicted in Fig. 2-17(b).We know from experience that unless the deformation
was so large as to break or bend the metal, there would be a tendency for the tine to return
to its original rest position. The physical law that governs this movement is Hooke’s
law. Although the tuning fork is made of a very stiff metal, we can think of it as an
elastic material when the deformation is tiny. Hooke’s law states that the restoring force
is directly proportional to the amount of deformation. If we set up a coordinate system
as in Fig. 2-17(b), the deformation is along the x-axis, and we can write

F = −kx
where the parameter k is the elastic constant of the material (i.e., its stiffness). The minus
sign indicates that this restoring force acts in the negative direction when the displacement
of the tine is in the positive x direction (i.e., it acts to pull the tine back toward the neutral
position).

Now this restoring force due to stiffness produces an acceleration as dictated by
Newton’s second law, which states

F = ma = m d2x

dt2

wherem is the mass of the tine, and the second derivative with respect to time of position
x is the acceleration of the mass along the x-axis. Since these two forces must balance

7The generation and propagation of sound are treated in any general college physics text.
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each other (i.e., the sum of the forces is zero), we get a second-order differential equation
that describes the motion x(t) of the tine for all values of time t

m
d2x(t)

dt2
= −k x(t) (2.24)

This particular differential equation is rather easy to solve, because we can, in fact,
guess the solution. From the derivative properties of sine and cosine functions, we are
motivated to try as a solution the function

x(t) = A cosω0t

where the parameter ω0 is a constant that must be determined. The second derivative of
x(t) is

d2x(t)

dt2
= d2

dt2
(A cosω0t)

= d

dt
(−ω0A sinω0t)

= −ω2
0A cosω0t

Notice that the second derivative of the cosine function is the same cosine function
multiplied by a constant (−ω2

0). Therefore, when we substitute x(t) into (2.24), we get

m
d2x(t)

dt2
= −k x(t)

−mω2
0A cosω0t = −k A cosω0t

Since this equation must be satisfied for all t , it follows that the coefficients of cosω0t on
both sides of the equation must be equal, which leads to the following algebraic equation

−mω2
0 = −k

This equation can be solved for ω0, obtaining

ω0 = ±
√

k

m
(2.25)

Therefore, we conclude that one solution of the differential equation is

x(t) = A cos

(√

k

m
t

)

From our model, x(t) describes the motion of the tuning-fork tine. Therefore, we
conclude that the tines oscillate sinusoidally. This motion is, in turn, transferred to the
particles of air in the locality of the tines, thereby producing the tiny sinusoidal variations
in air pressure that make up an acoustic wave. The formula for the frequency lets us draw
two conclusions:
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(a) Of two tuning forks having the same mass, the stiffer one will produce a higher
frequency. This is because the frequency is proportional to

√
k, which is in the

numerator of (2.25).

(b) Of two tuning forks having the same stiffness, the heavier one will produce a lower
frequency. This is because the frequency is inversely proportional to the square
root of the mass,

√
m, which is in the denominator of (2.25).

DEMO
Tuning Fork

2-7.2 General Solution to the Differential Equation

There are many possible solutions to the tuning-fork differential equation (2.24). We can
prove that the following function

x(t) = A cos(ω0t + ϕ)

will satisfy the differential equation (2.24) by substituting back into (2.24), and taking
derivatives. Once again the frequency must be ω0 = √k/m. Only the frequency ω0 is
constrained by our simple model; the specific values of the parameters A and ϕ are not
important. From this we can conclude that any scaled or time-shifted sinusoid with the
correct frequency will satisfy the differential equation that describes the motion of the
tuning fork’s tine. This implies that an infinite number of different sinusoidal waveforms
can be produced in the tuning-fork experiment. For any particular experiment, A and ϕ
would be determined by the exact strength and timing of the sharp force that gave the tine
its initial displacement. However, the frequency of all these sinusoids will be determined
only by the mass and stiffness of the tuning-fork metal.

EXERCISE 2.9 Demonstrate that a complex exponential signal can also be a solution to the tuning-
fork differential equation:

d2x

dt2
= − k

m
x(t)

By substituting z(t) and z∗(t) into both sides of the differential equation, show that
the equation is satisfied for all t by both of the signals

z(t) = Xejω0t and z∗(t) = X∗e−jω0t

Determine the value of ω0 for which the differential equation is satisfied.

The tuning fork and its oscillatory behavior is just one example of simple harmonic
motion where a sinusoid is an excellent description of motion in a physical system. The
same mathematics comes up in the description of a mass on a spring, a simple pendulum,
and even molecular vibration and many other physical phenomena.
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2-7.3 Listening to Tones

The observer is an important part of any physical experiment.This is particularly true when
the experiment involves listening to the sound produced. In the tuning-fork experiment,
we perceive a tone with a certain pitch (related to the frequency) and loudness (related
to the amplitude). The human ear and neural processing system respond to the frequency
and amplitude of a sustained sound like that produced by the tuning fork, but the phase
is not perceptible. This is because phase depends on an arbitrary definition of the starting
time of the sinusoid, for example, a sustained tone sounds the same now as it did 5 minutes
ago. On the other hand, we could pick up the sound with a microphone and sample or
display the signal on an oscilloscope. In this case, it would be possible to make precise
measurements of frequency and amplitude, but phase would be measured accurately only
with respect to the time base of the sampler or the oscilloscope.

2-8 Time Signals: More Than Formulas

The purpose of this chapter has been to introduce the concept of a sinusoid and to illustrate
how sinusoidal signals can arise in real situations. Signals, as we have defined them, are
varying patterns that convey or represent information, usually about the state or behavior
of a physical system. We have seen by both theory and observation that a tuning fork
generates a signal that can be represented mathematically as a sinusoid. In the context of
the tuning fork, the sinusoidal wave conveys and represents information about the state of
the tuning fork. Encoded in the sinusoidal waveform is information such as whether the
tuning fork is vibrating or at rest, and, if it is vibrating, the frequency and the amplitude
of its vibrations. This information can be extracted from the signal by human listeners,
or it can be recorded for later processing by either humans or computers. Another simple
physical system that also generates nearly sinusoidal waveforms is shown in the Clay
Whistle demo on the web site.

DEMO
Clay Whistle

Although the solution to the differential equation of the tuning fork (2.24) is a
sinusoidal function, the resulting mathematical formula is simply a model that results
from an idealization of the tuning fork. It is important to recall that the sound signal
is a separate entity from the formula. The actual waveform produced by a tuning
fork is probably not exactly sinusoidal. The signal is represented by the mathematical
formula x(t) = A cos(ω0t + ϕ), which can be derived from an idealized model based on
physical principles. This model is a good approximation of reality, but an approximation
nevertheless. Even so, this model is extremely useful since it leads directly to a useful
mathematical representation of the signal produced by the tuning fork.

In the case of complicated signals generated by several musical instruments, the
signal cannot be so easily reduced to a mathematical formula. Figure 2-18 shows a
short segment of a recording of orchestra music. Just the appearance of the waveform
suggests a much more complex situation. Although it oscillates like a sinusoid, it clearly
is not periodic (at least, as far as we can see from the given segment). Orchestra music
consists of many instruments sounding different notes in unison. If each instrument
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Figure 2-18 A short segment of an orchestra
music signal.

produced a pure sinusoidal tone at the frequency of the note that is assigned to it, then the
composite orchestra signal would be simply a sum of sinusoids with different frequencies,
amplitudes, and phases. While this is far from being a correct model for most instruments,
it is actually a highly appropriate way to think about the orchestra signal. In fact, we will
see very soon that sums of sinusoids of different frequencies, amplitudes, and phases can
result in an infinite variety of waveforms. Indeed, it is true that almost any signal can
be represented as a sum of sinusoidal signals. When this concept was first introduced
by Jean-Baptiste Joseph Fourier in 1807, it was received with great skepticism by the
famous mathematicians of the world. Nowadays, this notion is commonplace (although
no less remarkable). The mathematical and computational techniques of Fourier analysis
underlie the frequency-domain analysis tools used extensively in electrical engineering
and other areas of science and engineering.

2-9 Summary and Links

We have introduced sinusoidal signals in this chapter. We have attempted to show
that they arise naturally as a result of simple physical processes and that they can
be represented by familiar mathematical functions, and also by complex exponentials.
The value of the mathematical representation of a signal is twofold. First, the
mathematical representation provides a convenient formula to consistently describe the
signal. For example, the cosine signal is completely described in terms of just three
parameters. Second, by representing both signals and systems through mathematical
expressions, we can make precise statements about the interaction between signals and
systems.

LAB
Introduction to
MATLAB

In connection with this chapter, two laboratories are found on the CompanionWebsite.
The first lab involves some introductory exercises on the basic elements of the MATLAB
programming environment, and its use for manipulating complex numbers and plotting
sinusoids. Appendix B is also available for a quick overview of essential ideas about
MATLAB. Labs on Complex Exponentials deal with sinusoids and phasor addition. InLAB

Complex Exponentials these labs, students must re-create a phasor addition demonstration similar to Fig. 2-15.
Copies of the lab write-ups are also found on the website.
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On the Companion Website one can also find the following resources:

DEMO
Tuning Fork and Clay
Whistle

(a) A tuning-fork movie that shows the experiment of striking the tuning fork and
recording its sound. Several recorded sounds from different tuning forks are
available, as well as sounds from clay whistles.

(b) The drill program called sindrill in MATLAB can be used to practice with the
amplitude, phase, and frequency of sinusoidal plots.

(c) A set of movies showing rotating phasor(s) and how they generate sinusoids through
the real part operator.DEMO

Sine Drill

2-10 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used to review and
practice. Most of them have detailed solutions.

NOTE
Problems with Solutions P-2.1 Define x(t) as

x(t) = 3 cos(0.2πt − 0.25π)

Make a plot of x(t) over the range −10 ≤ t ≤ 20.

P-2.2 Figure P-2.2 is a plot of a sinusoidal wave. From the plot, determine values for
the amplitude (A), phase (φ), and frequency (ω0) needed in the representation:

x(t) = A cos(ω0t + φ)
Give the answer as numerical values, including the units where applicable.

–20 –10 0 10 20 30 40
–20

–10

0

10

20

Time t (msec)

x(t)

Figure P-2.2

P-2.3 Make a carefully labeled sketch for each of the following functions:

(a) Sketch cos θ for values of θ in the range 0 ≤ θ ≤ 6π .

(b) Sketch cos(0.2πt) for values of t such that three periods of the function are shown.

(c) Sketch cos (2πt/T0 + π/2) for values of t such that three periods of the function
are shown. Label the horizontal axis in terms of the parameter T0.
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P-2.4 Use the series expansions for ex , cos(θ), and sin(θ) given here to verify Euler’s
formula.

ex = 1+ x + x
2

2! +
x3

3! + · · ·

cos(θ) = 1− θ
2

2! +
θ4

4! + · · ·

sin(θ) = θ − θ
3

3! +
θ5

5! + · · ·

P-2.5 Use complex exponentials (i.e., phasors) to show the following trigonometric
identities:

(a) cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

(b) cos(θ1 − θ2) = cos(θ1) cos(θ2)+ sin(θ1) sin(θ2)

Hint: Write the left-hand side of each equation as the real part of a complex
exponential.

P-2.6 Use Euler’s formula for the complex exponential to prove DeMoivre’s formula

(cos θ + j sin θ)n = cos nθ + j sin nθ

Use it to evaluate
(

3
5 + j 4

5

)100
.

P-2.7 Simplify the following expressions:

(a) 3ejπ/3 + 4e−jπ/6

(b)
(√

3− j3
)10

(c)
(√

3− j3
)−1

(d)
(√

3− j3
)1/3

(e) 	 {je−jπ/3}

Give the answers in both Cartesian form (x + jy) and polar form (rejθ ).

P-2.8 Suppose that MATLAB is used to plot a sinusoidal signal. The following
MATLAB code generates the signal and makes the plot. Derive a formula for the signal;
then draw a sketch of the plot that will be done by MATLAB.

dt = 1/100;
tt = -1 : dt : 1;
Fo = 2;
zz = 300*exp(j*(2*pi*Fo*(tt - 0.75)));
xx = real( zz );
%
plot( tt, xx ), grid on
title( ’SECTION of a SINUSOID’ )
xlabel(’TIME (sec)’)
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P-2.9 For the sinusoidal waveform shown in Fig. P-2.9, determine the complex phasor
representation

X = Aejϕ
by finding values of the parametersω0, ϕ, andA such that the waveform is represented by

x(t) = 	{X ejω0t}

0 2 4 6 8

0

3

6

9

Time t (ms)

x.t/

3

6

9

2468

Figure P-2.9

P-2.10 Define x(t) as

x(t) = 2 sin(ω0t + π/4)+ cos(ω0t)

(a) Express x(t) in the form x(t) = A cos(ω0t + φ).
(b) Find a complex-valued signal z(t) such that x(t) = 	e{z(t)}.

P-2.11 Define x(t) as

x(t) = 5 cos(ωt)+ 5 cos(ωt + 120◦)+ 5 cos(ωt − 120◦)

Simplify x(t) into the standard sinusoidal form: x(t) = A cos(ωt + φ). Use phasors to
do the algebra, but also provide a plot of the vectors representing each of the three
phasors.

P-2.12 Solve the following equation for θ :

	e{(1+ j)ejθ } = −1

Give the answers in radians. Make sure that you find all possible answers.

P-2.13 Define the following complex exponential signal:

(t) = 5ejπ/3ej10πt
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(a) Make a plot of r(t) = 	{js(t)}. Pick a range of values for t that will include
exactly three periods of the signal.

(b) Make a plot of q(t) = 	{ d
dt
s(t)}, showing plot three cycles of the signal.DEMO

Rotating Phasors

P-2.14 Two sinusoidal signals are defined as

x1(t) =
√

5 cos(7t − π/3) x2(t) =
√

5 cos(7t + π)
and their sum is denoted by x(t) = x1(t)+ x2(t).

(a) Find a complex-valued signal z1(t) such that x1(t) = 	{z1(t)}.
(b) Find a complex-valued signal z2(t) such that x2(t) = 	{z2(t)}.
(c) Find a complex-valued signal z(t) such that x(t) = 	{z(t)}.

P-2.15 Define x(t) as

x(t) = 5 cos(ωt + 3)+ 7 cos(ωt − 5)+ 3 cos(ωt)

where the phases have units of radians. Express x(t) in the form x(t) = A cos(ωt + φ).
Use complex phasor manipulations to obtain the answer. Explain your answer by giving
a phasor diagram.

P-2.16 The phase of a sinusoid can be related to time shift as follows:

x(t) = A cos(2πf0t + ϕ) = A cos(2πf0(t − t1))

In the following parts, assume that the period of the sinusoidal wave is T0 = 8 s.

(a) “When t1 = −2 s, the value of the phase is ϕ = π/2.” Explain whether this is True
or False.

(b) “When t1 = 3 s, the value of the phase is ϕ = 3π/4.” Explain whether this is True
or False.

(c) “When t1 = 7 s, the value of the phase is ϕ = π/4.” Explain whether this is True
or False.

P-2.17 Define a signal as x(t) =
4
∑

k=0

cos(ωt + 2
5πk)

(a) Convert the sum to its phasor representation and then plot the phasors as vectors
in the complex plane. Notice that vectors are distributed in a fashion similar to the
roots of unity (see Appendix A), but one is missing.

(b) Express x(t) in the form x(t) = A cos(ωt + ϕ) by finding the numerical values of
A and ϕ.
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P-2.18 Determine the values of the parameters {ω, ϕ,A} in the equations below.

(a) 9 cos(ωt + ϕ) = Ae(j8t+jϕ) + Ae(−j8t+j2π/3)

(b) 10 cos(9t − π/3) = A cos(ωt − π/2)+ 5 cos(ωt + ϕ)
P-2.19 Sinusoidal equations can be solved as algebraic equations if the sinusoids are
converted to phasors. For example, given the equation

9 cos(2t + 1
2 ) = 3A cos(2(t − 1)+ ϕ)+ 4 cos(2t)

solve for A and ϕ. Here are the steps:

(a) Determine the phasor representation for each term in the above equation.

(b) Let z = Aejϕ , and rewrite the phasor equation in part (a) as

9ej0.5 = (3e−j2)z+ 4

(c) Use algebra to solve for z, which will be complex.

(d) Finally, express the answer z in polar form in order to determine the values for A
and ϕ.

P-2.20 Simultaneous sinusoidal equations can be solved as simultaneous algebraic
equations once the sinusoids are converted to phasors. Consider the following two
equations with unknowns A1, ϕ1, A2, and ϕ2:

cos(7t) = A1 cos(7t + ϕ1)+ A2 cos(7t + ϕ2)

sin(7t) = 2A1 cos(7t + ϕ1)+ A2 cos(7t + ϕ2)

(a) Determine the phasor representation for each term in the above equations.

(b) Let z1 = A1e
jϕ1 and z2 = A2e

jϕ2 , and then rewrite the two phasor equations in part
(a) as

1 = z1 + z2

−j = 2z1 + z2

(c) Use algebra to solve for z1 and z2, which will be complex numbers.

(d) Finally, express the answers z1 and z2 in polar form in order to determine the values
for A1, ϕ1, A2, and ϕ2.

P-2.21 Solve the following two simultaneous sinusoidal equations with unknowns A1,
ϕ1, A2, and ϕ2:

cos(3(t − 1)) = 4A1 sin(3t + ϕ1)+ A2 cos(3t + ϕ2)

sin(3t + 2) = 3A1 sin(3t + ϕ1)+ A2 cos(3t + ϕ2)
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(a) Convert to phasors, z1 and z2, and determine the answers for A1, ϕ1, A2, and ϕ2

from the polar forms for the phasors z1 and z2.

(b) Provide two geometrical diagrams to explain the answer by plotting the vectors
4z1, z2, and 4z1 + z2, as well as the vectors 3z1, z2, as 3z1 + z2.

P-2.22 Solve the following equation forM andψ . Obtain all possible answers. Use the
phasor method, and provide a geometrical diagram to explain the answer.

5 cos(ω0t) = M cos(ω0t − π/6)+ 5 cos(ω0t + ψ)

Hint: Describe the figure in the z-plane given by the set {z : z = 5ejψ − 5} where 0 ≤
ψ ≤ 2π .

P-2.23 Complex exponentials obey a simple rule for the operation of time shifting:
the complex amplitude experiences a phase change. Consider the complex signal z(t) =
Zej10πt where Z = 7ej0.3π .

(a) The time-shifted version of z(t) can be represented as a new complex exponential
with complex amplitude W . Thus, z(t − td) = w(t) = Wej10πt . Determine the
complex amplitude W when td = 0.24 s.

(b) Suppose that y(t) is a different time-shifted version of z(t), and its complex
amplitude is Y = 7e−j0.1π . Determine the smallest positive value for the time shift
td such that y(t) = z(t − td).

P-2.24 Let x[n] be a sequence of complex numbers defined as

x[n] = 7ej (0.22πn− 0.25π)

for integers n such that −∞ < n <∞. If we define a new sequence y[n] as follows

y[n] = x[n+ 1] − 2x[n] + x[n− 1] for all n

it is possible to express y[n] in the form y[n] = Aejϕejω̂0n.

(a) Determine the frequency ω̂0 in the expression for y[n].
(b) Determine the values of A and ϕ.

P-2.25 Complex exponentials obey the expected rules of calculus and algebra when
doing operations such as integrals and derivatives. Consider the complex signal z(t) =
Zej2πt where Z = ejπ/4.

(a) Show that the first derivative of z(t) with respect to time can be represented as a
new complex exponential Qej2πt , such that d

dt
z(t) = Qej2πt. Determine the value

for the complex amplitude Q.
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(b) Plot both Z and Q in the complex plane. How much greater (or smaller) is the
angle of Q than the angle of Z?

(c) Compare 	{ d
dt
z(t)} to d

dt
	{z(t)} for the given signal z(t). Do you think that this

would be true for any complex exponential signal?

(d) Evaluate the definite integral of z(t) over the range −0.5 ≤ t ≤ 0.5:

0.5
∫

−0.5

z(t)dt = ?

Express your answer in polar form. Note that integrating a complex quantity follows
the expected rules of algebra: You could integrate the real and imaginary parts
separately, but it is much easier to use the integration formula for an exponential
directly on z(t).

P-2.26 Determine two different frequencies for the complex-valued solutions x(t) =
Xejωt of the following differential equation:

d2x(t)

dt2
= −289 x(t)

P-2.27 As noted in Section 2-7, the tuning fork is one example of simple harmonic
motion, because the vibration is governed by a second-order differential equation (2.24).
There are many other physical phenomena that can be modeled by simple harmonic
motion, and one important case is the electric circuit comprised of an inductor and a
capacitor as shown in Fig. P-2.27. To derive the differential equation, it will be necessary to
apply a bit of electric circuit theory. Observe that the inductor and capacitor are connected
in what is called a parallel connection with the same voltage v(t) across both elements.
Also, note that the current i(t) is (arbitrarily) defined to flow in the clockwise direction
around the loop going through the terminals of the two elements. Thus, for the definitions
of v(t) and i(t) in Fig. P-2.27, the capacitor (C) and inductor (L) are characterized by
the following relations:

i(t) = Cdv
dt

and v(t) = −Ldi
dt

CL

i(t)

v(t)

+

Figure P-2.27
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The minus sign is needed for the inductor equation because the direction of the assumed
current flow is from negative to positive voltage through L.

(a) Use the fact that the voltage v(t) is the same across both elements as shown in
Fig. P-2.27 to combine the two equations above and show that the voltage satisfies
the differential equation

d2v(t)

dt2
= − 1

LC
v(t) (2.26)

(b) Compare (2.26) to the differential equation (2.24) for the tuning fork. Since the
form is the same, we should expect the voltage in the circuit of Fig. P-2.27 to display
simple harmonic motion behavior. After comparing terms with (2.25), determine
the frequency of the harmonic oscillation of the voltage v(t).

(c) By substitution, show that v(t) = A cos(ω0t + ϕ) is a solution to (2.26), and
in the process, determine ω0 in terms of the element values L and C. In
general, the coefficients A and ϕ can be chosen to match initial conditions in the
circuit.

(d) Suppose that A = 5 and ϕ = π/3 for the voltage v(t) in the previous part. Use the
capacitor relation above to obtain the current i(t) from v(t), and then determine
the phase difference between v(t) and i(t).

(e) For the current obtained in the previous part, show that i(t) satisfies the same
harmonic differential equation as v(t), that is,

d2i(t)

dt2
= − 1

LC
i(t) (2.27)

P-2.28 In a mobile radio system (e.g., cell phones), there is one type of degradation
that can be modeled easily with sinusoids. This is the case of multipath fading caused by
reflections of the radio waves interfering destructively at some locations. Suppose that a
transmitting tower sends a sinusoidal signal, and a mobile user receives not one but two
copies of the transmitted signal: a direct-path transmission and a reflected-path signal
(e.g., from a large building) as depicted in Fig. P-2.28.

The received signal is the sum of the two copies, and since they travel different
distances they have different time delays. If the transmitted signal is s(t), then the received
signal8 is

r(t) = s(t − t1)+ s(t − t2)
8For simplicity we are ignoring propagation losses: When a radio signal propagates over a distance R,

its amplitude will be reduced by an amount that is proportional to 1/R2.
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Figure P-2.28

In a mobile phone scenario, the distance between the mobile user and the cell tower is
always changing. If dt = 1000 m, then the direct-path distance is

d1 =
√

x2 + 106 (meters)

where x is the position of a mobile user who is moving along the x-axis. Assume that the
reflector is at dr = 55 m, so the reflected-path distance is

d2 =
√

(x − 55)2 + 106 + 55 (meters)

(a) The amount of the delay (in seconds) can be computed for both propagation paths,
using the fact that the time delay is the distance divided by the speed of light
(3× 108 m/sec). Determine t1 and t2 as a function of the mobile’s position (x).

(b) Assume that the transmitted signal is

s(t) = cos(300× 106πt)

Determine the received signal when x = 0. Prove that the received signal is a
sinusoid and find its amplitude, phase, and frequency when x = 0.

(c) The amplitude of the received signal is a measure of its strength. Show that as the
mobile user moves, it is possible to find positions where the signal strength is zero.
Find one such location.

(d) If you have access to MATLAB, write a script that will plot signal strength versus
position x, thus demonstrating that there are numerous locations where no signal
is received. Use x in the range −100 ≤ x ≤ 100.
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3

Spectrum
Representation

This chapter introduces the concept of the spectrum of a signal—a compact representation
of the frequency content of a signal that can be represented as a sum of sinusoids.
In Chapter 2, we learned about the properties of sinusoidal waveforms that can be
represented by

x(t) = A cos(2πf0t + ϕ) = �
{

Xej2πf0t
}

(3.1)

Note that because we know the functional form, the waveform x(t) in (3.1) is defined
for all t by only three numbers: the amplitude, A, the frequency, f0, and the phase, ϕ.
In Chapter 2 we defined the complex amplitude X = Aejϕ and called it a phasor. The
sinusoidal waveform of (3.1) is a good mathematical model for the voltages and currents
found in electrical power networks. In the study of electric circuits, phasors are useful
since they can simplify the addition of sinusoids having the same frequency. However,
the phasor concept can be generalized and provides the basis for representing many other
types of signals besides the electrical voltage at the wall plug.

In this chapter, we will show how more complicated waveforms can be represented
as sums of sinusoids having different frequencies and corresponding different amplitudes

69
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and phases (or phasors). The spectrum of such a multi-frequency signal is defined simply
as the collection of amplitude, phase, and frequency information that allows us to represent
a signal in such a way.1 We will show that it is useful to depict the corresponding spectrum
information in a graphical representation with complex amplitude plotted as a function
of frequency. This visual representation of the spectrum allows us quickly and easily to
see interrelationships among spectral components of different frequencies. As a result,
this visual representation of the signal is invaluable in understanding how signals can be
modified by operations on signals.

3-1 The Spectrum of a Sum of Sinusoids

One of the reasons that sinusoids are so important for our study is that they are the basic
building blocks for representing more complicated signals. In this chapter we will show
some extraordinarily complicated-looking waveforms that can be constructed from rather
simple combinations of basic cosine waves. The most general and powerful method for
producing new signals from sinusoids is the additive linear combination, where a real
signal is created by adding together a constant and N sinusoids, each with a different
frequency, amplitude, and phase. If the signal is real, it may be represented by the right-
hand side in

x(t) = A0 +
N
∑

k=1

Ak cos(2πfkt + ϕk) (3.2)

where, in the most general case, each amplitude, phase, and frequency2 may be chosen
independently. Such a signal may also be represented using complex exponentials and
complex amplitudes for the individual sinusoidal components, that is,

x(t) = X0 +
N
∑

k=1

� {Xkej2πfkt
}

(3.3)

where X0 = A0 represents a real constant component, and each complex amplitude

Xk = Akejϕk
represents the magnitude and phase of a rotating phasor whose frequency is fk.

The inverse Euler formula gives a way to represent x(t) in (3.3) in yet another
alternative form

x(t) = X0 +
N
∑

k=1

{

Xk

2
ej2πfkt + X

∗
k

2
e−j2πfkt

}

(3.4)

1The term spectrum is used in many ways—often without precise definition. Our use of the term is
clearly defined in terms of sums of sinusoids or complex exponentials. Other usage of the term may be less
precise, but still appropriate when signals are thought of as being composed of sinusoidal components.

2For this chapter, we prefer cyclic frequency fk to radian frequency ωk = 2πfk , because it is easier and
more natural to describe physical quantities such as musical notes in Hz.
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As in the case of individual sinusoids, this form follows from the fact that the real part of
a complex number is equal to one-half the sum of that number and its complex conjugate.
Equation (3.4) also shows that each sinusoid in the sum decomposes into two rotating
phasors, one with positive frequency, fk, rotating in the counter-clockwise direction, and
the other with negative frequency, −fk, rotating in the clockwise direction.

The signal representation in (3.4) is called the two-sided spectrum because it uses
2N + 1 positive and negative frequencies along with the corresponding 2N + 1 complex
amplitudes to specify a signal composed of sinusoids (3.2). To be specific, our definition
of the spectrum is the set of pairs

{

(0, X0),
(

f1,
1
2X1

)

,
(−f1,

1
2X
∗
1

)

, . . . ,
(

fk,
1
2Xk

)

,
(−fk, 1

2X
∗
k

)

, . . .

}

(3.5)

Each pair (fk, 1
2Xk) indicates the size and relative phase of the complex exponential

component contributing at frequency fk. It is common to refer to the spectrum as
the frequency-domain representation of the signal. In contrast, the time-domain
representation gives the values of the time waveform itself, whereas the frequency-
domain representation simply gives the information required to synthesize it with (3.4).

When the number of components is small and the frequencies are spaced widely, the
spectrum is a compact representation of the signal x(t). In such cases, it is common to
refer to the spectrum as being sparse, meaning consisting of only a few components.
In Chapter 7 we will generalize the spectrum concept to include a dense continuum of
frequencies. In this case, the spectrum is called the discrete-time Fourier transform.

EXAMPLE 3-1 Two-Sided Spectrum

To determine the spectrum of the following signal,

x(t) =10+ 14 cos(200πt − π/3)+ 8 cos(500πt + π/2)
which is the sum of a constant and two sinusoids, we must convert from the general form
in (3.2) to the two-sided form in (3.4). After we apply the inverse Euler formula, we get
the following five terms:

x(t) =10+ 7e−jπ/3ej2π(100)t + 7ejπ/3e−j2π(100)t

+ 4ejπ/2ej2π(250)t + 4e−jπ/2e−j2π(250)t (3.6)

Note that the constant component of the signal, often called the DC component,3 can
be expressed as a complex exponential signal with zero frequency (i.e., 10ej0t = 10).
Therefore, in the list form suggested in (3.5), the spectrum of this signal is the set of five
rotating phasors represented by the frequency/complex amplitude pairs
{

(0, 10), (100, 7e−jπ/3), (−100, 7ejπ/3), (250, 4ejπ/2), (−250, 4e−jπ/2)
}

3The terminology “DC” comes from electric circuits, where a constant value of current is called direct
current, or DC. It is common to callX0 = A0 the DC component of the spectrum. Since the DC component
is constant, its frequency is f = 0.
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3-1.1 Notation Change

The relationship betweenXk and the spectrum involves special cases because the factor of
1
2 multiplies everyXk in the spectrum (3.5), except forX0. The companion formulas such
as (3.4) are cumbersome. Therefore, we introduce ak as a new symbol for the complex
amplitude in the spectrum, and define it as follows:

ak =
{

A0 for k = 0
1
2Ake

jϕk for k �= 0
(3.7)

This allows us to say that the spectrum is the set of (fk, ak) pairs. The primary motivation
for this notational change is to simplify the formulas for the Fourier series coefficients
developed later in Section 3-5. For example, (3.4) can now be written as a single compact
summation

x(t) =
N
∑

k=−N
ake

j2πfkt (3.8)

where we have defined f0 = 0.

3-1.2 Graphical Plot of the Spectrum

A plot of the spectrum is much more revealing than the list of (fk, ak) pairs. Each
frequency component can be represented by a vertical line at the appropriate frequency,
and the length of the line can be drawn proportional to the magnitude, |ak|. This is shown
in Fig. 3-1 for the signal in (3.6). Each spectral line is labeled with the value of ak to
complete the information needed to define the spectrum.

This simple but effective plot makes it easy to see two things: the relative location of
the frequencies, and the relative amplitudes of the sinusoidal components. This is why the
spectrum plot is widely used as a graphical representation of the signal. As we will see in
Chapters 4 and 6, the frequency-domain representation is exceedingly useful because it
is often very easy to see how systems affect a signal by determining what happens to the
signal spectrum as it is transmitted through the system. This is why the spectrum is the
key to understanding sophisticated signal processing systems such as radios, televisions,
cell phones, MP3 players, and the like.

In a spectrum like Fig. 3-1, the complex amplitude of each negative frequency
component is the complex conjugate of the complex amplitude at the corresponding
positive frequency component. This property is called conjugate symmetry. The spectrum
is conjugate symmetric whenever x(t) is a real signal, because the complex rotating
phasors at fk and −fk in (3.4) rotate in opposite directions and must combine to form a
real signal (see Fig. 2-13(b) and the Rotating Phasors movie found on the website).

DEMO
Rotating Phasors

Spectra of signals comprised of individual sinusoids are often called “line spectra.”
The term “line” seems appropriate for us here because we plot the components as
vertical lines positioned at the individual frequencies. However, the term originated
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0 100 250100250 f

7e =37e =3

4e =24e =2

10 Figure 3-1 Spectrum plot for the signal
x(t)= 10+ 14 cos(200πt −π/3)+ 8 cos(500πt +π/2).
Units of frequency (f ) are Hz. Negative
frequency components should be included for
completeness, even though for real signals, they
are conjugates of the corresponding positive
frequency components.

in physics where lines are observed in emission or absorption spectra formed with
optical prisms (which serve as optical spectrum analyzers). These lines correspond to
energy being emitted or absorbed at wavelengths that are characteristic of different
atoms or ions. This is illustrated in Fig. 3-2, which shows how the frequency spectrum
of white light from a star (assumed to contain all frequencies with essentially the
same amplitude) is modified by transmission through the atmosphere of an exoplanet.
The plot shows that the spectrum of white light is modified by absorption of certain
frequencies. This example illustrates how modification of signals by an operation on
that signal can be easily represented and understood in terms of the spectrum of that
signal.

3-1.3 Analysis versus Synthesis

In the context of the spectrum, synthesis is the process of using the frequency-domain
representation (i.e., the spectrum) to create the time-domain representation (i.e., the
waveform x(t)). Analysis, on the other hand, is an operation on the time-domain signal
that produces the frequency-domain spectrum. As described so far, both operations seem
relatively easy, but a general procedure for computing and plotting the spectrum for
an arbitrarily chosen signal requires the study of Fourier analysis, for example, Fourier
Series in Section 3-5 and Appendix C, as well as Fourier transforms of discrete signals
in Chapters 7 and 8.

Figure 3-2 Illustration of spectrum analysis of white light transmitted through the atmosphere
of exoplanet HD 209458. (NASA photo). For a color version of this picture, see
http://science.nasa.gov/science-news/science-at-nasa/2001/ast27nov 1/

../../../../../science.nasa.gov/science-news/science-at-nasa/2001/ast27nov_1/default.htm
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Up to this point, we have treated the special case where we can assume that the
signal of interest is the sum of a constant and a finite number of sinusoids. The synthesis
procedure is relatively easy when starting from a plot like Fig. 3-1. The values of
(fk, ak) can be extracted from the spectrum plot, and (3.8) can be used to calculate
the signal values in the time domain. When the signal is defined by a mathematical
formula consisting of a sum of sinusoids as in (3.2), the analysis procedure is also
straightforward. Each sinusoid in the mathematical formula (3.2) is expressed as two
complex exponentials by using the inverse Euler relation to get a form like (3.4). Then
the spectrum values can be extracted by noting the frequencies and their corresponding
complex amplitudes. Such a simple analysis procedure rarely applies in practice. For
example, if the signal were a recording of human speech, there is no mathematical
formula for the signal values and the analysis problem becomes much more difficult.
However, the basic concepts of analysis to obtain the spectrum and synthesis to construct
the time signal are very general, and they will show up repeatedly throughout this
book.

Before tackling the case of Fourier series for periodic signals, we show examples
where the sum of just a few sinusoids can be used to synthesize audio signals
whose waveforms are much different from sinusoids and are interesting to hear.
The relationship between the time waveform and the spectrum will be emphasized.
In some examples that we will show, the time waveform appears to be very
complicated while the spectrum is sparse and relatively simple and therefore easy to
understand.

3-2 Sinusoidal Amplitude Modulation

So far we have considered signals that can be represented as sums of sinusoids of different
frequencies, but another useful mathematical signal model is the product of sinusoids.
When we multiply two sinusoids having different frequencies, we can create an interesting
audio effect called a beat note. The phenomenon, which may sound like a warble, is
best heard by picking one of the frequencies to be very small (e.g., 10 Hz), and the
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other around 1 kHz. Some musical instruments naturally produce beating tones. Another
common situation where sinusoidal multiplication is used is radio broadcasting. In this
case, the multiplication is called amplitude modulation (AM), hence the name AM radio
for some broadcast stations.

3-2.1 Multiplication of Sinusoids

A signal produced by multiplying two sinusoids must be rewritten as a sum in order to
obtain its spectrum, because our spectrum is a graphical representation of an additive
linear combination of complex exponential signals. Other mathematical combinations of
sinusoids would also have to be rewritten in the additive form in order to display their
spectrum representation. This is illustrated by the following example.
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EXAMPLE 3-2 Spectrum of a Product Signal

For the special case of a signal formed as the product of two sinusoids with frequencies
1
2 Hz and 5 Hz

x(t) = cos(πt) sin(10πt) (3.9)

it is necessary to rewrite x(t) as a sum before its spectrum can be defined. One approach
is to use the inverse Euler formula as follows:

x(t) =
(

ejπt + e−jπt
2

)(

ej10πt − e−j10πt

2j

)

(3.10a)

= 1
4e
−jπ/2ej11πt + 1

4e
−jπ/2ej9πt + 1

4e
jπ/2e−j9πt + 1

4e
jπ/2e−j11πt (3.10b)

= 1
2 cos(11πt − π/2)+ 1

2 cos(9πt − π/2) (3.10c)

In this derivation, we see four terms in the additive combination (3.10b), so there are four
spectrum components at frequencies±11π and±9π rad/s, which convert to hertz as 5.5,
4.5,−4.5, and−5.5 Hz. The magnitude is the same ( 1

4 ) for all four components. It is also
worth noting that neither of the original frequencies (5 Hz and 1

2 Hz) used to define x(t)
in (3.9) appear in the spectrum.

EXERCISE 3.1 Let x(t) = sin2(10πt). Find an additive combination in the form of (3.8) for x(t), and
then plot the spectrum. Count the number of frequency components in the spectrum.
What is the highest frequency contained in x(t)? Use the inverse Euler formula rather
than a trigonometric identity to obtain the additive form.

DEMO
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3-2.2 Beat Note Waveform

Beat notes4 are produced by adding two equal-amplitude sinusoids with nearly identical
frequencies. The example in (3.9) and (3.10c) suggests that the product of two sinusoids
is equivalent to a sum of two equal-amplitude sinusoids. Thus we can derive a general
relationship for the spectrum of the product form if we start with an additive combination
of two equal-amplitude sinusoids:

x(t) = cos(2πf1t)+ cos(2πf2t) (3.11)

with f2 > f1. The two frequencies can be expressed as f1 = fc − f� and f2 = fc + f�,
where we have defined a center frequency fc = 1

2 (f1 + f2) and a deviation frequency
f� = 1

2 (f2 − f1), which is smaller than fc. The additive form (3.11) gives the spectrum
of the beat note signal which is plotted in Fig. 3-3. Examples of beat notes and similar
signals can be found on the Companion Website.

4We use the term beat note since the phenomenon is most often observed as an auditory effect when two
musical notes (often idealized as sinusoids) are sounded together, for example, by playing two neighboring
piano keys simultaneously.
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Figure 3-3 Spectrum of the sum of two
equal-amplitude sinusoids. When
f� = 1

2 (f2 − f1) is small, this is the beat signal
in (3.11) and (3.12). The negative-frequency lines
are centered around f = −fc.

Using the complex exponential representation of the two cosines, we can go from the
additive form to the product form. After we rewrite x(t) as a product of two cosines, we
have a form that is easier to plot in the time domain, and from the plot we are able to see
why (3.11) is perceived as a beat note when the two frequencies are almost the same. The
analysis proceeds as follows:

x(t) = cos(2πf1t)+ cos(2πf2t)

= � {ej2πf1t
}+� {ej2πf2t

}

= � {ej2π(fc−f�)t + ej2π(fc+f�)t}

= � {ej2πfct
(

e−j2πf�t + ej2πf�t
)}

= � {ej2πfct (2 cos(2πf�t))
}

= 2 cos(2πf�t) cos(2πfct)

(3.12)

EXERCISE 3.2 If the two sinusoids being added were to have nonzero phases, that is,

x(t) = cos(2πf1t + ϕ1)+ cos(2πf2t + ϕ2)

the frequencies, fc and f�, would remain the same, but the phases, ϕ� and ϕc, would
change.

x(t) = 2 cos(2πf�t + ϕ�) cos(2πfct + ϕc)
Determine the phases needed in the product representation.

NOTE
Time-Domain Plot
of a Beat Note

For a numerical example, we take fc = 200 Hz and f� = 20 Hz in (3.12), so that

x(t) = 2 cos(2π(20)t) cos(2π(200)t) (3.13)

MATLAB was used to make the time-domain plots of the two cosine wave components
and the product signal x(t). Figure 3-4(a) shows the two sinusoidal components,
2 cos(2π(20)t) and cos(2π(200)t), that make up the product in (3.13). The plot of
the beat note is constructed by first plotting 2 cos(2π(20)t) and its negative version
−2 cos(2π(20)t) to define boundaries inside of which we then draw the higher frequency
signal. These boundaries are called the signal’s envelope. One signal varies much more
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Figure 3-4 (a) Multiplicative components of a beat note with fc = 200 Hz and f� = 20 Hz.
(b) The corresponding product signal. The time interval between nulls (zeros) of the envelope is
1
2 (1/f�) = 25 ms, which is dictated by the frequency difference, f�.

rapidly than the other, so the slow signal can be viewed as a slowly time-varying amplitude
of the faster signal. The resulting beat note is plotted in Fig. 3-4(b), where it can be seen that
the effect of multiplying the higher-frequency sinusoid (200 Hz) by the lower-frequency
sinusoid (at 20 Hz) is to change the amplitude of the peaks of the higher-frequency
waveform. If we play such a signal through a loudspeaker or create it with a musical
instrument, it will appear to fade in and out because the signal envelope is rising and
falling periodically with period 1

2 (1/f�) = 25 ms, as in Fig. 3-4(b). This results in the
audible phenomenon called “beating” of tones in music. The amplitude goes up and
down twice during one period of the lower-frequency sinusoid, so when we listen to
such a signal x(t), we can hear the amplitude variation with frequency 2f� Hz. When
fc is much higher in frequency than f�, we also hear a tone near fc Hz that seems to be
changing up and down in frequency. Musicians can use this beating phenomenon as an
aid in tuning two instruments to the same pitch. When two notes are close but not identical
in frequency, the beating phenomenon is heard. As one pitch is changed to become closer
to the other, the effect disappears, and the two instruments are then “in tune.”

DEMO
beatcon

EXAMPLE 3-3 Decreasing the Frequency Difference, f�

If f� is decreased from 20 Hz to 9 Hz, we see in Fig. 3-5(a,b) that the envelope of the
200-Hz tone changes much more slowly. The time interval between nulls (zeros) of the
envelope is one-half of the period of the f� sinusoid, 1

2 (1/f�), so the more closely spaced
the frequencies of the sinusoids in (3.11), the slower the envelope variation. Figures 3-4
and 3-5 are simplified somewhat by using zero-phase cosines for both terms in (3.11),
but other phase relationships would give similar patterns. Finally, note that for x(t) in
Fig. 3-4 the spectrum contains frequency components at ±220 Hz and ±180 Hz, while
for the signal in Fig. 3-5 the spectrum has frequencies ±209 Hz and ±191 Hz.
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Figure 3-5 Beat note with fc = 200 Hz and
f� = 9 Hz. Nulls are now 1

2 (1/f�) = 55.6 ms
apart.

3-2.3 Amplitude Modulation

Multiplying sinusoids is commonplace in communication systems where modulation of
the envelope of a high frequency sinusoid is used to transmit information signals such
as data, voice, or music. Amplitude modulation is the process of multiplying a high-
frequency sinusoidal signal by a low-frequency signal, such as a voice or music signal.
It is the technique used in broadcast AM radio: In fact “AM” is just the abbreviation for
amplitude modulation. The AM signal is a product of the form

x(t) = v(t) cos(2πfct) (3.14)

where it is assumed that the frequency of the cosine term (fc Hz) is much
higher than any frequencies contained in the spectrum of v(t). In radio, v(t)
represents the voice or music signal to be transmitted. The cosine wave cos(2πfct)
in (3.14) is called the carrier signal, and its frequency fc is called the carrier
frequency.

LAB
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With our limited knowledge of the spectrum at this point, the form of v(t) in
(3.14) must be a finite sum of sinusoids, but that case is sufficient to understand
that the modulation process (3.14) involves frequency shifting of the spectrum
of v(t).

EXAMPLE 3-4 Amplitude Modulation

If we let v(t) = 5+4 cos(40πt) and fc = 200 Hz, then the AM signal is a multiplication
similar to the beat signal:

x(t) = [5+ 4 cos(40πt)
]

cos(400πt) (3.15)

The signal v(t) has a DC term large enough to make v(t) positive for all t . A plot
of x(t) is given in Fig. 3-6(b), where it can be seen that the effect of multiplying the



3-2 SINUSOIDAL AMPLITUDE MODULATION 79

0 20 40 60 80 100

0

9

A
m

pl
itu

de

0 20 40 60 80 100

0

9
(b) Amplitude-Modulated Waveform

A
m

pl
itu

de

9

9

Time t (ms)

(a) Multiplicative Components

Figure 3-6 AM signal for fc = 200 Hz and
f� = 20 Hz. (a) The signal 5 + 4 cos(40πt)
shown as a dark-orange line, along with a 200 Hz
sinusoid cos(400πt) (light color orange, with 9×
expanded scale for convenience in plotting). (b)
AM signal (light orange) formed as the product of
the two signals in (a) oscillates at 200 Hz, but has
amplitude variations, which are referred to as its
envelope (dark orange).
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Figure 3-7 AM signal for fc = 700 Hz and
f� = 20 Hz. The higher carrier frequency
makes it possible to see the outline of the
modulating cosine without drawing the
envelope.

higher-frequency carrier sinusoid (200 Hz) by the lower-frequency sinusoid (at 20 Hz)
is to “modulate” (or change) the amplitude envelope of the carrier waveform—hence the
name amplitude modulation for a signal like x(t) in Fig. 3-7.

The primary difference between the AM signals of (3.14) and (3.15) and the beat
note signals is that the AM envelope is usually set up to have no zero crossings. When the
carrier frequency becomes very high compared with the frequencies in v(t) as in Fig. 3-7,
it is possible to see the outline of the modulating signal v(t)without drawing the envelope
signal explicitly. This characteristic simplifies the implementation of a detector circuit in
AM broadcast receivers where the objective is to recover the envelope v(t) from the AM
signal x(t).

3-2.4 AM Spectrum

In the frequency domain, the AM signal spectrum is easy to describe: it consists of
scaled copies of the spectrum of v(t) centered at f = ±fc, as shown in Fig. 3-8. The
same statement applies to the spectrum of a beat note signal, which is the product of
two sinusoids as discussed in Example 3-2 and Section 3-2.2. The spectrum of the AM
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Figure 3-8 Spectrum of the AM signal in (3.15),
(3.16), (3.17), and Fig. 3-6, where fc = 200 Hz and
f� = 20 Hz for v(t) defined in (3.15).

signal x(t) in (3.15) can be derived by writing v(t) and cos(400πt) in terms of complex
exponentials

x(t) = v(t)( 1
2e
j400πt + 1

2e
−j400πt )

= (5+ 2j40πt + 2−j40πt ) 1
2e
j400πt + (5+ 2j40πt + 2−j40πt ) 1

2e
−j400πt (3.16)

and then multiplying out to get the following additive combination for the spectrum:

x(t) = 5
2e
j400πt + ej440πt + ej360πt + 5

2e
−j400πt + e−j440πt + e−j360πt (3.17)

The spectrum of v(t) has three spectrum lines at f = 0, 20, −20 Hz, but now there
are six spectral components for x(t): at the frequencies f = 200, 220, 180 Hz and
f = −200, −180, −220 Hz. Thus the spectrum (Fig. 3-8) for x(t) contains two
similar subsets, one centered at f = fc and the other at f = −fc. Each subset is a
frequency-shifted (and scaled) version of the two-sided spectrum of v(t). The foregoing
example is generalized in Section 3-3.5.

EXERCISE 3.3 Derive the spectrum of v(t) = 5 + 4 cos(2π(20)t) and plot it as a function
of frequency. Compare this result with the spectral plot for the AM signal in
Fig. 3-8.

3-2.5 The Concept of Bandwidth

The concept of bandwidth is closely tied to the spectrum representation of signals, and
it is of considerable importance in almost all applications where signals are transmitted,
manipulated, or stored. Oftentimes we only want a coarse characterization of the spectrum
of a signal. We can, for example, use the highest frequency for which the spectrum is
nonzero as a measure of spectrum content. This is an appropriate measure when we
consider sampling in Chapter 4. In the case of the AM signal whose spectrum is shown in
Fig. 3-8, this highest frequency would be fc+f�. Alternatively, it may be more important
and more informative to emphasize the group (or band) of frequencies containing both
the lowest and highest positive frequencies. Such measures of the spectrum as these are
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often referred to as the bandwidth of the spectrum or, by implication, the bandwidth of
the signal.

In the case of the signal of Fig. 3-8, we might say that the bandwidth of the signal
is (fc + f�)− (fc − f�) = 2f�, and we might be even more specific by noting that
this band of frequencies is centered on frequency fc.5 The bandwidth characterization is
important in the AM radio broadcast system because each AM radio station is assigned a
specific carrier frequency fc and a bandwidth of 10 kHz centered at the carrier frequency.
In this way, many local stations can share the (wide) bandwidth of free space without
interfering with each other.6 This sharing of the free-space communication channel is
called frequency-division multiplexing.

3-3 Operations on the Spectrum

In signal processing, we usually manipulate signals with time-domain operations. One of
the benefits of the spectrum representation is that time-domain operations on the signal
x(t) often result in very simple changes to the spectrum. Since the spectrum consists
of a set of frequency/complex amplitude pairs, S = {(fk, ak)}, when we operate on a
signal x(t) in the time domain, we might change the frequencies {fk}, or the complex
amplitudes {ak}, or both. The correspondence between a time-domain operation and
spectrum changes is often referred to as a property of the spectrum representation. This
section gives several examples of spectrum properties.

3-3.1 Scaling or Adding a Constant

Multiplying a signal by a scale factor (i.e., γ x(t)) multiplies all of the complex amplitudes
in its spectrum by the same scale factor (γ )

γ x(t) = γ
M
∑

k=−M
ake

j2πfkt =
M
∑

k=−M
(γ ak)e

j2πfkt

but leaves all the frequencies unchanged. On the other hand, adding a constant to a
signal (i.e., x(t)+ c) changes the complex amplitude at only one frequency (f = 0). The
following equation

x(t)+ c =
∑

fk �=0

ake
j2πfkt + a0e

j2π(0)t + c
︸ ︷︷ ︸

new DC

5If the signal is real, we know that the spectrum has complex conjugate symmetry so we can focus on
only positive frequencies.

6AM broadcast stations have carrier frequencies ranging from 540 Khz to 1700 Khz. Other types of radio
communication use other portions of what we refer to collectively as the electromagnetic spectrum.
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shows that the new DC value is a0 + c. If the spectrum of x(t) has no DC component
(a0 = 0), then adding c would produce a new spectrum line at f = 0, so the pair (0, c)
would now be included in the spectrum set.

Figure 3-9 illustrates both operations for the case y(t) = 2x(t) + 6 when the signal is

x(t) = 3
2 + 6 cos(6πt − π/3)+ 4 cos(14πt + π/4)

The spectrum of x(t) is shown in Fig. 3-9(a), and the spectrum of y(t) in Fig. 3-9(c).
The complex amplitudes at f = ±3 and ±7 are doubled when going from Fig. 3-9(a) to
Fig. 3-9(c). At DC (f = 0) the constant 6 is added because it is a DC-only signal whose
spectrum is shown in Fig. 3-9(b). Thus the DC component in the spectrum of y(t) is
2(1.5)+ 6 = 9.

3-3.2 Adding Signals

Another simple operation is addition of two signals, x1(t)+x2(t), but there are two cases
depending on the frequencies in the spectra. In principle, the spectrum of x1(t) is added
to the spectrum of x2(t), because

x1(t)+ x2(t) =
∑

f1k

a1ke
j2πf1k t +

∑

f2�

a2�e
j2πf2�t

where (f1k, a1k) and (f2�, a2�) are the frequencies and complex amplitudes for x1(t) and
x2(t), respectively. If a spectrum line is present in both spectra at f = f1k = f2�, then
the corresponding complex amplitudes, a1k and a2� = a2k, must be summed by phasor
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6 Figure 3-9 Spectrum plots for adding a constant to
a scaled signal. (a) Spectrum of x(t), (b) spectrum
of constant signal, and (c) spectrum of
y(t) = 2x(t)+ 6.
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Figure 3-10 Spectrum plots for the sum of two
signals. (a) Spectrum of x1(t), (b) spectrum of x2(t),
and (c) spectrum of the sum signal, x1(t)+ x2(t).

addition.7 The other case is a spectrum line that is present in only one spectrum. In this
case, there is nothing to add so that the spectrum line becomes part of the spectrum of
the sum signal without any change.

EXAMPLE 3-5 Adding Spectra

The plots in Fig. 3-10 illustrate several points about the spectrum for the sum of two
signals. The spectrum of x1(t) is shown in Fig. 3-10(a), and the spectrum of x2(t) in
Fig. 3-10(b). When adding the spectra, we see that both spectra have components at the
frequencies f = ±7 and 0, so three phasor additions must be done.

3+ 3ejπ = 0 (at f = 0)

4e−jπ/4 + 4ejπ/4 = 4
√

2 (at f = −7)

4ejπ/4 + 4e−jπ/4 = 4
√

2 (at f = 7)

Since the complex amplitudes at f = 0 cancel out, there is no DC component in the
sum spectrum of Fig. 3-10(c). The spectrum for x1(t) has components at f = ±2, but the
spectrum for x2(t) does not, so those components are copied directly to the sum spectrum.
Likewise, the components at f = ±5 in the spectrum for x2(t) are also copied to the sum
spectrum.

7After the phasor addition it might happen that a complex amplitude becomes zero, in which case that
frequency would drop out of the spectrum set.
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3-3.3 Time-Shifting x (t ) Multiplies ak by a Complex Exponential

If we form a new signal y(t) by time-shifting x(t), then the frequencies remain the same,
but there is a phase change in the complex amplitudes of the spectrum.

y(t) = x(t − τd) ←→ bk = ake−j2πfkτd

because

y(t) = x(t − τd) =
∑

k

ake
j2πfk(t−τd ) =

∑

k

(

ake
−j2πfkτd

)

︸ ︷︷ ︸

bk

ej2πfkt

EXAMPLE 3-6 Delayed Cosine

Consider a cosine wave x(t) = 6 cos(250πt) that is delayed by τd = 2 ms, which is
one quarter of its period. The spectrum set of x(t) is S = {(125, 3), (−125, 3)}. In the
spectrum of x(t − 0.002) the phase change for the f = +125-Hz term is

e−j250π(0.002) = e−j0.5π = −j
Thus the spectrum of x(t − 0.002) can be written as the spectrum set S =
{(125,−3j), (−125, 3j)}. It should be easy to verify that

x(t − 0.002) = 6 sin(250πt)

This result is consistent with the fact that a quarter cycle delay of a cosine wave is a sine
wave.

3-3.4 Differentiating x (t ) Multiplies ak by (j 2πfk)

If we form a new signal y(t) by taking the derivative of x(t), then the frequencies remain
the same, while the complex amplitudes of the spectrum of y(t) can be obtained as
follows:

y(t) = d
dt
x(t) ←→ bk = (j2πfk)ak

Since the derivative of a sum is the sum of the individual derivatives, we can apply the
derivative operator to each term in the spectrum of x(t) to obtain

y(t) = d
dt
x(t) =

∑

k

ak
d

dt
ej2πfkt =

∑

k

(j2πfk)ak
︸ ︷︷ ︸

bk

ej2πfkt

EXAMPLE 3-7 Derivative of Sine plus DC

Consider taking the derivative of a DC-offset sine wave x(t) = 7+ 6 sin(250πt). The
spectrum set for x(t) is S = {(0, 7), (125,−3j), (−125, 3j)}. In the spectrum of d

dt
x(t),
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the f = 0 term is 7 multiplied by (j2π(0)) = 0, so it is eliminated; the f = +125-Hz
term is multiplied by (j2π(125))

(j2π(125))(−3j) = 750π

Thus the spectrum set of d
dt
x(t) is S = {(125, 750π), (−125, 750π)}. From the spectrum

it should be easy to verify that

d
dt
x(t) = 1500π cos(250πt)

which coincides with the fact that the derivative of a sine function is a cosine and the
derivative of a constant is zero.

3-3.5 Frequency Shifting

If you multiply a signal by a sinusoid or a complex exponential, the frequencies in the
spectrum are changed in a simple predictable fashion. Here is the derivation for a signal
x(t) multiplied by the complex exponential Aejϕej2πfct whose frequency is fc Hz.

y(t) = Aejϕej2πfct
∑

k

ake
j2πfkt

︸ ︷︷ ︸

x(t)

(3.18a)

y(t) =
∑

k

(akAe
jϕ)ej2π(fk+fc)t (3.18b)

The interpretation of (3.18b) is that the spectrum set of y(t) is Sy = {(fk + fc, akAejϕ)}
which means that every frequency in x(t) is shifted to the right by fc, assuming fc > 0,
and the complex amplitudes are all multiplied by the complex amplitude of the complex
exponential.

It is easy to plot this frequency shifting behavior for the spectrum. Figure 3-11(b)
shows the spectrum for a signal that has been multiplied by a complex exponential with
fc = 9, A = 1, and ϕ = 0. The spectrum of x(t) in Fig. 3-11(a) has seven spectral lines,
and since there is conjugate symmetry, x(t) is real. The signal x(t)ej2π(9)t has a spectrum
that consists of the same seven spectral lines, but shifted up in frequency to be centered
around f = 9 Hz. Note that this signal is no longer real, and its spectrum does not obey
the conjugate symmetry property.

When the signal x(t) is multiplied by a real sinusoid A cos(2πfct + ϕ), we need to
apply the frequency shifting concept twice.

y(t) = x(t)A cos(2πfct + ϕ) = x(t) 1
2Ae

jϕej2πfct + x(t) 1
2Ae

−jϕe−j2πfct (3.19)

The first term in (3.19) raises all the frequencies in x(t) by fc, which is a frequency
shift to the right as shown in Fig. 3-11(b); the second term in (3.19) lowers all the
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Figure 3-11 Spectrum plots for frequency
shifting of a signal. (a) Spectrum of x(t),
(b) spectrum of x(t)ej2π(9)t , and (c) spectrum
of x(t) sin(2π(9)t). Note that the shifting
frequency fc is large enough so that the two
shifted copies of the spectrum of x(t) do not
overlap, which simplifies the picture.

frequencies in x(t) by fc, which is a frequency shift to the left. The complex amplitudes
are changed as follows: for the spectral lines shifted up by fc, the new complex amplitudes
are ak( 1

2Ae
jϕ); for those shifted down, the new complex amplitudes are ak( 1

2Ae
−jϕ), i.e.,

the phase change is opposite.
These two frequency shifts are illustrated in Fig. 3-11(c) for the signal

x(t) sin(2π(9)t) which is the same as x(t) cos(2π(9)t − 1
2π). When the spectrum of

x(t) in Fig. 3-11(a) is shifted up by 9 Hz, the complex amplitudes are multiplied by
1
2e
−jπ/2 = −j 1

2 . For example, the spectral line at f = 3 in Fig. 3-11(a), which has
a complex amplitude of j6, is moved to f = 12 in Fig. 3-11(c) and has a complex
amplitude of (j6)(−j 1

2 ) = 3. When the spectrum of x(t) in Fig. 3-11(a) is shifted down
by 9 Hz, the complex amplitudes are multiplied by 1

2e
+jπ/2 = j 1

2 . Then the spectral
line at f = 3 in Fig. 3-11(a) is moved to f = −6 in Fig. 3-11(c) and has a complex
amplitude of (j6)(j 1

2 ) = −3. After all the spectral lines are frequency shifted and
their complex amplitudes are multiplied by 1

2Ae
±jϕ , the spectrum can be examined for

conjugate symmetry. Since the signal x(t) sin(2π(9)t) is real, the conjugate symmetry
property must be true in Fig. 3-11(c). As a final comment, we note that when fc is
greater than the largest frequency in the spectrum of x(t), the upshifted and downshifted
spectra do not overlap. This is the case in Fig. 3-11(c) which makes the plot easy to
draw.

The frequency shifting property is based on the fact that multiplying two complex
exponentials is equivalent to adding their exponents. In Chapter 7 we will show that this
frequency shifting property is true for a much broader class of signals than just sums of
sinusoids.
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3-4 Periodic Waveforms

A periodic signal satisfies the condition that x(t + T0) = x(t) for all t , which states that
the signal repeats its values every T0 s. The time interval T0 is called the period of x(t),
and, if it is the smallest such repetition interval, it is called the fundamental period. In
this section, we study how a sum of sinusoids can be used to synthesize a periodic signal,
and we show that the summed sinusoids must have harmonically related frequencies;
frequencies that are integer multiples of one frequency F0. In other words, the signal
would be synthesized as the sum of N + 1 sinusoids8

x(t) = A0 +
N
∑

k=1

Ak cos(2πkF0 t + ϕk) (3.20)

where the frequency, fk, of the kth cosine component in (3.20) is

fk = kF0 (harmonic frequencies)

The frequency fk is called the kth harmonic of F0 because it is an integer multiple of
the basic frequency F0, which is called the fundamental frequency if it is the largest
such F0.

Does the sum in (3.20) give a periodic signal, and, if so, what is the period of x(t)?
The kth harmonic sinusoid has a shortest period of 1/(kF0), but it also repeats k times
every 1/F0 s. Since each cosine in (3.20) repeats with a period of 1/F0, the sum must
have exactly the same repetition period, so, x(t + 1/F0) = x(t). It is easy to prove that
this period, T0 = 1/F0, is the shortest repetition interval, so it is called the fundamental
period.9 In other words, the fundamental period is the reciprocal of the fundamental
frequency.

EXAMPLE 3-8 Fundamental Period T0

Sometimes the fundamental period is not obvious. For example, the signal
x(t) = cos2(4πt) has a period of 0.5 s, but its fundamental period is actually
T0 = 0.25 s; because cos2(4π(t + 1

4)) = cos2(4πt + π) = cos2(4πt).

EXAMPLE 3-9 Calculating F0

The fundamental frequency is the largest F0 such that fk = kF0 where k is an integer. In
mathematical terms, it is related to the greatest common divisor (gcd) of a set of integers.
If all the frequencies fk are integers, then we can state

F0 = gcd {fk} k = 1, 2, . . ., N

8One of the sinusoids is the DC component A0 which is a sinusoid with zero frequency.
9The fundamental period can be found using the least common multiple of the periods of all the sinusoids

in (3.20).
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For example, if the signal is the sum of sinusoids with frequencies 12, 20, and 60 Hz,
then F0 = 4 Hz, because 12 Hz is the 3rd harmonic, 20 Hz is the 5th harmonic, and 60 Hz
is the 15th harmonic.

EXERCISE 3.4 Consider the case where the harmonic frequencies are not integers, for example,
{fk} = {3.5, 5.6, 9.8} (in Hz). It might be possible to find a scaling constant λ such
that λfk is an integer for all k. In this particular case, λ = 10. Now we can use the
gcd on the scaled frequencies as follows:

F0 = (1/λ) gcd {λfk}
Apply this result to find the fundamental frequency for {3.5, 5.6, 9.8} Hz.

Using the complex exponential representation of the cosines, we can also write
(3.20) as

x(t) =
N
∑

k=−N
ake

j2πkF0 t (3.21)

where ak was defined by (3.7) in Section 3-1.1.

EXERCISE 3.5 Show that one possible period of the complex exponential signal vk(t) = ej2πkF0 t is
T0 = 1/F0. Also, show that the fundamental period of vk(t) is 1/(kF0).

3-4.1 Synthetic Vowel

As an example of synthesizing a periodic signal, consider a case where the fundamental
frequency F0 is 100 Hz, and where the sum in (3.21) contains nonzero terms for
{a±2, a±4, a±5, a±16, a±17}. The numerical values of the complex amplitudes are listed
in Table 3-1. The coefficients of the complex exponential signals were chosen so that the
synthesized signal approximates the waveform produced by a male speaking the vowel
sound “ah.” The two-sided spectrum of this signal is plotted in Fig. 3-12 as two plots,
Fig. 3-12(a) for the magnitudes, and Fig. 3-12(b) for the phases. This is different from
Fig. 3-1, where it was convenient to make just one plot and label the nonzero spectral
components with their complex amplitudes. Note that all the frequencies are integer
multiples of 100 Hz, even though there is no spectral component at 100 Hz itself. Since
the gcd of the frequencies is 100, the fundamental frequency is 100 Hz and the fundamental
period is 1/100 = 0.01 s. Also the negative frequency components in Fig. 3-12(b) have
phase angles that are the negative of the phase angles of the corresponding positive
frequency components, because the complex amplitudes for the negative frequencies
are the complex conjugates of the complex amplitudes for the corresponding positive
frequencies.

The synthetic vowel signal has ten nonzero spectral components, but only five
sinusoidal terms after the positive and negative frequency terms are combined. It is
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Table 3-1 Complex amplitudes for the periodic signal that approximates a complicated
waveform like a vowel, such as “ah.” The ak coefficients are given for positive indices k,
but the values for negative k are the conjugates, a−k = a∗k .

k fk (Hz) ak Mag Phase
1 100 0 0 0
2 200 0.00772+ j0.122 0.1223 1.508
3 300 0 0 0
4 400 −0.08866+ j0.2805 0.2942 1.877
5 500 0.48− j0.08996 0.4884 −0.185
6 600 0 0 0
...

...
...

...
...

15 1500 0 0 0
16 1600 0.01656− j0.1352 0.1362 −1.449
17 1700 0.04724+ j0 0.04724 0
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(b) Phase Angle Spectrum (rad)

Figure 3-12 Spectrum of signal defined in
Table 3-1. The magnitude (a) is an even function
with respect to f = 0; the phase (b) is odd since
a−k = a∗k .

interesting to examine the contribution of each real sinusoidal component separately. We
can do this by successively plotting the waveforms corresponding to only one sinusoid,
then two sinusoids, then three, etc. Figure 3-13(a) shows a plot of only the k = 2 sinusoidal
term in Table 3-1. Note that since the frequency of this single component is 2F0 = 200
Hz, the waveform is periodic with period 1/200 = 5 ms. Next, Fig. 3-13(b) shows x4(t),
which is a plot of the sum of the k = 2 and k = 4 terms. Since these two frequencies are
multiples of 200 Hz, the period of x4(t) is still 5 ms.

Figure 3-13(c) shows a plot of the sum of the first three terms, x5(t). Now we
see that the period of the waveform is increased to 10 ms. This is because the three
frequencies, 200, 400, and 500 Hz are integer multiples of 100 Hz; so, the fundamental
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Figure 3-13 Summing all five terms in Table 3-1.
(a) The 200-Hz term alone. (b) Sum of the 400-Hz
and 200-Hz terms. Additional terms are added one at
a time until the entire synthetic vowel signal is
created in (e). (c) Adding the 500-Hz term, which
changes the fundamental period, (d) adding the
1600-Hz term, and (e) adding the 1700-Hz term.

frequency is now 100 Hz. Figure 3-13(d) shows that the addition of the component
with frequency 1600 Hz does not change the period. Finally, Fig. 3-13(e) shows x17(t),
the sum of all the terms in Table 3-1. Note that the period of x17(t) is T0 = 10 ms, which
equals 1/F0, even though there is no component with frequency F0. The signal x17(t)

is typical of waveforms for vowel sounds in speech although many more frequencies
might be needed to accurately represent the waveform of a natural speech signal.
The high frequencies in the signal contribute the fine detail in the waveform. This
is evident in Fig. 3-13 as the waveform becomes increasingly complicated and more
rapidly varying as higher-frequency components such as the 16th and 17th harmonics are
added. The Companion Website has a more detailed presentation of this Vowel Synthesis
example.

DEMO
Vowel Synthesis
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3-4.2 Sine-Cubed Signal

In Section 3-2 we determined the spectra of products of sine waves by expanding each
sine wave into complex exponentials using the inverse Euler relation. After multiplying
the complex exponential forms and simplifying exponents, it was possible to obtain
a representation of the product as a sum of complex exponentials. The spectrum was
then obtained by associating each complex amplitude with the corresponding frequency.
This same approach can be used with other combinations of sine waves including those
involving sine waves raised to a power. Raising a periodic function to a power results
in a periodic function with the same or possibly shorter period. A simple example that
illustrates this point is the sine-cubed signal

x(t) = sin3(4πt) (3.22)

which is plotted in Fig. 3-14. Our objective is to obtain a representation of x(t) as a sum
of complex exponentials in the form (3.21), so that we may easily determine the spectrum
of x(t).

Using the inverse Euler formula for sin(·) along with the binomial expansion for
(a − b)3, we can rewrite the sine-cubed function as a sum:

x(t) =
(

ej4πt − e−j4πt

2j

)3

= 1
−8j

(

ej12πt−3ej8πte−j4πt+3ej4πte−j8πt−e−j12πt
)

= j

8e
j12πt + −3j

8 e
j4πt + 3j

8 e
−j4πt + −j8 e−j12πt (3.23)

We see that (3.23) is the sum of four terms with radian frequencies: ω = ±4π and ω =
±12π rad/s. Since gcd(4, 12)π = 4π , the fundamental frequency is ω0 = 4π rad/s (or
F0 = 2 Hz). The frequencies in (3.23) are the first and third harmonics of the fundamental
frequency. Therefore, N = 3 and T0 = 0.5 s in (3.21). The coefficients in (3.21) are
indexed in terms of the harmonic number k, so

ak =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0 for k = 0

∓j 3
8 for k = ±1

0 for k = ±2

±j 1
8 for k = ±3

(3.24)

0 0.25 0.5 0.75 1 1.25
�1

0

1
x(t)

Time t (s)

Figure 3-14 Waveform of the
signal x(t) = sin3(4πt).
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8 Figure 3-15 Spectrum of the “sine-cubed” signal derived
from its representation as a sum of complex exponentials. Only
the range from −6 to +6 Hz is shown. The spectrum is zero
outside this interval. The complex amplitude of each spectrum
line is equal to the coefficient ak for that frequency, kF0.

Now we can plot the spectrum because we know that we have four nonzero ak
components located at the four frequencies: f = {−6,−2, 2, 6} Hz. In Fig. 3-15 the
spectrum is plotted versus frequency in hertz, so the third harmonic is at 6 Hz, and the
second harmonic is missing.

3-4.3 Example of a Non-Periodic Signal

When we add harmonically related complex exponentials, we get a periodic signal, but
what happens when the frequencies have no harmonic relation to one another? The
sinusoidal synthesis formula

x(t) = a0 +
N
∑

k=1

2|ak| cos(2πfkt + ∠ak)

= a0 +
N
∑

k=1

(

ake
j2πfkt + a∗k e−j2πfkt

)

is still valid, but we want to demonstrate that periodicity is tied to harmonic frequencies,
so we present a simple example.

First, we make a harmonic signal xh(t) using a1 = 1, a3 = −1/3, and a5 = 1/5 with
fundamental frequency F0 = 10 Hz:

xh(t) = 2 cos(20πt)− 2
3 cos(20π(3)t)+ 2

5 cos(20π(5)t) (3.25)

A plot of xh(t) is shown in Fig. 3-16 using a “strip chart” format. The plot consists
of three lines, each one containing 2 s of the signal. The first line starts at t = 0, the
second at t = 2 s, and the third at 4 s. This lets us view a long section of the signal,
and we can see that xh(t) is clearly periodic, with fundamental period equal to 0.1 s.
The amplitudes in (3.25) are proportional to those of a periodic square wave, which is
discussed in Appendix C. For our purpose here, it is sufficient to note that because the
frequencies are harmonic, the signal is periodic with period 0.1 s.

DEMO
Spectrograms: Simple
Sounds: Square Waves

To illustrate what happens when the frequencies are not harmonic, we create a
second signal where the complex amplitudes are the same but the frequencies are slightly
perturbed from those of xh(t). Defining xnh(t) to be the sum of three sinusoids:

xnh(t) = 2 cos(20πt)− 2
3 cos(20π(2

√
2)t)+ 2

5 cos(20π(3
√

3)t)

The complex amplitudes are the same as in (3.25), but the frequencies have been changed
slightly to irrational numbers (in Hz). Hence, there is no gcd and no fundamental
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Figure 3-16 Sum of three cosine waves with harmonic
frequencies. The spectrum is shown in Fig. 3-18(a),
and the fundamental frequency of xh(t) is 10 Hz.
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Figure 3-17 Sum of three cosine waves with
nonharmonic frequencies, xnh(t). The spectrum is
shown in Fig. 3-18(b).

frequency. The plot of xnh(t) in Fig. 3-17 is certainly not periodic, although the plot
hints at a strong periodic component with period 0.1 s.10 No matter how hard you try,
you cannot find an exact repetition in this signal, yet the complex amplitudes are the
same and the three frequencies are only slightly different from those of the waveform of
Fig. 3-16.

The spectrum plots in Fig. 3-18 help explain the difference between the signals in
Figs. 3-16 and 3-17. In Fig. 3-18(a), the frequencies are integer multiples of a common
frequency,F0 = 10 Hz, so the waveform of Fig. 3-16 is periodic with period T0 = 1/10 s.
The waveform of Fig. 3-17 is nonperiodic, because the frequencies are irrational numbers
and are slightly different: 20

√
2 ≈ 28.28 instead of 30, and 30

√
3 ≈ 51.96 instead of

50. These slight shifts of frequency make a dramatic difference in the time waveform.
For periodicity, we would need a fundamental frequency in the “frequency domain” of
Fig. 3-18(b). To see that there is no fundamental, let us assume that 20

√
2 is the pth

harmonic, and 30
√

3 is the q th harmonic. Then the ratio (20
√

2)/(30
√

3) has to be the
rational number p/q. Since that is impossible, we conclude that there is no fundamental
frequency.

10There are 20 “major” oscillations on the first line, which corresponds to 2 s of time. Thus, the “period”
of the waveform appears to be approximately 2/20 = 0.1 s, but in fact, the signal never repeats exactly. The
dominance of the 0.1-second period occurs because the sinusoidal component with frequency 10 Hz has an
amplitude that is several times greater than the other two components.
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Figure 3-18 Spectrum of (a) the harmonic
waveform xh(t) in Fig. 3-16, which has a period of
0.1 s, and (b) the nonharmonic waveform xnh(t) in
Fig. 3-17 that is not periodic.

3-5 Fourier Series

The examples in Section 3-4 show that we can synthesize a variety of periodic waveforms
by using a sum of harmonically related sinusoids. Now, we want to explore the question:
Can every periodic signal be synthesized as a sum of harmonically related sinusoids? So
far, we have only shown examples for N finite when we used (3.21) to obtain the plots
of waveforms shown in Section 3-4. However, as we now show, if we let N be infinite,
virtually all periodic waveforms can be synthesized with a sum of complex exponential
signals.

Henceforth, when we mention sums of complex exponentials, we assume that N can
be either finite or infinite as needed. This is expressed in general by using what we call
the Fourier synthesis summation:11

Fourier Synthesis Summation

x(t) =
∞
∑

k=−∞
ake

j (2π/T0)kt (3.26)

This notation includes both the finite and infinite cases, since in the finite case,
we can simply assume that ak = 0 for |k| > N . Perhaps a more common name for the
mathematical expression in (3.26) is Fourier series, but we prefer the more descriptive
term Fourier synthesis summation. The kth complex exponential in (3.26) has a frequency
equal to fk = k/T0 Hz, so all the frequencies are integer multiples of the fundamental
frequency F0 = 1/T0 Hz.12 Now we want to describe a general theory that shows how

11Jean-Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist who is credited
with introducing the idea of representing functions by sums of sinusoids. This contribution is recognized
today as one of the most important methods in science and engineering, and the field of mathematics that
grew out of his work is justifiably named in his honor.

12There are three ways to refer to the fundamental frequency: radian frequencyω0 in rad/s, cyclic frequency
F0 in Hz, or period T0 in seconds. Each one has its merits in certain situations. The relationship among these is
ω0 = 2πF0 = 2π/T0. Note that f0 = 0/T0 is not the fundamental frequency; rather, it is f1 = 1/T0 = F0.
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to find the coefficients ak so that any periodic signal can be synthesized with a sum of
harmonically related sinusoids, even when the sum may need an infinite number of terms.
This is the mathematical theory of Fourier series.

There are two aspects of the Fourier theory: analysis and synthesis. Starting from
x(t) and calculating {ak} is called Fourier analysis. The reverse process of starting from
{ak} and generating x(t) is called Fourier synthesis, which was the focus of Section 3-4.
In order to answer the question about synthesizing every periodic signal via (3.26), we
must learn how Fourier analysis is done.

3-5.1 Fourier Series: Analysis

The Fourier coefficients {ak} for the harmonic sum in (3.26) can be derived from the
signal x(t) by using the Fourier analysis integral.

Fourier Analysis Integral

ak = 1

T0

T0∫

0

x(t)e−j (2π/T0)kt dt
(3.27)

Only one period of x(t) is required for the integrand, so T0 should be the fundamental
period of x(t). Note that t plays the role in (3.27) of a “dummy variable of integration”
that disappears from the result after substituting the limits. It would perhaps be less
confusing if we used a different symbol, since t is also the symbol used for the independent
variable in (3.26). However, it is generally not necessary to make such a careful
distinction when we use (3.27) and (3.26) as a pair that together comprise the Fourier
representation of a periodic signal.An important point, however, is to note that after (3.27)
is evaluated, the variable t is integrated out and the result depends upon k alone, and time
only re-enters through (3.26). Thus, it is common to refer to the function x(t) as the
time-domain representation of a periodic signal, and the coefficients ak as the frequency-
domain representation or the spectrum representation of the signal.

The Fourier integral (3.27) can be evaluated if we have a formula that defines x(t)
over one period. As the example in Section 3-5.2 shows, the definite integral would
be evaluated to obtain a formula for ak as a function of k. Several more examples are
presented in Appendix C to illustrate the mechanics of evaluating the Fourier analysis
integral. On the other hand, if x(t) is known only as a recording, then numerical methods
such as those discussed in Chapter 8 will be needed.

3-5.2 Analysis of a Full-Wave Rectified Sine Wave

In this section, we carry out the Fourier analysis of a signal called the full-wave rectified
sine (FWRS), an example of which is shown in Fig. 3-19(b). This signal is found in DC
power supplies as well as AC to DC power converters—the ubiquitous devices that are
needed to recharge batteries in cell phones, laptops, and so on. Battery charging requires
constant DC current, but plugging into a wall socket gets AC (alternating current) which,
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Figure 3-19 (a) Sinusoid with period T1. (b) Periodic
FWRS signal with period T0, which is created by
taking the absolute value of the sinusoid in (a).

in our terms, is a pure sinusoid with zero DC value. A simple electronic circuit built with
diodes will turn a sinusoid into a signal with nonzero DC component which can then be
cleaned up by filtering and used as a DC power source for recharging.

The mathematical formula for the FWRS signal is the absolute value of a
sinusoid.

x(t) = |sin(2πt/T1)| (3.28)

The fundamental period T0 is equal to 1
2T1 because the negative lobe of the sinusoid

is identical to the positive lobe after being flipped by the absolute value operator, as
illustrated by Fig. 3-19. The FWRS shown in Fig. 3-19(b) is a continuous signal, but
its first derivative is discontinuous, resulting in the sharp points at locations where the
signal is zero (at t = 0, T0, 2T0, . . .). For 50 Hz AC power13 the period of the sinusoid is
T1 = 0.02 s but after “rectification” the period would be halved as shown in Fig. 3-19(b),
so the fundamental frequency of the FWRS would be F0 = 100 Hz.

The Fourier integral for this case is the following definite integral

ak = 1

T0

T0∫

0

|sin(2πt/T1)| e−j (2π/T0)kt dt (3.29a)

where T0 = 1
2T1. Since sin(2πt/T1) ≥ 0 over the interval specified by the limits on t

from 0 to T0, we can write

ak = 1

T0

T0∫

0

sin(2πt/T1)e
−j (2π/T0)kt dt (3.29b)

The integration in (3.29b) can be carried out efficiently after using the inverse Euler
formula for sine to write (3.29b) as the sum of two integrals

13In most of the world, power companies distribute AC power at 50 hertz, but, in the Americas, 60 hertz
is common.
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ak = 1

2jT0

T0∫

0

ej (2π/T1)t e−j (2π/T0)kt dt + −1

2jT0

T0∫

0

e−j (2π/T1)t e−j (2π/T0)kt dt (3.30)

Each integrand can be combined into a single complex exponential which is then easy to
integrate. Since T1 = 2T0, the integrands in (3.30) are the complex exponentials

e±j (2π/2T0)t e−j (2π/T0)kt = ej (±1−2k)(π/T0)t

The definite integrals can be carried out and simplified as follows:

T0∫

0

ej (±1−2k)(π/T0)tdt = ej (±1−2k)(π/T0)t

j (±1− 2k)(π/T0)

∣

∣

∣

∣

T0

0

= ej (±1−2k)((π/T0)T0) − 1

j (±1− 2k)(π/T0)
(3.31)

The term in the numerator can be simplified as

ej (±1−2k)((π/T0)T0) − 1 = ej (±1−2k)π
︸ ︷︷ ︸

always =−1

−1 = −2 (3.32)

The complex exponential is always equal to−1 because its angle is an odd multiple of π ,
since (±1− 2k) is always an odd integer for any integer k.

Now we apply (3.31) and (3.32) to the two integrals in (3.30) to obtain a simple
expression for ak

ak = 1

2jT0

( −2

j (1− 2k)(π/T0)
− −2

j (−1− 2k)(π/T0)

)

(3.33a)

= −2

−2π(1− 2k)
− −2

−2π(−1− 2k)
(3.33b)

= 1

π(1− 2k)
+ 1

π(1+ 2k)
(3.33c)

After combining the two terms in (3.33c) over a common denominator, the final result
for ak can be written as

ak = 2

π(1− 4k2)
(3.34)

Thus, we have shown that the FWRS wave can be represented as the Fourier series

x(t) = | sin(2πt/T1)| =
∞
∑

k=−∞

2

π(1− 4k2)
ej (2π/T0)kt (3.35a)

= 2

π
+
∞
∑

k=1

4

π(1− 4k2)
cos(2πkt/T0) (3.35b)

where T0 = T1/2.
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3-5.3 Spectrum of the FWRS Fourier Series

When we discussed the spectrum in Section 3-1, we described a procedure for plotting
the spectrum when x(t) is composed of a sum of complex exponentials. By virtue of
the synthesis formula (3.26), the Fourier series coefficients ak are, in fact, the complex
amplitudes that define the spectrum of x(t). Therefore, a spectrum plot of a periodic
signal has lines only at multiples of the fundamental frequency F0 = 1/T0. Usually it is
convenient to draw the spectrum line at frequency kF0 with length equal to |ak|, but in
Fig. 3-20 the lengths are not to scale because the magnitude of ak in (3.34) drops off very
quickly and the lines would barely be visible for |k| ≥ 3, e.g., |a3| = 2/(35π) ≈ 0.018.
The spectrum plot is a complete representation if we also label each spectrum line with
the corresponding complex value of ak, but note that the FWRS spectrum is purely real. In
Fig. 3-20, the spectrum is plotted only for−4F0 ≤ f ≤ 4F0, but the symbol · · · indicates
that the spectrum continues for higher frequencies which all have nonzero coefficients as
kF0 →∞.

3-5.3.1 DC Value of Fourier Series

The Fourier series coefficient for k = 0 has a special interpretation as the average value
of the signal x(t). If we set k = 0 in the analysis integral (3.27), then we have

DC Component

a0 = 1

T0

T0∫

0

x(t) dt
(3.36)

The integral is the area under the function x(t) for one period. If we think of the area as
a sum and realize that dividing by T0 is akin to dividing by the number of elements in
the sum, we can interpret (3.36) as the average value of the signal. The a0 coefficient is
the amplitude of a complex exponential of zero frequency (i.e., 0F0 = 0 Hz). Thus, it is
a constant signal component. Hence, in electrical engineering it is also called the “DC
component” of the signal. For the FWRS example, the DC value is nonzero

a0 = 2

π(1− 4k2)

∣

∣

∣

∣

k=0

= 2/π ≈ 0.6366
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Figure 3-20 Spectrum of the periodic
FWRS signal represented in terms of its
Fourier series coefficients ak and their
corresponding frequencies kF0. Note:
Vertical lines are not to scale.
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Figure 3-21 Summing harmonic components
for the FWRS signal via (3.37); (a) N = 4 and
(b) N = 9.

which is 63.66% of the maximum value of the rectified sine as shown in Fig. 3-21. For the
AC-DC converter application, we can observe that the operation of taking the absolute
value has produced an output signal with nonzero DC from an AC input that has zero
DC, which is exactly what is needed.

3-5.3.2 Finite Synthesis of a Full-Wave Rectified Sine

The fact that the spectrum of a FWRS signal has an infinite number of spectral lines means
that it has infinite bandwidth. To be specific, the millionth harmonic in the FWRS spectrum
is nonzero, so is the billionth harmonic, and so on. Fortunately, the magnitude of these
very high harmonics is extremely small—for example, the magnitude of the millionth
harmonic is ≈ 10−13. In fact, (3.34) says that the magnitude falls off as k−2 as k→∞.
A bandlimited signal could be obtained by dropping all the very high harmonics, and it
might be an almost perfect representation of the FWRS signal. Therefore, it is useful to
study the approximate resynthesis of a FWRS signal from a finite number of its spectral
lines, and ask questions like “How good is the approximation when using N = 4, or
N = 9, or N = 20 spectral lines?”

DEMO
Fourier Series

An approximate signal can be synthesized according to the finite Fourier synthesis
summation formula14

xN(t) =
N
∑

k=−N
ake

j (2π/T0)kt (3.37)

The synthesis formula (3.37) usually can be simplified to a cosine form. For the particular
case of the FWRS coefficients (3.34), when we take the DC value plus the first and second

14If you have access to MATLAB, it is straightforward to write a Fourier Synthesis Program that
implements (3.37). This MATLAB programming exercise is described in more detail in the Music Synthesis
Lab.
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harmonic terms (i.e., N = 2), we get the sum of two sinusoids plus the constant (DC)
level derived in (3.38).

x2(t) = a−2e
−j (4π/T0)t + a−1e

−j (2π/T0)t + a0 + a1e
j (2π/T0)t + a2e

j (4π/T0)t

= −2

15π
e−j (4π/T0)t + −2

3π
e−j (2π/T0)t + 2

π
+ −2

3π
ej(2π/T0)t + −2

15π
ej(4π/T0)t

= 2

π
+ −2

3π
(ej(2π/T0)t + e−j (2π/T0)t )+ −2

15π
(ej(4π/T0)t + e−j (4π/T0)t )

= 2

π
− 4

3π
cos(2πt/T0)− 4

15π
cos(4πt/T0)

(3.38)
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Using a simple MATLAB M-file, a synthesis was done via (3.37) with a fundamental
frequency of F0 = 100 Hz. Since the fundamental period is T0 = 1/100 = 0.01 s, the
harmonic frequencies are (2π/T0)k = (200π)k rad/s. Two cases are shown in Fig. 3-21(a)
forN = 4 and Fig. 3-21(b) forN = 9. Notice that the period of the synthesized waveform
is always the same, because it is determined by the fundamental frequency. After
comparing the waveforms in Fig. 3-21 to the ideal continuous FWRS signal in Fig. 3-19,
we see that a finite Fourier sum approximation (3.37) is roughly correct even with only
the first four harmonics.

As more harmonic terms are added, the approximating formula is still a finite
sum of sinusoids but higher frequency terms are included. In Fig. 3-21 the worst
approximation is at the integer multiples of T0 (i.e., 0, 0.1, 0.2, . . .) where the FWRS
should be zero. At these locations the derivative of the FWRS is discontinuous so higher
frequency terms are needed. In the N = 9 case, the approximation is very close to
the original waveform. Adding harmonics for N > 9 will improve the synthesis very
little, mostly by sharpening the dips at t = 0.01, 0.02, . . .. The N = 4 case is a poorer
approximation to the true FWRS signal, because it is not using enough sinusoidal
terms. It is possible to quantify the approximation error by plotting the spectrum as
in Fig. 3-20, and examining the relative magnitudes of the higher frequency components
being dropped for k > 4 (see Section C-4.3). The fourierseries MATLAB demo,
described in Appendix C, provides an interactive GUI where the number of terms
can be varied to study how the quality of the approximation improves with more
terms.

As a final comment, we return to the application of AC-DC converters where the
purpose of full wave rectification of a power line sine wave is to obtain a waveform
whose DC value is nonzero. After rectification, additional processing is used to remove
the fundamental and all higher harmonics of the original sine wave. The result is a signal
that is only the DC level in Fig. 3-21. In a practical system comprised of resistor and
capacitor circuit elements, the higher frequencies can be reduced in magnitude, but not
completely removed, so a small “ripple” with frequency F0 remains on the (approximate)
DC signal.



3-6 TIME–FREQUENCY SPECTRUM 101

3-6 Time–Frequency Spectrum

We have seen that a wide range of interesting waveforms can be synthesized by a sum of
sinusoids

x(t) = A0 +
N
∑

k=1

Ak cos(2πfkt + ϕk) (3.39)

These waveforms range from constants, to cosine signals, to general periodic signals, to
complicated-looking signals that are not periodic. One assumption we have made so far is
that the amplitudes, phases, and frequencies in (3.39) do not change with time. However,
most real-world signals exhibit frequency changes over time. Music is a good example.
For very short time intervals, the music may have a “constant” spectrum, but over the
long term, the frequency content of a musical piece changes dramatically. Indeed, the
changing frequency spectrum is the very essence of music. Human speech is another good
example. Vowel sounds, if held for a long time, exhibit a “constant” nature because the
vocal tract resonates with its characteristic frequencies, and the vocal cords vibrate with a
more or less constant fundamental frequency. However, as we speak different words, the
frequency content is continually changing. In any event, most interesting signals can be
modelled as a sum of sinusoids if we let the frequencies, amplitudes, and phases vary with
time. Therefore, we need a way to describe such time–frequency variations which leads
us to study the concept of a time–frequency spectrum. The most common time–frequency
representation is the spectrogram.

The mathematical concept of a time–frequency spectrum is a sophisticated theoretical
idea, but the intuitive notion of a time-varying spectrum is supported by common,
everyday examples. A non-engineering example to cite is musical notation (Fig. 3-22).
A musical score specifies how a piece is to be played not only by giving the notes to
be played, but also the time duration of each note, and the starting time of each. The
notation itself is not completely obvious, but many students have seen it while learning
a musical instrument. In Fig. 3-22 the horizontal “axis” is time, while the vertical axis
is frequency. The time duration for each note is encoded in the notehead, which might
be open or filled, the stem, which is usually present, and flags, which might be attached
to the stem. The encoded duration is sufficient to define a whole note, half note, quarter
note, eighth, sixteenth, etc. In Fig. 3-22 most of the notes are sixteenth notes, indicating
that the piece should be played briskly. If we assign a time duration to a sixteenth note,
then all sixteenth notes should have the same duration. An eighth note would have twice

&
?
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π
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œ œ# œ œ œn œ

∑

jœ ≈ œ œ œ

œ œ œ ≈ ‰
Jœ ≈ œ œ# œ

œ œ
œ# ≈ ‰ Figure 3-22 Sheet music notation is a

time–frequency diagram.
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the duration of a sixteenth note, and a quarter note would be four times longer than a
sixteenth note, and so on.

The vertical (frequency) axis uses a much more complicated notation to define
frequency. If you look carefully at Fig. 3-22, you can see that the black dots that mark
the notes lie either on one of the horizontal lines or in the space between two lines. Each
of these positions denotes a white key on the piano keyboard depicted in Fig 3-23, and
each key produces a tone of a different frequency. The black keys on the piano require
additional notation which is done by using “sharps” (
) or “flats” (�). Figure 3-22 has a
few notes sharped, e.g., D


5. The musical score is divided into a treble section (the top
five lines) and a bass section (the bottom five lines). The vertical reference point for the
notes is “middle C,” which lies on an invisible horizontal line between the treble and
bass sections (key number 40 in Fig. 3-23). Thus the bottom horizontal line in the treble
section represents the white key (E4) that is two above middle C, that is, key number 44
in Fig. 3-23.

Once the mapping from the musical score to the piano keys has been made, we can
write a mathematical formula for the frequency of each note. A piano keyboard with
88 keys is divided into octaves containing twelve keys each. The frequencies of keys in
an octave are twice those in the next lower octave. Within an octave, the neighboring keys
maintain a constant frequency ratio (r). Since there are twelve keys per octave, the ratio
(r) can be found as follows:

r12 = 2 =⇒ r = 21/12 = 1.0595

With this ratio, we can compute the frequencies of all keys if we have one reference. The
convention is that the A key above middle C, called A-440, has frequency 440 Hz. Since
A-440 is key number 49 and middle C is key number 40, the frequency of middle C is

LAB
Synthesis of
Sinusoidal Signals

fmiddle C = 440× 2(40−49)/12 ≈ 261.6 Hz

It is not our objective to explain how to read sheet music, although two of the lab
projects on the Companion Website investigate methods for synthesizing waveforms to
create songs and musical sounds. What is interesting about musical notation is that it uses
a two-dimensional display to indicate frequency content that changes with time. If we
adopt a similar notation, we can specify how to synthesize sinusoids with time-varying
frequency content. A very simple notation is illustrated in Fig. 3-24. This time-frequency
plot shows the frequencies of each note and their durations (0.2 s).

LAB
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Musical Instruments

M
idd

le-
C

A-4
40

C3 D3 E3 F3 G3 A3 B3 C4 D4 E4 F4 G4 A4 B4 C5 D5 E5 F5 G5 A5 B5

40 42 44 45 47 49 51 52 54 56 57 59 61 6339373533323028

41 43

Octave

Figure 3-23 Piano keys can be numbered from
1 to 88. Three octaves are shown. Middle C is
key 40. A-440 is key 49. The subscripts on the
note names denote octave numbers.
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Figure 3-24 Ideal time–frequency diagram for playing the
C-major scale. The horizontal dotted lines correspond to
the first four horizontal lines in the treble staff of sheet
music (Fig. 3-22).

3-6.1 Stepped Frequency

The simplest example of time-varying frequency content is to make a waveform
whose frequency stays constant for a short duration and then steps to a higher (or
lower) frequency. Such stepped-frequency waveforms are also used in radar transmitters
where frequency coverage and high power are needed with simple transmit hardware.
In the case of music, an example of a simple stepped-frequency song would be a scale
which is a succession of notes progressing over one octave. For example, the C-major
scale consists of playing the notes {C4,D4,E4, F4,G4,A4,B4,C5} one after another,
starting at C4 which is middle C. This scale is played completely on the white keys. The
frequencies of these notes are:

Middle C D4 E4 F4 G4 A4 B4 C5

262 Hz 294 330 349 392 440 494 523

A graphical presentation of the C-major scale is shown in the time-frequency plot
of Fig. 3-24. It should be interpreted as follows: Synthesize the frequency 262 Hz as
cos(2π(262)t) for 200 ms, then the frequency 294 Hz as cos(2π(294)t) during the next
200 ms, and so on. The total waveform duration is 1.6 s. In music notation, the notes
would be written as in Fig. 3-25(a), where each note is a quarter note.

3-6.2 Spectrogram Analysis

The frequency content of a signal can be considered from two points of view: analysis or
synthesis. For example, the ideal time–frequency diagram in Figure 3-24 specifies a rule
for synthesizing the C-major scale. Analysis is a more challenging problem, as we saw
in Section 3-5, where the Fourier series analysis integral (3.27) was given.

Analysis for time-varying frequencies is an important topic of both research and
application in most signal processing courses even up to advanced graduate courses. One
reason is that there are several ways to write a mathematical formula like the Fourier
series integral to do the analysis. On the other hand, excellent numerical routines are now
available for time–frequency analysis. Specifically, it is easy to compute a spectrogram,
which is a two-dimensional function of time and frequency that displays a measurement
of the time variation of the spectral content of a signal. The Companion Website has a
demonstration of real sounds and their spectrograms, including piano sounds.

DEMO
Spectrograms of Real
Sounds
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Figure 3-25 (a) Musical notation for the
C-major scale, and (b) corresponding
spectrogram computed using MATLAB’s
spectrogram function. The horizontal dotted
lines denote the frequencies of the first four
lines of the musical staff.

Chapter 8 presents the theory that underlies the spectrogram and explains the trade-
offs that must be made between frequency resolution and time resolution. In MATLAB,
the function spectrogram computes the spectrogram, and its default values work well
for most signals.15 Therefore, it is reasonable to see what sort of output can be produced
by the specgram function. Figure 3-25(b) shows the results of applying specgram to the
stepped-frequency time waveform that makes up the C-major scale represented in musical
notation by Fig. 3-25(a). The calculation is performed by doing a numerical frequency
analysis on short segments of the sampled signal and plotting the results at the specific
time at which the analysis is done. By repeating this process with slight displacements in
time, a two-dimensional array is created whose magnitude can be displayed as a grayscale
image whose horizontal axis is time and whose vertical axis is frequency. The darkness
of the marking is proportional to the amplitude of the signal at each time-frequency
point. The time axis must be interpreted as the “time of analysis” because the frequency
calculation is not instantaneous: rather, it is based on a finite segment of the signal—in
this case, 25.6 ms.

It is quite easy to identify the frequency content due to each note, but there are
also some interfering artifacts that make the spectrogram in Fig. 3-25(b) less than ideal.
In Section 8-7 we will undertake a discussion of time–frequency analysis in order to
explain how the spectrogram is calculated and how one should choose the analysis
parameters to get a good result. Even though the spectrogram is a highly advanced
idea in signal analysis, its application is relatively easy and intuitive, especially for

15The MATLAB syntax is [S,F,T] = spectrogram(X,WINDOW,NOVERLAP,NFFT,Fs,
’yaxis’). The DSP First toolbox contains equivalent capability with the functions called plotspec
and spectgr.
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music signals, which are described symbolically by a notation that is very much like a
spectrogram.

3-7 Frequency Modulation: Chirp Signals

Section 3-6 revealed the possibility that interesting sounds can be created when the
frequency varies as a function of time. In this section, we use a different mathematical
formula to create signals whose frequency is continuously time-varying.

LAB
FM Synthesis for
Musical Instruments

3-7.1 Chirp or Linearly Swept Frequency

Suppose that we want to create a signal that covers, or sweeps over, an interval of
frequencies. For example, in the audible region, we might begin at 300 Hz and sweep up
to 800 Hz. One method for producing such a signal would be to use a stepped-frequency
signal that concatenates a large number of short constant-frequency sinusoids, starting at
300 Hz and ending at 800 Hz. Figure 3-26 shows a time waveform where the frequency
is being stepped. Notice the jumps at t = 4, 8, 12, 16, and 20 ms, which, in this case,
are caused by using ϕ = 0 for each short sinusoidal segment. The frequency stepping
is not continuous and would not sound smooth even with many steps. In addition, this
approach is tedious to implement because the boundary between the short sinusoids is
discontinuous unless we are careful to adjust the initial phase of each short sinusoid.

A “chirp” signal is a swept-frequency signal whose frequency continuously changes
linearly from some starting value to an ending frequency. The chirp formula can be derived
from the complex-exponential point of view. First of all, recall that the constant-frequency
sinusoid is the real part of a complex (rotating) phasor

x(t) = �{Aej(
angle

︷ ︸︸ ︷

ω0t + ϕ)} = A cos(ω0t + ϕ) (3.40)

and notice that the angle of the complex exponential is equal to the argument of the
cosine. When we generalize the sinusoid to a wider class of signals written as

x(t) = �{Aejψ(t)} = A cos(ψ(t)) (3.41)

0 4 8 12 16 20
�1

0

1

Time t (ms)

Stepped-Frequency Sinusoids

Figure 3-26 Stepped-frequency sinusoid, with six
frequencies changing from 300 Hz to 800 Hz in
100 Hz increments. The frequency changes every
four milliseconds.
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where ψ(t) denotes any function of time, we refer to ψ(t) as the angle function of the
cosine.16 For example, we would create a signal with quadratic angle function by defining

ψ(t) = 2πμt2 + 2πf0t + ϕ (3.42)

Now we consider how to get frequency variation from the angle function. For the
constant-frequency sinusoid in (3.40), the constant ω0 is the rate of change of the angle
function which can be obtained by taking the time derivative of the angle function. This
notion of taking the derivative generalizes if we define the instantaneous frequency for
signals in (3.41) as the derivative of the angle function,

ωi(t) = d

dt
ψ(t) (rad/s) (3.43)

which is the instantaneous slope of ψ(t). The units of ψ(t) are rad, and therefore, the
units of ωi(t) are rad/s, but we often want the frequency in Hz, which requires dividing
by 2π ,

fi(t) = 1

2π

d

dt
ψ(t) (Hz) (3.44)

If the angle function of x(t) is quadratic as in (3.42), then taking the derivative (3.44)
gives an instantaneous frequency that changes linearly with time, that is,

fi(t) = 2μt + f0 (3.45)

The frequency variation produced by the time-varying angle function such as (3.42)
is called frequency modulation (FM), and signals of this class are called linear FM
signals. Figure 3-27 shows an example of the ideal instantaneous frequency for linear-
FM. Finally, since the linear variation of the frequency (3.45) can produce an audible
sound similar to a bird chirp, linear FM signals are also called chirp signals, or simply
chirps.

DEMO
Spectrograms: Chirp
Sounds

The process can be reversed to synthesize a time-domain signal with a desired linear
frequency sweep. Since (3.43) states that the instantaneous frequency is the derivative of
the angle function ψ(t), the actual angle function needed in (3.41) is obtained from the
integral of ωi(t).

EXAMPLE 3-10 Synthesize a Chirp Formula

Suppose we want to synthesize a frequency sweep from f1 = 300 Hz to f2 = 800 Hz
over a 0.5 second time interval, where the beginning and ending times are t = 0 and
t = T2 = 0.5 s as in Fig. 3-27. First of all, it is necessary to create a formula for the
desired instantaneous frequency

fi(t) = f2 − f1

T2
t + f1 = 800− 300

0.5
t + 300

16The angle function of the constant-frequency cosine wave would be ψ(t) = ω0t + ϕ.
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Figure 3-27 Instantaneous frequency of a linear-FM
signal that sweeps continuously from 300 Hz to
800 Hz in 0.5 s.

which is the sloping line in Fig. 3-27. Then we must integrate ωi(t) = 2πfi(t) to get the
angle function:

ψ(t) =
t
∫

0

2πfi(u) du

=
t
∫

0

2π (1000u+ 300) du

= 1000πt2 + 600πt + ϕ

where the phase, ϕ = ψ(0), is an arbitrary constant of integration. The time-domain chirp
signal corresponding to Fig. 3-27 is x(t) = cos(1000πt2 + 600πt + ϕ).

3-7.2 A Closer Look at Instantaneous Frequency

It may be difficult to see why the derivative of the angle function would be the
instantaneous frequency. The following experiment provides a clue.

(a) Define a “chirp” signal using the method in Example 3-10 with the following
parameters:

f1 = 300 Hz

f2 = 800 Hz

T2 = 20 ms

In other words, determine μ and f0 in (3.42) to define x(t) so that it sweeps the
specified 500 Hz frequency range in 20 ms.
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(b) Now make a plot of the signal synthesized in part (a). In Fig. 3-28, this plot
is Fig. 3-28(b). It is difficult to verify whether or not this chirp signal has the
correct frequency content. However, the rest of this experiment demonstrates that
the derivative of the angle function is the “correct” definition of instantaneous
frequency at two different times, picked as 5.45 ms and 16 ms (approximately).
These are locations of two positive peaks of the chirp as marked in Fig. 3-28(b).

(c) First, plot a 450 Hz sinusoid, x1(t) = cos(900π(t − 0.00545)) which should have
a positive peak at t = 5.45 ms. This constant frequency sinusoid is shown in
Fig. 3-28(a).

(d) Next, generate and plot a 700 Hz sinusoid, x2(t) = cos(1400π(t − 0.016)) which
should have a positive peak at t = 16 ms. This constant frequency sinusoid is shown
in Fig. 3-28(c).

(e) Now compare the three signals in Fig. 3-28 with respect to the frequency content
of the chirp. Concentrate on the frequency of the chirp in the time range 4 to
7 ms. Notice that the 450 Hz sinusoid nearly matches the chirp in this time region.
Evaluate the theoretical fi(t) in this region.

0 5 10 15 20
�1

0

1

(a) Sinusoid @ 450 Hz: x1(t) D cos(2�(450)t C '1)

0 5 10 15 20
�1

0

1

(b) Chirp 300�800 Hz: cos(2�(300 C 12500t)t)

0 5 10 15 20
�1
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1

Time t (ms)

(c) Sinusoid @ 700 Hz: x2(t) D cos(2�(700)t C '2)

Figure 3-28 Comparing a chirp signal
(b) with constant-frequency sinusoids
(a) 450 Hz and (c) 700 Hz. Notice where
the local frequency of the chirp is equal to
one of the sinusoids.
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Figure 3-29 Spectrogram of a linear-FM signal that
sweeps continuously from 300 Hz to 800 Hz in 0.5 s.
The ideal instantaneous frequency, which changes at
a rate of 1000 Hz/s, is shown as a dashed white line.

(f) Likewise, it is possible to find another region near 16 ms (14.5 to 17.5 ms) where
the chirp frequency is nearly equal to 700 Hz.

The foregoing example provides justification for using the spectrogram to analyze
signals whose frequency content is changing. Over a short time interval the chirp signal
in Fig. 3-28(b) can be approximated by a constant frequency sinusoid. Thus, a Fourier
analysis integral could be applied to such short time intervals to determine the local
frequency content of the signal. This is exactly what is done by the spectrogram.
Figure 3-29 shows an example of the spectrogram applied to the signal whose ideal
instantaneous frequency was given in Fig. 3-27. For comparison, the ideal instantaneous
frequency is shown superimposed on the spectrogram.

We have seen that for signals of the form x(t) = A cos(ψ(t)), the instantaneous
frequency of the signal is the derivative of the angle function ψ(t). If ψ(t) is constant,
the frequency is zero. If ψ(t) is linear, x(t) is a sinusoid at some fixed frequency. If ψ(t)
is quadratic, x(t) is a chirp signal whose frequency changes linearly versus time. More
complicated variations of ψ(t) can produce a wide variety of signals. An example is the
sound made by a police or ambulance siren. Another important application of these FM
signals is in music synthesis. This application is illustrated with demos and a lab on the
Companion Website.

DEMO
FM Synthesis

3-8 Summary and Links

This chapter introduced the concept of the spectrum, in which we represent a signal
by its sinusoidal components. The spectrum is a graphical presentation of the complex
amplitude for each frequency component in the signal. We showed how complicated
signals can be formed from relatively simple spectra, and we presented the essential
concepts of the Fourier series so that we could form the spectrum of arbitrary periodic
signals. Finally, we ended with a discussion of how the spectrum can vary with time.

At this point, so many different demonstrations and projects can be done that we
must limit the list somewhat. Among the laboratory projects on the website are three
devoted to different aspects of the spectrum. The first contains exercises on the Fourier
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series representation of the square wave and a sawtooth wave. The second requires
students to develop a music synthesis program to play a piece such as Bach’s “Jesu, Joy
of Man’s Desiring.” This synthesis must be done with sinusoids, but can be refined with
extras such as a tapered amplitude envelope. Finally, the third lab deals with beat notes,
chirp signals, and spectrograms. The second part of this lab involves a music synthesis
method based on frequency modulation. The FM synthesis algorithm can produce realistic
sounds for instruments such as a clarinet or a drum. In addition, there is one more
lab that involves some practical systems that work with sinusoidal signals, such as the
dual-tone multi-frequency (DTMF) telephone dialing system. This lab, however, requires
some knowledge of filtering so it is reserved for Chapter 7. Write-ups of the labs can be
found on the Companion Website.

LAB
Synthesis of Sinusoidal
Signals

LAB
FM Synthesis for Musical
Instruments

DEMO
Links to Many Demos

The website also contains many demonstrations of sounds and their spectrograms:

(a) Spectrograms of simple sounds such as sine waves, square waves, and other
harmonics.

(b) Spectrograms of realistic sounds, including a piano recording, a synthetic scale,
and a synthesized music passage done by one of the students who took an early
version of a course that included the material of this chapter.

(c) Spectrograms of chirp signals that show how the rate of change of the instantaneous
frequency affects the sound you hear.

(d) An explanation of the FM synthesis method for emulating musical instruments.
Several example sounds are included for listening.

(e) Rotating phasors.

(f) Vowel synthesis.

NOTE
Problems with Solutions

3-9 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used to review and
practice. Most of them have detailed solutions.

P-3.1 A signal x(t) has the two-sided spectrum representation shown in Fig. P-3.1.

�175 �50 50 1750 f

11

4e j�/2 4e�j�/2
7e j�/3 7e�j�/3

Figure P-3.1
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(a) Write an equation for x(t) as a sum of cosines.

(b) Isx(t) a periodic signal? If so, determine its fundamental period and its fundamental
frequency.

(c) Explain why negative frequencies are needed in the spectrum.

P-3.2 A signal composed of sinusoids is given by the equation

x(t) = 16 cos(500πt + π/4)+ 9 cos(1000πt − π/3)− 5 cos(750πt)

(a) Sketch the spectrum of this signal, indicating the complex amplitude of each
frequency component.

(b) Is x(t) periodic? If so, what is the period?

(c) Now consider a new signal defined as y(t) = 12− 5
√

3 cos(750πt + π/2)+
5 cos(1500πt + π/2). Draw the spectrum of this new signal. Is y(t) periodic?
If so, what is the period?

P-3.3 The following MATLAB code defines a vector zz, which corresponds to the
signal z(t):

tt = -10:0.01:10; %- in seconds
kk=1; zz = 2 + kk*cos(kk*tt);
kk=2; zz = zz + kk*cos(kk*tt);
kk=3; zz = zz + real(2*exp(j*pi/3)*exp(k*kk*tt) );

(a) Write a formula for z(t) in terms of sinusoids in standard form, that is,
z(t) = A0 +∑k Ak cos(ωkt + ϕk).

(b) Plot the spectrum for z(t) with labels for all of the frequencies and complex
amplitudes.

P-3.4 Let x(t) = sin3(54πt)+ sin2(36πt).

(a) Determine a formula for x(t) as the real part of a sum of complex exponentials.

(b) Determine the fundamental period for x(t).

(c) Plot the spectrum for x(t).

P-3.5 Make a sketch of the spectrum (vs. ω) of the signal defined by:

x(t) =
3
∑

k=−3

1

1+ jk e
jkt

Label each spectrum line with the corresponding complex amplitude in polar form.

P-3.6 Shown in Fig. P-3.6 is a spectrum plot for the periodic signal x(t). The frequency
axis has units of rad/s.
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(a) Determine the fundamental frequency ω0 of this signal.

(b) Determine the (fundamental) period T0 of x(t), which is the shortest possible
period.

(c) Determine the DC value of this signal.

(d) A periodic signal of this type can be represented as a Fourier series of the form

x(t) =
∞
∑

k=−∞
ake

jω0kt .

If the Fourier series coefficients ofx(t) are denoted byak, k = 0,±1,±2,±3, . . .,
determine which coefficients are nonzero. List these nonzero Fourier series
coefficients and their values in a table.

P-3.7 In Section 3-2.2, we discussed a simple example of the “beating” of one cosine
wave against another. In this problem, we consider a more general case. Let

x(t) = A cos(2π(fc − f�)t)+ B cos(2π(fc + f�)t)
For the case discussed in Section 3-2.2, the amplitudes are equal, A = B = 1.

(a) Use phasors to obtain a complex signal z(t) such that

x(t) = �{z(t)}

(b) By manipulating the expression for z(t) and then taking the real part, show that in
the more general case above, x(t) can be expressed in the form

x(t) = C cos(2πf�t) cos(2πfct)+D sin(2πf�t) sin(2πfct)

and find expressions for C and D in terms of A and B. Check your answer by
substituting A = B = 1.

(c) Find values for A and B so that

x(t) = 2 sin(2πf�t) sin(2πfct)

Plot the spectrum of this signal.
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P-3.8 Consider the signal

x(t) = 8+ 10 cos(2π(100)t + 1
4π)+ 20 cos(2π(250)t)

(a) Using Euler’s relation, the signal x(t) defined above can be expressed as
a sum of complex exponential signals using the finite Fourier synthesis
summation (3.37)

Determine values for f0,N , and all the complex amplitudes, ak. It is not necessary
to evaluate any integrals to obtain ak.

(b) Is the signal x(t) periodic? If so, what is the fundamental period?

(c) Plot the spectrum of this signal versus f in Hz.

P-3.9 An amplitude-modulated cosine wave is represented by the formula

x(t) = [12+ 9 cos(πt − 1
3π)] sin(14πt)

(a) Use phasors to show that x(t) can be expressed in the form

x(t) = A1 cos(ω1t + ϕ1)+ A2 cos(ω2t + ϕ2)+ A3 cos(ω3t + ϕ3)

where ω1 < ω2 < ω3; that is, find values of the parameters A1, A2, A3, ϕ1,
ϕ2, ϕ3, ω1, ω2, and ω3.

(b) Sketch the two-sided spectrum of this signal on a frequency axis. Be sure to label
important features of the plot. Label your plot in terms of the numerical values of
Ai , ϕi , and ωi .

P-3.10 Consider a signal x(t) such that

x(t) = 2 cos(ω1t) cos(ω2t) = cos[(ω2 + ω1)t] + cos[(ω2 − ω1)t]

where 0 < ω1 < ω2.

(a) What is the general condition that must be satisfied by ω2−ω1 and ω2+ω1 so that
x(t) is periodic with period T0? Determine T0 and verify that x(t) = x(t + T0).

(b) What does the result of (a) imply about ω1 and ω2? For example, must ω2 be an
integer multiple of ω1?

P-3.11 A periodic signal is given by the equation

x(t) = 4+ 6 cos(60πt − 1
4π)+ 3 sin(90π)− 6 cos(150πt + 1

6π)
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(a) Determine the fundamental frequency ω0, the fundamental period T0, the number
of terms N , and the coefficients ak in the finite Fourier representation (3.37)
for the signal x(t) above. It is possible to do this without evaluating any
integrals.

(b) Sketch the spectrum of this signal indicating the complex amplitude of each
frequency component. Indicate the complex amplitude values at the appropriate
frequencies. There is no need to make separate plots for real/imaginary parts or
magnitude/phase.

(c) Now consider a new signal defined by adding one more sinusoid y(t) =
x(t)+ 10+ 12 cos(50πt − π/6). How is the spectrum changed? Is y(t) still
periodic? If so, what is the fundamental period?

P-3.12 We have seen that musical tones can be modelled mathematically by sinusoidal
signals. If you read music or play the piano, you know that the piano keyboard is divided
into octaves, with the tones in each octave being twice the frequency of the corresponding
tones in the next lower octave. To calibrate the frequency scale, the reference tone is the A
above middle C, denoted A4, which is often called A–440, since its frequency is 440 Hz.
Each octave contains 12 tones, and the ratio between the frequencies of successive tones
is constant. Thus, the ratio must be 21/12. Since middle C is nine tones below A–440, its
frequency is approximately (440)2−9/12 ≈ 261.6 Hz. The names of the tones (notes) of
the octave starting with middle C and ending with high C are:

Note name C4 C
4 D4 E�4 E4 F4 F
4
Note number 40 41 42 43 44 45 46
Frequency

Note name F
4 G4 G
4 A4 B�4 B4 C5

Note number 46 47 48 49 50 51 52
Frequency 440

(a) Make a table of the frequencies of the tones in octave 4, the octave beginning with
middle C, assuming that A4 above middle C is tuned to 440 Hz.

(b) The above notes on a piano are numbered 40 through 52. If n denotes the note
number and f denotes the frequency of the corresponding tone, give a formula for
the frequency of the tone as a function of the note number.

(c) A chord is a combination of musical notes sounded simultaneously. A triad is a
three-note chord. The D-major chord is composed of the tones of D4, F
4 and A4

sounded simultaneously. From the set of corresponding frequencies determined in
(a), make a sketch of the essential features of the spectrum of the D-major chord
assuming that each note is realized by a pure sinusoidal tone. Do not specify the
complex phasors precisely.
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P-3.13 The signal x(t) in Fig. P-3.13 consists of a DC component plus a cosine signal.
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Figure P-3.13

(a) Determine the frequency of the DC component, as well as the frequency of the
cosine component.

(b) Write an equation for the signal x(t). You should be able to determine numerical
values for all the amplitudes, frequencies, and phases in your equation by inspection
of the above graph.

(c) Expand the equation obtained in the previous part into a sum of complex exponential
signals with positive and negative frequency components.

(d) Plot the two-sided spectrum of the signal x(t). Label the complex amplitudes for
each positive and negative frequency component in the spectrum.

P-3.14 The two-sided spectrum of a signal x(t) is given in the following table, but some
of the values are not yet known.

Frequency (rad/s) ω2 −70π 0 ω1 100π

Complex Amplitude 8e−jπ/3 X−1 20
√

2+ j√2 X2

(a) If x(t) is a real signal, use symmetry properties of the spectrum to determine the
numerical values of the parameters: X−1, X2, ω1, and ω2.

(b) Write an expression for x(t) involving only real numbers and cosine functions.

(c) This signal is periodic; determine its fundamental period.

(d) Without plotting the waveform, show that x(t) ≥ 0 for all t .

P-3.15 Determine the spectrum for each of the following signals. Give your answer as
a plot.

(a) x(t) = cos2(7πt − 0.1π)

(b) y(t) = cos2(7πt − 0.1π) cos(77πt + 0.1π)
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P-3.16 In AM radio, the transmitted signal is voice (or music) combined with a carrier
signal. The carrier is a sinusoid at the assigned broadcast frequency of theAM station. For
example, WCNN in Atlanta has a carrier frequency of 680 kHz. If we use the notation
v(t) to denote the voice/music signal, then the actual transmitted signal for WCNN
might be:

x(t) = (v(t)+ A) cos(2π(680× 103)t)

where A is a constant. The constant A is introduced to make (A+ v(t)) positive, which
simplifies the design of a receiver for AM—thus, A > min v(t).

(a) Voice-band signals tend to contain frequencies less than 4000 Hz (4 kHz). Suppose
that v(t) is a 3000 Hz sinusoid, v(t) = cos(2π(3000)t+0.3π). Draw the spectrum
for v(t).

(b) Now draw the spectrum for x(t), assuming a carrier at 680 kHz with zero phase.
Use v(t) from part (a) and assume that A = 1.5.
Hint: Substitute for v(t) and expand x(t) into a sum of cosine terms of three
different frequencies.

P-3.17 The two-sided spectrum representation of a real-valued signal x(t) is shown
below (frequency in Hz):

�180 �105 105 1800
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11e j2�/5 11e�j2�/5

7e�j3�/5

f Figure P-3.17

(a) Determine the fundamental frequency (in Hz) for x(t).

(b) Write the formula for x(t) as a sum of real-valued sinusoids.

(c) The signal x2(t) = x(t − 0.05) is a time-delayed version of x(t). Determine the
spectrum of x2(t). Simplify the numerical values for the complex amplitudes, so
that the phases lie in (−π, π ].

(d) A third signal is defined as x3(t) = x(t) ej210πt . This new signal is complex-valued,
and it has a nonzero DC component. Determine the complex amplitude for the DC
component of x3(t).

P-3.18 A real signal x(t) has the two-sided spectrum shown in Fig. P-3.17.

(a) Plot the spectrum of the signal y(t) = x(t)+ 8.
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(b) Plot the spectrum of the signal z(t) = x(t)+ 18 cos(80πt + 0.8π).

(c) Determine the fundamental frequency of the signal z(t).

(d) Define q(t) as the derivative of y(t) from part (a). Plot the spectrum of the signal
q(t) = d

dt
y(t).

P-3.19 The two-sided spectrum of a signal x(t) consists of two components given in
the following table:

Frequency (rad/s) ω1 10π

Complex Amplitude 8ejπ/3 X1

(a) If x(t) is a real signal, determine the numerical values of the parametersX1 andω1.

(b) Make a plot of the spectrum of x(t); label both spectral lines.

(c) Define a new signal y(t) as y(t) = x(t) cos(ωct + ϕ). The two-sided spectrum of
the signal y(t) consists of three components given in the following table:

Frequency (rad/s) −20π ωa ωb

Complex Amplitude B A −4j

If y(t) is a real signal, use the frequency shifting property to determine the
numerical values of the parameters A, B, ωa , ωb, ωc, and ϕ.

P-3.20 A real signal x(t) has the two-sided spectrum shown in Fig. P-3.20. The
frequency axis has units of rad/s.
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Figure P-3.20

(a) Determine the fundamental frequency ω0 of this signal.

(b) Determine the fundamental period T0 of x(t), which is the shortest possible period.

(c) Determine the DC value of this signal.
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(d) A periodic signal of this type can be represented as a Fourier series of the form

x(t) =
∞
∑

k=−∞
ake

jω0kt

The kth term in the series is called the kth harmonic. Determine which harmonics
(positive and negative) are present. In other words, for the Fourier series
coefficients, ak, determine which coefficients are nonzero. List the indices of the
nonzero Fourier series coefficients and their values in a table.

P-3.21 A chirp signal x(t) is one that sweeps in frequency from ω1 = 2πf1 to ω2 =
2πf2 as time goes from t = 0 to t = T2. The general formula for a chirp is

x(t) = A cos(αt2 + βt + ϕ) = cos(ψ(t)) (3.46)

where
ψ(t) = αt2 + βt + ϕ

The derivative of ψ(t) is the instantaneous frequency (in rad/s), which is also the
frequency heard if the frequencies are in the audible range.

(a) For the chirp in (3.46), determine formulas for the beginning frequency (ω1) and
the ending frequency (ω2) in terms of α, β, and T2.

(b) For the chirp signal
x(t) = �{ej (57t2+26t+17)}

Make a plot of the instantaneous frequency (in Hz) versus time over the range
0 ≤ t ≤ 1s.

(c) If
x(t) = �{ej (2π(5/2.0794)(8t−1)+ϕ)}

derive the instantaneous frequency and plot it versus time.

P-3.22 A linear-FM “chirp” signal is one that sweeps in frequency from ω1 = 2πf1 to
ω2 = 2πf2 during a finite time interval.

(a) Determine the mathematical formula for a chirp whose instantaneous frequency
sweeps fromf1 = 4800 Hz down tof2 = 800 Hz as time goes from t = 0 to t = 2 s.

(b) In the following chirp

y(t) = cos(400πt2 + 500πt − π/4) 0 ≤ t ≤ 3 s

determine the starting and ending instantaneous frequencies.

P-3.23 To see why the derivative of the angle function would be the instantaneous
frequency, repeat the experiment of Section 3-7.2.
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(a) Use the following parameters to define a chirp signal:

f1 = 1 Hz, f2 = 9 Hz, T2 = 2 s

Determine α and β in (3.46) to define x(t) so that it sweeps the specified frequency
range.

(b) The rest of this problem is devoted to a MATLAB experiment that demonstrates
why the derivative of the angle function is the “correct” definition of instantaneous
frequency. First, make a plot of the instantaneous frequency fi(t) (in Hz) versus
time.

(c) Make a plot of the signal synthesized in (a). Pick a time-sampling interval that is
small enough so that the plot is very smooth. Put this plot in the middle panel of a
3× 1 by using subplot, subplot(3,1,2).

(d) Generate a 4 Hz sinusoid, and plot it in the upper panel of a 3×1 by using subplot,
subplot(3,1,1).

(e) Generate an 8 Hz sinusoid, and then plot it in the lower panel of a 3× 1 by using
subplot, subplot(3,1,3).

(f) Compare the three signals and comment on the apparent frequency of the chirp in
the time range 1.6 ≤ t ≤ 2 s. Which sinusoid matches the chirp in this time region?
Compare the expected fi(t) in this region with 4 Hz and 8 Hz.

P-3.24 If x(t) = cos(ψ(t)) then the instantaneous frequency (in Hz) is defined as the
derivative of its argument ψ(t),

fi(t) = 1

2π

dψ(t)

dt

For each of the sinusoids below, find an expression for the instantaneous frequency in Hz
and sketch fi(t) for the specified range of t .

(a) x1(t) = cos(
√
t), for 0.01 ≤ t ≤ 3.6

(b) x2(t) = cos(2t2 + π/4)2, for − 2 ≤ t ≤ 2

(c) x3(t) = cos(e2.5t ), for 0 ≤ t ≤ 3

(d) x4(t) = cos(sin(3πt) cos(5πt)), for 0 ≤ t ≤ 4

P-3.25 It is easy to determine the value of x(t) at t = 0 directly from the complex
ampltiudes of the spectrum.

(a) When x(t) has a spectrum with lines at f = fk, and complex amplitudes ak, prove
that x(0) is the sum of all the complex amplitudes (i.e.,

∑

ak).

Note that this result says that x(0) does not depend on the frequencies.
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0  f
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f1 f2 f3 f4 Figure P-3.25

(b) Test this result on the graphical spectrum given in Fig. P-3.26. Assume that a∗1 =
a4 = 2ej3π/4 and a∗2 = a3 = 6ejπ/4, and then determine the value of x(0).

P-3.26 The plots in Fig. P-3.26 show waveforms on the left and spectra on the right.
Match the waveform letter with its corresponding spectrum number. In each case, write
the formula for the signal as a sum of sinusoids.
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P-3.27 Shown in Fig. P-3.25 are spectrograms (labeled with numbers 1–6) for six
signals over the time period 0 ≤ t ≤ 2 s. The frequency axis for each plot has units of
Hz. For each signal description below, identify the corresponding spectrogram.
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(a) x(t) = cos(−250πt2) (d) x(t) = cos(100πt) cos(400πt)

(b) x(t) = cos(100πt − π/4)+ cos(400πt) (f) x(t) = cos(200πt2)

(c) x(t) = cos(1000πt − 250πt2) (e) x(t) = cos(30e2t )
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4

Sampling and
Aliasing

Computers process numbers or sets of numbers, so continuous waveforms like sinusoidal
signals must be turned into vectors, or streams of numbers for digital signal processing.
The common way to get the numbers is to sample values of the continuous-time signal at
a constant rate such as, e.g., 48,000 samples/s. A key question is how many numbers per
second are needed to adequately represent a continuous-time signal. For constant-
rate sampling, this question boils down to finding the minimum rate. This chapter is
concerned with the conversion of signals between the analog (continuous-time) domain
and the digital (discrete-time) domain. The primary objective of our presentation is an
understanding of the sampling theorem, which states that when the sampling rate is
greater than twice the highest frequency contained in the spectrum of the analog signal, the
original signal can be reconstructed exactly from the samples. As we noted in Chapter 2,
a signal whose spectrum has a finite highest frequency is called a bandlimited signal,
and, theoretically, such a signal can be sampled and reconstructed without error.

The process of converting from digital back to analog is called reconstruction. A
common example is playback of audio or video from a CD or DVD. For example, music on
a CD or DVD is sampled at 44,100 times/s and stored in a digital form from which a player

122
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reconstructs the continuous (analog) waveform that we hear. The reconstruction process
must “fill in” the missing signal values between the sample times tn by constructing
a smooth curve through the discrete-time sample values x(tn). Mathematicians call
this process interpolation because it may be represented as time-domain interpolation
formula. On the other hand, we will see that a spectrum or frequency-domain point
of view is an alternative way to understand important issues such as bandwidth and
reconstructing a signal from its samples.

4-1 Sampling

In previous chapters we have considered several examples of continuous-time signals,
such as sinusoids and periodic signals. Continuous-time signals are represented
mathematically by functions of time, x(t), where t is a real number, and we assume that
any value of x(t) is also a real number. It is common to call continuous-time signals analog
signals, meaning that both the signal amplitude and the time variable are assumed to be
real numbers (not discrete values). Recall the discussion in Section 2-4 on p. 39, where
we plotted waveforms using MATLAB, but actually did not plot the true continuous-time
waveform. Instead, we actually plotted values of the waveform only at isolated (discrete)
points in time and then connected those points with straight lines. It might have gone
unnoticed, but any value of the signal was represented with a finite number of bits. The
key point is that a signal represented in a digital computer is discrete in both time and
amplitude. However, we will study discrete-time signals where the time axis is discrete,
but the signal values are considered to be real numbers.1

A discrete-time signal is represented mathematically by an indexed sequence of
numbers. When stored digitally, the signal values are held in memory locations, so they
would be indexed by memory addresses.2 We denote the values of the discrete-time signal
as x[n], where n is the integer index indicating the order of the values in the sequence.
The square brackets [ ] enclosing the argument n provide a notation that distinguishes
between the continuous-time signal x(t) and a corresponding discrete-time signal x[n].3

We can obtain discrete-time signals in either of the following ways:

(a) We can sample a continuous-time signal at equally spaced time instants, tn = nTs ,
that is,

x[n] = x(nTs) −∞ < n <∞ (4.1)

where x(t) represents any continuously varying signal such as speech or audio,
which are intrinsically analog signals since they arise in the natural world.
The individual values of x[n] are called samples of the continuous-time signal.

1Quantization of the signal values is rather difficult to analyze and is beyond the scope of this basic text.
2Furthermore, memory registers, being of finite size, only allow the samples to be represented by a finite

set of numbers. This quantization is often inconsequential, and we neglect it in our subsequent discussions.
3The terminology for discrete-time signals is not universal, so we may occasionally use the word sequence

in place of signal, or the adjective digital in place of discrete-time, to refer to x[n].
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The fixed time interval between samples, Ts , can also be expressed as a fixed
sampling rate, fs , in samples/s:

fs = 1

Ts
samples/s

Therefore, an alternative way to write the sequence in (4.1) is x[n] = x(n/fs).
Sampling can be viewed as a transformation or operation that acts on a continuous-
time signal x(t) to produce an output, which is a corresponding discrete-time
signal x[n]. In engineering, it is common to call such a transformation a system,
and to represent it graphically with a block diagram that shows the input and
output signals along with a name that describes the system operation. The sampling
operation is an example of a system whose input is a continuous-time signal and
whose output is a discrete-time signal as shown in Fig. 4-1. The system block
diagram of Fig. 4-1 represents the mathematical operation in (4.1) and is called an
ideal continuous-to-discrete (C-to-D) converter. Its idealized mathematical form
is useful for analysis, but an actual hardware system for doing sampling, called an
analog-to-digital (A-to-D) converter, can only approximate the perfect sampling
of the C-to-D converter. Hardware A-to-D converters differ from ideal C-to-D
converters because of real-world problems such as amplitude quantization to 12-
or 16-bit digital word length, jitter in the sampling times, and other factors that
are difficult to express in a mathematical model. Since these factors can be made
negligible with careful design, we can henceforth safely confine our presentation
to the ideal C-to-D system.

(b) We can also compute the values of a discrete-time signal directly from a formula.
A simple example is

w[n] = n2 − 5n+ 3

which yields the sequence of values {3, −1, −3, −3, −1, 3, 9, . . . } correspond-
ing to the indices n = 0, 1, 2, 3, 4, 5, 6, . . . . The sequence w[n] could have been
obtained by sampling w(t) = t2 − 5t + 3 with a sampling period Ts = 1 s, but in
fact there might not be any such signal in the physical world that was sampled.
Nevertheless, we still refer to the individual values of the sequence as samples.
Discrete-time signals described by formulas are very common in our study of
discrete-time signals and systems.

When we plot discrete-time signals, we use the stem format shown in Fig. 4-2,
which shows eight values (samples) of the sequencew[n] defined previously. Stem

Ideal
C-to-D

Converter

x(t) x[n] = x(nTs)

Ts

Figure 4-1 Block diagram representation of the
ideal continuous-to-discrete (C-to-D) converter.
The parameter Ts specifies uniform sampling of
the input signal every Ts seconds.
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plots show clearly that the discrete-time signal has values only for integer indices:
in between, the discrete-time signal is undefined.

4-1.1 Sampling Sinusoidal Signals

Sinusoidal signals are examples of continuous-time signals that exist in the “real world”
outside the computer, and for which we can also write a simple mathematical formula.
Since the effects of sampling are easily understood for sinusoids, we use them as the basis
for our study of sampling.

If we sample a sinusoid of the form A cos(ωt + ϕ), we obtain

x[n] = x(nTs)
= A cos(ωnTs + ϕ)
= A cos(ω̂n+ ϕ) (4.2)

where we have defined ω̂ to be

Normalized Radian Frequency

ω̂
def= ωTs = ω

fs

(4.3)

The signal x[n] in (4.2) is a discrete-time cosine signal, and ω̂ is its discrete-time
frequency. We use a “hat” over ω to denote that this is a new frequency variable. It
is a normalized version of the continuous-time radian frequency with respect to the
sampling frequency. Since ω has units of rad/s, the units of ω̂ = ωTs are radians,
that is, ω̂ is a dimensionless quantity. This is entirely consistent with the fact that
the index n in x[n] is dimensionless. Once the samples are taken from x(t), the time
scale information is no longer part of the signal. The discrete-time signal x[n] is just a
sequence of numbers, and these numbers alone carry no information about the sampling
period, Ts , used in obtaining them. An immediate implication of this observation is that
an infinite number of continuous-time sinusoidal signals can be transformed into the
same discrete-time sinusoid by sampling. All we need to do is change the sampling
period inversely proportional to the input frequency of the continuous-time sinusoid. For
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Time Index .n/
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xŒ
Figure 4-2 Plotting format
for discrete-time signals,
called a stem plot. In
MATLAB, the function stem

produces this plot. Some
students also refer to the stem
plot as a “lollypop” plot.
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example, if ω = 200π rad/s and Ts = 0.5 ms, then ω̂ = 0.1π rad. On the other hand, if
ω = 1000π rad/s and Ts = 0.1 ms, ω̂ is still equal to 0.1π rad.

Figure 4-3(a) shows x(t) = cos(200πt), a continuous-time sinusoid with frequency
f0 = 100 Hz. Figure 4-3(b) shows the samples taken with sampling period Ts = 0.5 ms.
The sequence is given by the formula x[n] = x(nTs) = cos(0.1πn), so the discrete-time
radian frequency is ω̂0 = 0.1π . (Since ω̂0 is dimensionless, it is redundant to specify
its units as rad.) The sampling rate in this example is fs = 1/Ts = 2000 samples/s.
The sample values are plotted as discrete points as in Fig. 4-3(b). The points
are not connected by a continuous curve because we do not have any direct
information about the value of the signal between the sample values. In this case,
there are 20 sample values per period of the signal, because the sampling frequency
(2000 samples/s) is 20 times higher than the frequency of the continuous signal
(100 Hz). From this discrete-time plot, it appears that the sample values alone
are sufficient to visually reconstruct a continuous-time cosine wave, but without
knowledge of the sampling rate, we cannot tell what the analog frequency ω

should be.
Another example of sampling is shown in Fig. 4-3(c). In this case, the 100 Hz

sinusoid is sampled at a lower rate (fs = 500 samples/s) resulting in the sequence of
samples x[n] = cos(0.4πn). In this case, the discrete-time radian frequency is ω̂ = 0.4π .
The time between samples is Ts = 1/fs = 2 ms, so there are only five samples per period
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(a) Continuous Waveform: x.t/ D cos.2 100/t/

(b) Sampled: x.nTs/ D cos.2 100/nTs/, with Ts D 0:5 ms

(c) Sampled: x.nTs/ D cos.2 100/nTs/, with Ts D 2 ms

.n/

1

1

1

5

1020

0:0050:01

Figure 4-3 A continuous-time 100 Hz sinusoid
(a) and two discrete-time sinusoids formed by
sampling at fs = 2000 samples/s (b) and at
fs = 500 samples/s (c).
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of the continuous-time signal. We see that without the original waveform superimposed,
it would be difficult to discern the precise waveshape of the original continuous-time
sinusoid.

EXERCISE 4.1 If the sampling rate is fs = 1000 samples/s, and the continuous-time signal is x(t) =
cos(ω t), what value of ω gives a sequence of samples identical to the discrete-time
signal shown in Fig. 4-3(c)?

At first glance, Exercise 4.1 appears to ask a rather simple question because the
formula in (4.3) can be solved for ω in terms of fs and ω̂. Then it is easy to obtain
an answer for Exercise 4.1 as ω = (0.4π)fs = 400π rad/s. But is this the only possible
answer? In order to understand this question and find many other answers to Exercise 4.1,
we need to introduce the concept of an alias.

4-1.2 The Concept of Aliases

A simple definition of the word alias would involve something like “two names for the
same person, or thing.” When a mathematical formula defines a signal, that formula can
act as a name for the signal. Hence we introduce the concept of an alias by showing that two
different discrete-time sinusoid formulas can define the same signal values. The sinusoid
x1[n] = cos(0.4πn) is the mathematical formula for the plot shown in Fig. 4-3(c), so it
is one “name” that identifies that signal as having a frequency of 0.4π . Now consider
another sinusoid formula, x2[n] = cos(2.4πn), which is a different name that specifies a
different frequency, 2.4π . To see how a plot of x2[n] would look, we invoke the simple
trigonometric identity cos(θ + 2π) = cos(θ) to obtain

x2[n] = cos(2.4πn) = cos(0.4πn+ 2πn) = cos(0.4πn)

because 2πn is an integer number of periods of the cosine function. In other words, the
plot of x2[n] is identical to the plot of x1[n], and this phenomenon that we are going to
call aliasing is solely due to the fact that cosine functions are periodic with period 2π .

DEMO
Sampling Theory Tutorial

Figure 4-4 shows that the stem plots of these two signals, x1[n] = cos(0.4πn) and
x2[n] = cos(2.4πn), are identical. Figure 4-4 also shows continuous plots of the signals
cos(0.4πt) and cos(2.4πt), which when sampled with Ts = 1 would give x1[n] and x2[n].
It is clear from Fig. 4-4 that the values of these continuous cosine signals are equal at
integer values, n. Since x2[n] = x1[n] for all integers n, we see that x2[n] = cos(2.4πn)
is another name for the same discrete-time signal (that is, it is an alias of 0.4π ).
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Figure 4-4 Illustration of aliasing: two
continuous-time signals drawn through the same
samples. The samples belong to two different cosine
signals with different frequencies, but the cosine
functions have the same values at n = 0, 1, 2, 3, . . . .
Aliasing occurs when a high frequency is
indistinguishable from a low frequency after sampling.
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The frequency of x2[n] is ω̂ = 2.4π , while the frequency of x1[n] is ω̂ = 0.4π . When
speaking about the frequencies, we say that 2.4π is an alias of 0.4π . There are many
more frequency aliases as the following exercise suggests.

EXERCISE 4.2 Show that 7 cos(8.4πn− 0.2π) is an alias of 7 cos(0.4πn− 0.2π). In addition, find
two more frequencies that are aliases of 0.4π rad.

In the previous exercise, it should be easy to see that adding any integer multiple
of 2π to 0.4π gives an alias, so the following general formula holds for the frequency
aliases of 0.4π :4

ω̂� = 0.4π + 2π� � = 0, 1, 2, 3, . . . (4.4)

The principal alias is defined to be the unique alias frequency in the interval−π < ω̂ ≤ π .
In this case, the principal alias is 0.4π .

However, we are not finished yet. There are even more aliases. Another trigonometric
identity states that cos(2π − θ) = cos(θ), so we can generate another alias for x1[n] =
cos(0.4πn) as follows:

x3[n] = cos(1.6πn)

= cos(2πn− 0.4πn)

= cos(0.4πn)

The frequency of x3[n] is 1.6π . A general form for all the alias frequencies of this type
would be

ω̂� = −0.4π + 2π� � = 1, 2, 3, . . . (4.5)

For reasons that will become clear when discussing Fig. 4-12, these aliases of a negative
frequency are called folded aliases. In the folded case, the principal alias is −0.4π .

If we examine the aliases for the general discrete-time sinusoid (4.2), an extra
complication arises for the folded case as illustrated by the following analysis:

A cos((2π − ω̂)n− ϕ) = A cos(2πn− ω̂n− ϕ)
= A cos(−ω̂n− ϕ)
= A cos(ω̂n+ ϕ) (4.6)

Notice that the algebraic sign of the phase angles of the folded aliases must be opposite
to the sign of the phase angle of the principal alias.

EXERCISE 4.3 Show that the signal 7 cos(9.6πn+ 0.2π) is an alias of the signal 7 cos(0.4πn−0.2π).
It might be instructive to make MATLAB stem plots of these two signals to verify
that the phase must change sign to have identical plots.

4The integer � could be negative if we allow negative frequencies, but we prefer to avoid that case for
the time being.
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In summary, we can write the following general formulas for all aliases of a sinusoid
with frequency ω̂0:

ω̂0, ω̂0 + 2π�, 2π�− ω̂0 (� = integer) (4.7)

because the following signals have exactly the same values for all n:

A cos(ω̂0n+ ϕ) = A cos((ω̂0 + 2π�)n+ ϕ)
= A cos((2π�− ω̂0)n− ϕ) (4.8)

If we were to make a stem plot of all of these signals (with specific numbers for A, ω̂, ϕ,
and �), we would not be able to tell them apart, as was shown in the example of Fig. 4-4.

4-1.3 Sampling and Aliasing

The concept of aliases might seem to be merely a mathematical curiosity, but it is crucial
to the understanding of sampling and reconstruction of analog signals. Recall that if we
sample a continuous-time cosine signal x(t) = cos(ω0t), we get a discrete-time cosine
signal x[n] = x(nTs) = cos(ω̂0n), where ω̂0 = ω0Ts . As we will show in the following
sections, if we hope to reconstruct the original analog signal, it is necessary that the
normalized frequency ω̂0 be the principal alias, that is,

−π < ω̂0 = ω0Ts < π (4.9)

When (4.9) is not satisfied, we say that “aliasing has occurred.” Henceforth, when we
use the term aliasing, we mean that when a signal is sampled, the resulting samples
are identical to those obtained by sampling a lower frequency signal (corresponding to
the principal alias). Since the original identity of the signal is ambiguous when aliasing
occurs in sampling, it is not straightforward to reconstruct the original analog signal from
its samples. Thus, it is generally desirable to avoid aliasing when designing a system that
samples continuous-time signals.

4-1.4 Spectrum of a Discrete-Time Signal

We have seen that it is sometimes very useful to represent a continuous-time sinusoidal
signal by a spectrum plot consisting of spectrum lines. We should expect to see something
similar in a spectrum plot for a discrete-time signal. The spectrum of a continuous-time
sinusoid exhibits two spectrum lines at the frequencies ±ω rad/s. The alias phenomenon
changes the spectrum plot because a given discrete-time sinusoidal sequence could
correspond to an infinite number of different frequencies ω̂. Our approach is to take this
into account by making a spectrum plot that explicitly shows that there are many different
discrete-time sinusoids that have the same samples. Figure 4-5 shows that we can do this by
drawing the spectrum representation of the principal alias along with several more of the
other aliases.5 In Fig. 4-5, the spectrum plot includes a representation of the principal alias

5We should draw an infinite number of aliases, but we cannot show them all.
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Figure 4-5 Spectrum of a discrete-time sinusoid.
The principal alias components are at ω̂ = ±0.4π .

x1[n] = cos(0.4πn), and two of the aliases x2[n] = cos(2.4πn) and x3[n] = cos(1.6πn).
Like the two-sided representation in (3.4) on p. 70, the spectrum of each discrete-time
alias signal consists of a positive frequency component and a corresponding component
at negative frequency. Thus, x1[n] is represented by the components at±0.4π , and x2[n]
is represented by the black components at±2.4π , and the first folded alias is represented
by the gray components. Another way of thinking about constructing the plot in Fig. 4-5
is that the spectrum of the principal alias signal consisting of components at ±0.4π was
moved up by 2π and down by 2π . In other words, the principal (or base) band of the
spectrum was shifted by integer multiples of 2π .

In the case of the spectrum representation of a continuous-time signal, the assumption
was that all of the spectrum components were added together to synthesize the continuous-
time signal. This is not so for the discrete-time case because there are an infinite number
of aliases for each principal alias component and they represent the same thing. In a plot
like Fig. 4-5, we show spectrum lines for several of the aliases simply to emphasize the
fact that many different frequencies could represent the same time-domain sequence. In
the case of a sum of discrete-time sinusoids, such as

y1[n] = 2 cos(0.4πn)+ cos(0.6πn) (4.10)

we would make a plot like Fig. 4-5 with many aliases for each of the cosine signals and
superimpose them on a single plot. To synthesize the time-domain signal corresponding
to a given spectrum representation, we simply need to select one signal from each of the
distinct alias sets. For example, (4.10) includes only the principal aliases since 0.4π and
0.6π are both less than π .

EXERCISE 4.4 Make a spectrum plot for the signal of (4.10) similar to Fig. 4-5 showing the principal
alias and two other alias frequencies for each cosine signal. How would your plot
change if the signal was y2[n] = 2 cos(0.4πn)+ cos(2.6πn)?

4-1.5 The Sampling Theorem

The plots shown in Fig. 4-3 naturally raise the question of how frequently we must
sample in order to retain enough information to reconstruct the original continuous-time
signal from its samples. The amazingly simple answer is given by the Shannon sampling
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theorem, a theoretical pillar of modern digital communications, digital control, and digital
signal processing.

Shannon Sampling Theorem
A continuous-time signal x(t) with frequencies no higher than fmax can be
reconstructed exactly from its samples x[n] = x(nTs), if the samples are taken at
a rate fs = 1/Ts that is greater than 2fmax.

Notice that the sampling theorem involves two issues. First, it talks about recon-
structing the signal from its samples, although it never specifies the process for doing
the reconstruction. Second, it gives a minimum sampling rate that is dependent on the
frequencies that are contained in the spectrum of the continuous-time signal x(t).

The minimum sampling rate of 2fmax is called the Nyquist rate.6 We can see examples
of Nyquist rate sampling in many commercial products. For example, audio CDs use a
sampling rate of 44.1 kHz for storing music signals in a digital format. This number
is slightly more than two times 20 kHz, which is the generally accepted upper limit
for human hearing and perception of musical sounds. In all applications, the Nyquist
rate is significant because we are usually motivated to use the lowest possible sampling
rate in order to minimize system cost in terms of storage and processing speed per
sample.

The Shannon theorem states that reconstruction of a sinusoid is possible if we have
more than two samples per period. What happens when we don’t sample fast enough? The
simple answer is that aliasing occurs and reconstruction becomes difficult or impossible.
Section 4-2 delves into this issue by using a spectrum view of the C-to-D conversion
process.

4-1.6 Ideal Reconstruction

The sampling theorem suggests that a process exists for reconstructing a continuous-time
signal from its samples. This reconstruction process would undo the C-to-D conversion so
it is called D-to-C conversion. The ideal D-to-C converter block depicted in Fig. 4-6 shows
the input and output signals. Since the sampling process of the ideal C-to-D converter is
defined by the mathematical substitution t = n/fs as in (4.1), we would expect the same
relationship to govern the ideal D-to-C converter, that is,

y(t) = y[n]
∣

∣

∣

n=fs t
−∞ < t <∞ (4.11)

However, this substitution is not practical because it is only true when y[n] is expressed
as a sum of sinusoids formula. In the special case where y[n] was produced by sampling
one sinusoid above the Nyquist rate to obtain y[n] = A cos(2πf0n/fs + ϕ), we can use

6Harry Nyquist and Claude Shannon were researchers at Bell Telephone Laboratories who each made
fundamental contributions to the theory of sampling and digital communication during the period from 1920
to 1950.



132 CHAPTER 4 SAMPLING AND ALIASING

Ideal
D-to-C

Converter

y[n] y(t)

fs =
1
Ts

Figure 4-6 Block diagram of the ideal discrete-to-
continuous (D-to-C) converter when the sampling rate is
fs = 1/Ts . The output signal must satisfy y(nTs) = y[n].

the substitution in (4.11) to produce y(t) = A cos(2πf0t + ϕ) at the D-to-C output. This
is convenient because we obtain a mathematical formula for y(t). In practice, we only
have a sequence of numbers for y[n] that was obtained by sampling, and we do not know
the formula for y[n], or there is no simple formula for the signal, and so things are not
that easy. An actual hardware digital-to-analog (D-to-A) converter built with electronic
components cannot perform a mathematical substitution like (4.11). Instead, it must “fill
in” the signal values between the sampling times, tn = nTs . In Section 4-3, we will see how
interpolation can be used to build an D-to-A converter that approximates the behavior
of the ideal D-to-C converter.

If the ideal C-to-D converter samples a cosine signal without the confusion of aliasing,
then we can describe its operation as frequency scaling. For y[n] above, the discrete-time
frequency is ω̂ = 2πf0/fs , and the continuous-time frequency of y(t) is ω = 2πf0. Thus
the relationship appears to be ω = ω̂fs = ω̂/Ts . We can use the same result to describe
the D-to-C converter if we solve the frequency scaling equation (4.3) for ω in terms of ω̂,

ω = ω̂fs (4.12)

Thus each sinusoidal component in a discrete-time signal could be mapped to
a sinusoidal component of the continuous-time output signal. But there is one
more issue: the discrete-time signal has aliases—an infinite number of them given
by (4.7). Which discrete-time frequency should be used in (4.12)? Theoretically,
the selection rule is arbitrary, but as we define the ideal D-to-C converter, it
always selects the lowest possible frequency components (the principal aliases).
These frequencies are guaranteed to lie in the range −π < ω̂ ≤ π , so when
D-to-C converting from ω̂ to analog frequency, the output frequency always lies between
−fs/2 and +fs/2.

DEMO
Continuous-Discrete
Sampling In summary, the Shannon sampling theorem guarantees alias-free sampling if x(t)

contains no frequencies higher than fmax, and if fs > 2fmax. Furthermore, when aliasing
did not occur in sampling, the output signal y(t) of the ideal D-to-C converter is identical
to the signal x(t), the original input to the ideal C-to-D converter in Fig. 4-7.

Ideal
C-to-D

Converter

Ideal
D-to-C

Converter

x[n]x(t) y(t)

fs =
1
Ts

fs =
1
Ts

Figure 4-7 Sampling and reconstruction
system where the rates of the C-to-D and
D-to-C converters are the same.
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4-2 Spectrum View of Sampling and Reconstruction

We now present a detailed spectrum explanation of the sampling and reconstruction
process. Because the output of the C-to-D converter is a discrete-time signal with an
infinite number of spectral aliases, we need to use the spectrum diagram that includes all
of the aliases as discussed in Section 4-1.4. Then the possible aliasing of frequencies in
Fig. 4-7 can be tracked via the movement of spectrum lines in the frequency domain.

DEMO
Aliasing and Folding

4-2.1 Spectrum of a Discrete-Time Signal Obtained by Sampling

If a discrete-time sinusoid (4.2) is obtained by sampling, its frequency is given by
(4.3). After we include all the aliases as predicted by (4.7), it is necessary to plot an
infinite number of spectrum lines to have a thorough representation of the spectrum. Of
course, we can only plot a few of them and indicate that more exist outside our plotting
range.

Suppose that we start with a continuous-time sinusoid, x(t) = A cos(ω0t+ϕ), whose
spectrum consists of two spectrum lines at±ω0 with complex amplitudes of 1

2Ae
±jϕ . The

spectrum of the sampled discrete-time signal

x[n] = x(n/fs) = A cos((ω0/fs)n+ ϕ)
= 1

2Ae
jϕej (ω0/fs)n + 1

2Ae
−jϕej (−ω0/fs)n

also has two spectrum lines at ω̂ = ±ω0/fs , but it also must contain all the aliases at the
following discrete-time frequencies:

ω̂ = ω0/fs + 2π� � = 0,±1,±2, . . .
ω̂ = −ω0/fs + 2π� � = 0,±1,±2, . . .

(4.13)

This illustrates the important fact that when a discrete-time sinusoid is derived by
sampling, the alias frequencies all are based on the normalized value, ω0/fs , of the
frequency of the continuous-time signal. The alias frequencies are obtained by adding
integer multiples of 2π radians to the frequency ω̂ = ω0/fs .

EXERCISE 4.5 Plot the spectrum of the continuous-time signal x(t) = cos(2π(100)t + π/3).

The next sections show examples of sampling a continuous-time 100 Hz sinusoid
of the form x(t) = cos(2π(100)t + π/3). The sampling frequency is varied to show the
discrete-time spectrum for different cases, where fs is above or below the Nyquist rate
in Figs. 4-8 through 4-11. All were constructed with a MATLAB M-file that plots the
location of spectrum components involved in the sampling process.
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Figure 4-8 Over-sampling a 100 Hz sinusoid at
fs = 500 samples/s. (a) Continuous-time
spectrum; (b) time-domain plot, showing the
samples x[n] as gray dots, the original signal x(t)
as a continuous orange line, and the reconstructed
signal y(t) as a dashed black line, which is the
100 Hz sinusoid passing through the same sample
points; and (c) discrete-time spectrum plot,
showing the positive and negative frequency
components of the original sinusoid at
ω̂ = ±0.4π rad, along with two aliases.

4-2.2 Over-Sampling

In most applications, we try to obey the constraint of the sampling theorem by sampling
at a rate higher than twice the highest frequency in order to avoid the problems of
aliasing. This is called over-sampling. For example, when we sample the 100 Hz
sinusoid, x(t) = cos(2π(100)t + π/3), at a sampling rate of fs = 500 samples/s, we
are sampling at two and a half times the Nyquist rate. The time- and frequency-
domain plots are shown in Fig. 4-8. With reference to the C-to-D and D-to-C blocks
in Fig. 4-7, Fig. 4-8(a) shows the spectrum of the input signal x(t), while Fig. 4-8(c)
shows the spectrum of x[n] = cos(0.4πn+ π/3), which is the output of the C-to-D
converter. The time-domain plots of x(t), x[n], and the reconstructed output y(t) are all
in Fig. 4-8(b).

For the continuous-time spectrum in Fig. 4-8(a), the frequency axis is measured in
hertz. Note that the negative-frequency complex exponential component of the cosine is
denoted with a * at the top of its spectrum line to indicate that its complex value is the
conjugate of the value of the positive frequency component. Figure 4-8(b) shows x(t),
x[n], and y(t) together, but its horizontal axis is labeled with time (t) in milliseconds, so
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x[n] is plotted versus nTs . Figure 4-8(c) contains the spectrum of the discrete-time signal
versus the normalized frequency ω̂.According to the frequency scaling equation (4.3), the
input analog frequency of 100 Hz maps to ω̂ = 2π(100)/fs = 2π(100)/500 = 0.4π , so
in Fig. 4-8(c) we plot spectrum lines at ω̂ = ±0.4π . Then we also draw all the aliases at

ω̂ = 0.4π + 2π� � = 0,±1,±2, . . .
ω̂ = −0.4π + 2π� � = 0,±1,±2, . . .

The D-to-C converter transforms the discrete-time spectrum to the continuous-time
output spectrum. But there is one complication: the D-to-C converter must select just
one pair of spectrum lines from all the possibilities given by (4.13). The selection
rule is arbitrary, but in order to be consistent with real D-to-A converter operation, we
must assert that the ideal D-to-C converter always selects the lowest possible frequency
for each set of aliases. These are what we have called the principal alias frequencies,
and in Fig. 4-8(c) these are the frequency components that fall inside the dashed
box, that is, in the range |ω̂| < π . Since the frequency components inside the dashed
box satisfy |ω̂| < π , the spectral lines for the output always lie between −fs/2 and
+fs/2. When the principal alias frequencies in Fig. 4-8(c) are converted from ω̂ to
analog frequency, the result is f = ±0.4π(fs/2π) = ±100 Hz which is identical to
Fig. 4-8(a).

In summary, for the over-sampling case where the original frequency f0 is less than
fs/2, the original waveform is reconstructed exactly. In the present example,f0 = 100 Hz
andfs = 500, so the Nyquist condition of the sampling theorem is satisfied, and the output
y(t) equals the input x(t) as shown in Fig. 4-8(b).

4-2.3 Aliasing Due to Under-Sampling

When fs < 2f0, the signal is under-sampled and we say that aliasing has occurred.
For example, if fs = 80 Hz and f0 = 100 Hz, the sampling rate is below the Nyquist
rate and we can show that aliasing confusion occurs. In Fig. 4-9(a), the spectrum of
the analog input signal x(t) is shown, along with an arrow indicating the sampling rate
at fs = 80 Hz. The spectrum of the discrete-time signal (Fig. 4-9(c)) contains lines
at ω̂ = ±2π(100)/fs = ±2π(100)/80 = ±2.5π , as predicted by the frequency scaling
equation (4.3). In order to complete the discrete-time spectrum we must also draw all the
aliases at

ω̂ = 2.5π + 2π� � = 0,±1,±2, . . .
ω̂ = −2.5π + 2π� � = 0,±1,±2, . . .

In Fig. 4-9(b), the 100 Hz sinusoid (solid orange line) is sampled too infrequently to
be recognized as the original 100 Hz sinusoid. When we examine the D-to-C process for
this case, we use the lowest frequency spectrum lines from the discrete-time spectrum
(Fig. 4-9(c)). These are the principal aliases at ω̂ = ±0.5π , so the output spectrum lines
are at f = ±0.5π(fs/2π) = ±80/4 = ±20 Hz. Alternatively, we can state this result in
the time domain by observing that the same samples would have been obtained from a
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Figure 4-9 Under-sampling a 100 Hz sinusoid
at fs = 80 samples/s. (a) Continuous-time
spectrum; (b) time-domain plot, showing the
samples x[n] as gray dots, the original signal
x(t) as a continuous orange line, and the
reconstructed signal y(t) as a dashed black
line, which is a 20 Hz sinusoid passing through
the same sample points; and (c) discrete-time
spectrum plot, showing the positive and
negative frequency components of the original
sinusoid at ω̂ = ±2.5π rad, along with two sets
of alias components.

20 Hz sinusoid. The reconstructed signal is that 20 Hz sinusoid shown as the black dashed
line in Fig. 4-9(b). Notice that the alias frequency of 20 Hz can be found by subtracting
fs from 100 Hz.

The aliasing of sinusoidal components can have some dramatic effects. Figure 4-10
shows the case where the sampling rate and the frequency of the sinusoid are the same.
In Fig. 4-10(b), we see that one sample is taken per period, and all the samples are
the same value. In other words, x[n] is DC, which is the same as a sinusoid with zero
frequency. We can justify this result in the frequency domain (Fig. 4-10(c)) by noting that
the discrete-time spectrum contains lines at ω̂ = ±2π(100/fs) = ±2π , and also at the
aliases separated by 2π�. Thus, two of the aliases land at ω̂ = 0, and the sum of these
two is the value that is reconstructed by the D-to-C converter.

4-2.4 Folding Due to Under-Sampling

Figure 4-11 shows the case where under-sampling leads to the type of aliasing called
folding. Here the sampling rate is fs = 125 samples/s, which is between f0 and 2f0.
Once again, Fig. 4-11(a) shows the spectrum of the continuous-time signal with spectrum
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Figure 4-10 Under-sampling a 100 Hz sinusoid at
fs = 100 samples/s. (a) Continuous-time spectrum;
(b) time-domain plot, showing the samples x[n] as
gray dots, the original signal x(t) as a continuous
orange line, and the reconstructed signal y(t) as a
dashed black line, which is a 0 Hz sinusoid passing
through the same sample points; and (c) discrete-time
spectrum plot, showing the positive and negative
frequency components of the original sinusoid at
ω̂ = ±2π rad, along with parts of two sets of alias
components that are superimposed at ω̂ = 0 to give a
DC value of 1

2e
jπ/3 + 1

2e
−jπ/3 = cos(π/3).

lines at ±100 Hz. The discrete-time spectrum (Fig. 4-11(c)) is constructed by mapping
±100 Hz to the two spectrum lines at ω̂ = ±2π(100/fs) = ±1.6π , and then including
all the aliases to get lines at

ω̂ = 1.6π + 2π� � = 0,±1,±2, . . .
ω̂ = −1.6π + 2π� � = 0,±1,±2, . . .

In this case, an interesting thing happens. The two frequency components between±π are
ω̂ = ±0.4π , but the one at ω̂ = +0.4π is an alias of the negative frequency component
at −1.6π , which is why this situation is called folding. The analog frequency of the
reconstructed output is f = 0.4π(fs/2π) = fs/5 = 25 Hz. An additional fact about
folding is that phase of the reconstructed analog signal changes sign. If the original 100 Hz
sinusoid had a phase of ϕ = +π/3, then the phase of the component at ω̂ = −1.6π would
be −π/3, and it follows that the phase of the aliased component at ω̂ = +0.4π would
also be −π/3. After reconstruction, the phase of y(t) would be −π/3. It is possible to
observe this “phase-reversal” in the time-domain plot of Fig. 4-11(b). The input signal
(solid orange line) is going down at t = 0, while the reconstructed output (black dashed
line) is going up. This means that when we sample a 100 Hz sinusoid at a sampling rate
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Figure 4-11 Under-sampling a 100 Hz sinusoid
at fs = 125 samples/s. (a) Continuous-time
spectrum; (b) time-domain plot, showing the
samples x[n] as gray dots, the original signal x(t)
as a continuous orange line, and the reconstructed
signal y(t) as a dashed black line, which is a
25 Hz sinusoid passing through the same sample
points; and (c) discrete-time spectrum plot,
showing the positive and negative frequency
components of the original sinusoid at
ω̂ = ±1.6π rad, along with two sets of aliases.
Note how the phase is negated in this example of
aliasing by folding.

of 125 samples/s, we get the same samples that we would have gotten by sampling a
25 Hz sinusoid, but with opposite phase. This is depicted in Fig. 4-11 by showing that the
complex amplitude of the positive frequency component at 0.4π is due to the negative
frequency alias (−1.6π + 2π).

4-2.5 Maximum Reconstructed Frequency

The preceding examples have one thing in common: the output frequency is always less
than fs/2. For a sampled sinusoid, the ideal D-to-C converter picks the alias frequency
closest to ω̂ = 0 and maps it to the output analog frequency via f = ω̂(fs/2π). Since
the principal alias is guaranteed to lie between−π and+π , the output frequency always
lies between −fs/2 and +fs/2.

One striking demonstration of this fact can be made by implementing the system in
Fig. 4-7 with a linear FM chirp signal as the input, and then listening to the reconstructed
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Figure 4-12 Folding of a sinusoid sampled at
fs = 2000 samples/s. The apparent frequency is the
lowest frequency of a sinusoid that has exactly the
same samples as the input sinusoid.

output signal, or computing its spectrogram.7 This Chirp Synthesis demo is available on
the Companion Website, and is part a lab entitled AM and FM Sinusoidal Signals.

DEMO
Chirp Synthesis

To understand the Chirp Synthesis demo, suppose that the instantaneous frequency
of the input chirp increases according to the formula fx(t) = αt Hz, where α is the
chirp rate. Then the input signal is x(t) = cos(παt2), and after sampling at a rate fs , we
obtain

x[n] = cos(παn2/f 2
s )

When y(t) is reconstructed from x[n], what would you hear? It turns out that the output
frequency goes up and down as shown in Fig. 4-12. We suspect that something like this
will happen because we know that the output cannot have a frequency higher than fs/2,
even though the instantaneous frequency of the input continually increases above fs/2.LAB

AM and FM Sinusoidal
Signals

Explaining the up and down behavior of the output frequency takes more thought. If
we concentrate on a very short time interval surrounding the time t = t0, then the concept
of instantaneous frequency implies that input signal can be assumed to have a constant
frequency equal to fx(t0) = αt0 near t = t0. The spectrum of this constant-frequency
approximation to x(t) near t = t0 has two spectrum lines at ±αt0 which, after sampling,
map to the normalized discrete radian frequencies, ±ω̂x = ±2π(αt0)/fs . Then we must
determine all of the aliases, and use the principal alias to determine the reconstructed
output frequency. There is no easy formula, so we just consider a few separate cases.
First of all, when the input frequency fx(t) = αt goes from 0 to fs/2, ω̂x increases
from 0 to π and is equal to the principal alias, so the output frequency will be equal
to the input frequency. Next consider the case when the input frequency fx(t) = αt
increases from fs/2 to fs . The corresponding frequencies for x[n] increase from ω̂x = π
to ω̂x = 2π for the positive frequency, while its negative frequency companion goes
from −ω̂x = −π down to −ω̂x = −2π . The principal alias of this negative frequency
component is−ω̂x+2π which goes from ω̂x = +π down to ω̂x = 0, while the principal

7The spectrogram of a chirp without aliasing was shown in Fig. 3-29 in Section 3-7.2. An in-depth
discussion of the spectrogram can be found in Section 8-7.
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alias of the positive frequency component goes from ω̂ = −π up to ω̂x = 0. Therefore,
the output signal which is reconstructed from the principal alias has a frequency going
from f = fs/2 down to f = 0.

Figure 4-12 shows a plot of the output frequency fy(t) versus the input frequency
fx(t). As fx goes from fs/2 to fs , the output frequency fy decreases from fs/2 to 0
and then starts increasing when ω̂x becomes greater than 2π . The terminology folded
frequency comes from the fact that the input and output frequencies are mirror images
with respect to the line at fs/2, and would lie on top of one another if the graph were
folded about the fs/2 line in Fig. 4-12.

4-2.6 Sampling and Reconstruction GUI

To develop greater understanding of the sampling and reconstruction process
discussed previously and shown in Fig. 4-7, we can use the MATLAB GUI
called con2dis whose interface is shown in Fig. 4-13. The GUI display is a
2× 3 array of panels. The top row shows the time-domain signals and from left
to right follows the signal flow in Fig. 4-7. The leftmost signal is the input,
which is a continuous-time sinusoid; the middle is the discrete-time signal after
sampling; and the right is the output of the D-to-C converter, which is again a
continuous-time sinusoid. The bottom row shows the frequency-domain spectrum of the

Figure 4-13 User interface for the con2dis GUI for a specific case where the sampling frequency is 20 Hz. The
frequency of the input signal being sampling is 16.8 Hz which is between fs/2 and fs , so there is a folded alias.
The frequency of the output signal must be less than fs/2 which is 3.2 Hz as seen in the upper right panel.
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time-domain signals above. The leftmost spectrum shows the two spectrum lines8 for
the input continuous-time sinusoid; the middle spectrum is the spectrum for the
discrete-time signal and exhibits the 2π periodicity of the ω̂ domain; and the rightmost
spectrum again has two spectrum lines which are the lowest frequency pair of lines
obtained by frequency scaling (f = ω̂/2πfs) from the two spectrum lines in the ω̂ domain
which are between −π and +π . The frequency axis of the GUI display can be toggled
between radian and cyclic frequency units.

DEMO
Continuous-Discrete
Sampling

The GUI can be controlled in two ways: the input frequency and phase can be varied
while the sampling rate is constant, or the sampling rate can be varied for a fixed input
sinusoid. By using the frequency slider in the lower left to continuously raise the input
frequency, the folding phenomenon described in Fig. 4-12 can be observed by watching
the output frequency go up and down.

4-3 Discrete-to-Continuous Conversion

The purpose of the ideal D-to-C converter is to interpolate a smooth continuous-time
function through the given discrete-time samples y[n]. Thus, in the special case when
y[n] = A cos(2πf0nTs + ϕ), and if f0 < fs/2, then according to the sampling theorem,
the ideal converter should produce

y(t) = A cos(2πf0t + ϕ) (4.14)

For sampled sinusoidal signals only, the ideal D-to-C converter in effect replaces n by
fst in the cosine formula. On the other hand, if f0 > fs/2, then we know that aliasing
or folding confusion has occurred, and the ideal D-to-C converter reconstructs a cosine
wave with frequency equal to the principal alias frequency which is less than fs/2.

4-3.1 Interpolation with Pulses

How does an actual D-to-C converter work? In this section, we explain how the D-to-
C converter does interpolation through the given discrete-time samples y[n], and then
describe a practical system that is nearly the same as the ideal D-to-C converter. These
actual hardware systems, called D-to-A converters, approximate the behavior of the ideal
D-to-C system as in (4.14).

A general formula that describes a broad class of D-to-C converters is given by the
equation

y(t) =
∞
∑

n=−∞
y[n]p(t − nTs) (4.15)

wherep(t) is the characteristic pulse shape of the converter. Equation (4.15) states that the
output signal is produced by superimposing scaled and time-shifted pulses. In other words,
at each sample time tn = nTs , a shifted pulse p(t − nTs) is emitted with an amplitude

8Note that the negative-frequency spectral line has a dot at the top.
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Figure 4-14 Four different pulses for D-to-C
conversion. The sampling period is Ts = 5 ms,
or equivalently, fs = 200 Hz. The duration of
the pulses is (a) Ts for the square pulse, (b) 2Ts
for the triangular pulse, (c) 4Ts for the cubic
spline, and (d) infinite for the ideal pulse.

proportional to the sample value y[n] corresponding to that time instant.9 Note that all
the pulses have the same waveshape p(t). If the pulse duration is greater than or equal to
Ts , then the gaps between samples are filled by adding overlapped pulses.

Equation (4.15) requires that we choose the pulse waveform p(t). Unfortunately, we
have not yet studied the mathematical tools needed to derive the optimal pulse shape for
exact reconstruction of a waveform y(t) from its samples y[n] = y(nTs) as is predicted to
be possible in the Shannon sampling theorem. This optimal pulse shape can be constructed
during a mathematical proof of the sampling theorem. Nonetheless, we will demonstrate
the plausibility of (4.15) by considering some simple examples that use suboptimal pulse
shapes. Figure 4-14 shows four possible pulse waveforms for D-to-C conversion when
fs = 200 Hz.

DEMO
Reconstruction Movies

4-3.2 Zero-Order Hold Interpolation

The simplest pulse shape that we might propose is a symmetric square pulse of the form

p(t) =
{

1 − 1
2Ts < t ≤ 1

2Ts

0 otherwise
(4.16)

The total width of the square pulse plotted in Fig. 4-14(a) is Ts = 5 msec and its amplitude
is 1. Therefore, each term y[n]p(t − nTs) in the sum (4.15) creates a flat region of
amplitude y[n] centered on t = nTs . This is shown in Fig. 4-15(a), which shows the

9A pulse is a continuous-time waveform that is concentrated in time.
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Figure 4-15 D-to-C conversion using a square
pulse. (a) Shifted square pulses (dashed
orange); (b) sum using (4.15) (solid orange).
Flat regions are characteristic of the zero-order
hold.

original 83 Hz cosine wave (solid gray line), its samples taken at a sampling rate of
200 samples/s, and the individual shifted and scaled pulses, y[n]p(t−nTs) (dashed line).
The sum of all the shifted and scaled pulses creates a “stairstep” waveform, as shown in
Fig. 4-15(b), where the gray curve is the original cosine wave x(t), and the solid orange
curve shows the reconstructed waveform using the square pulse.10

DEMO
Reconstruction Movies

The space between samples has indeed been filled with a continuous-time
waveform—however, it is clear from Fig. 4-15(b) that the reconstructed waveform for the
square pulse is a poor approximation of the original cosine wave. Thus, using a square
pulse in (4.15) is D-to-C conversion, but not ideal D-to-C conversion. Even so, this is a
useful model, since many physically realizable D-to-A converters produce outputs that
look exactly like this!

4-3.3 Linear Interpolation

The triangular pulse plotted in Fig. 4-14(b) is defined as a pulse consisting of the first-order
polynomial (straight line) segments

p(t) =
{

1− |t |/Ts −Ts ≤ t ≤ Ts
0 otherwise

(4.17)

Figure 4-16(a) shows the original 83 Hz cosine wave (solid gray curve) and its samples,
together with the scaled pulses y[n]p(t − nTs) (dashed orange) for the triangular pulse
shape. In this case, the output y(t) of the D-to-C converter at any time t is the sum of

10Since a constant is a polynomial of zero order, and since the effect of the flat pulse is to “hold” or
replicate each sample for Ts s, the use of a flat pulse is called zero-order hold reconstruction.



144 CHAPTER 4 SAMPLING AND ALIASING

0 0.005 0.01 0.015

0

1

(a) First-Order Reconstruction:   = 83 Hz,   = 200 Hz

0 0.005 0.01 0.015

0

1

(b) Original and Reconstructed Waveforms

Time (s)
0:005

0:005

0:01

0:01

1

1

f0 fs

Figure 4-16 D-to-C conversion using a
triangular pulse. (a) Shifted triangular pulses
(dashed orange); (b) sum using (4.15) (solid
orange). The result is reconstruction by linear
interpolation.

two scaled triangular pulses that overlap at that time instant. Since the duration of the
triangular pulse is 2Ts , and neighboring pulses are shifted by Ts , no more than two pulses
can overlap at any given time. The resulting output is shown as the solid orange curve in
Fig. 4-16(b). Note that the result is that samples are connected by straight lines. Also note
that the values at t = nTs are exactly correct. This is because the triangular pulses are zero
at ±Ts , and only one scaled pulse (with value y[n] at t = nTs) contributes to the value
at t = nTs . In this case, we say that the continuous-time waveform has been obtained by
linear interpolation between the samples. This is a smoother and better approximation of
the original waveform (thin gray curve), but there is still significant reconstruction error
for this signal.

4-3.4 Cubic-Spline Interpolation

A third pulse shape is shown in Fig. 4-14(c). This pulse consists of four cubic spline
(third-order polynomial) segments. Note that its duration is twice that of the triangular
pulse and four times that of the square pulse. Also, note that this pulse is zero at the key
locations:

p(t) = 0 for t = ±Ts, ±2Ts

and its derivative is smooth at the sample locations. The reconstruction with the
cubic-spline pulses is shown in Fig. 4-17. Figure 4-17(a) shows the original 83 Hz
waveform (solid gray), its samples (fs = 200 samples/s), and the shifted and scaled
pulses y[n]p(t − nTs) (dashed orange). Now note that, for values of t between two
adjacent sample times, four pulses overlap and must be added together in the sum (4.15).
This means that the reconstructed signal at a particular time instant, which is the sum
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Figure 4-17 D-to-C conversion using a
cubic-spline pulse. (a) Shifted cubic-spline
pulses (dashed orange); (b) sum using (4.15)
(solid orange).

of these overlapping pulses, depends on the two samples preceding and the two samples
following that time instant. Figure 4-17(b) shows the original waveform (light gray), the
samples, and the output of the D-to-C converter with “cubic-spline pulse” interpolation
(solid orange curve). Now we see that the approximation is getting smoother and better,
but sometimes it is far from perfect. In the next section, we will see that this is because
the sampling rate is only 2.4 times the highest frequency.

4-3.5 Over-Sampling Aids Interpolation

From the previous three examples, it seems that one way to make a smooth reconstruction
of a waveform such as a sinusoid is to use a pulse p(t) that is smooth and has a long
duration. Then the interpolation formula involves several neighboring samples in the
computation of each output value y(t)—however, the sampling rate is another important
factor. If the original waveform does not vary much over the duration of p(t), then we
can expect a good reconstruction. One way to ensure this is by over-sampling (that is,
using a sampling rate that is much greater than the frequency of the cosine wave). This is
illustrated in Figs. 4-18, 4-19, and 4-20, where the frequency of the cosine wave is still
f0 = 83 Hz, but the sampling frequency has been raised to fs = 500 samples/s. Now the
reconstruction pulses are the same shape as in Fig. 4-14, but they are much shorter, since
Ts = 2 ms instead of 5 ms. The signal changes much less over the duration of a single
pulse, so the waveform appears “smoother” and is much easier to reconstruct accurately
using only a few samples. Note that even for the case of the square pulse (Fig. 4-18)
the reconstruction is better, but still discontinuous; the triangular pulse (Fig. 4-19) gives
an excellent approximation; and the cubic-spline pulse gives a reconstruction that is
indistinguishable from the original signal on the plotting scale of Fig. 4-20.

DEMO
Reconstruction Movies
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(a) Zero-Order Reconstruction:   = 83 Hz,   = 500 Hz
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Figure 4-18 D-to-C conversion using a square
pulse. The original 83 Hz sinusoid was
over-sampled at fs = 500 samples/s.
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(a) First-Order Reconstruction:   = 83 Hz,   = 500 Hz
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(b) Original and Reconstructed Waveforms
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Figure 4-19 D-to-C conversion using a
triangular pulse at fs = 500 samples/s.

Figures 4-18, 4-19, and 4-20 show that over-sampling can make it easier to reconstruct
a waveform from its samples. Indeed, this is why CD and DVD audio players have over-
sampled D-to-A converters! In these systems, 4× or 2× over-sampling is used to increase
the sampling rate before sending the samples to the D-to-A converter. This makes it
possible to use a simpler (and therefore less expensive) D-to-A converter to reconstruct
an accurate output from a CD or DVD player.



4-3 DISCRETE-TO-CONTINUOUS CONVERSION 147

0 0.005 0.01 0.015

0

1

(a) Cubic-Spline Reconstruction:   = 83 Hz,   = 500 Hz
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Figure 4-20 D-to-C conversion using a
cubic-spline pulse at fs = 500 samples/s.

4-3.6 Ideal Bandlimited Interpolation

So far in this section, we have demonstrated the basic principles of discrete-to-continuous
conversion. We have shown that this process can be approximated very well by a sum
of shifted pulses (4.15). One question remains: What is the pulse shape that gives “ideal
D-to-C conversion”? The answer, which relies on the continuous-time Fourier Transform,
is a sinc function which is given by the following equation:

p(t) = sinc(t/Ts) = sin(πt/Ts)

(πt/Ts)
for −∞ < t <∞ (4.18)

The infinite length of this sinc pulse implies that to reconstruct a signal at time t exactly
from its samples requires all the samples, not just those near time t . Figure 4-14(d)
shows this pulse over the interval −2.6Ts < t < 2.6Ts . It continues to decay outside
this interval, but never does reach and stay at zero. Since p(0) = 1 and p(nTs) = 0
for n = ±1,±2, . . ., this type of reconstruction is still an interpolation process, and it
is called bandlimited interpolation, because it can be shown that using (4.18) in the
interpolation formula (4.15) is equivalent to selecting the principal alias components
inside the gray boxes in Figs. 4-8 through 4-11. Using (4.18) to reconstruct from
samples of a cosine wave always reproduces a cosine wave exactly. If the sampling
rate satisfies the conditions of the sampling theorem, the reconstructed cosine wave is
identical to the original signal that was sampled. If aliasing occurred in sampling, the
ideal D-to-C converter reconstructs a cosine wave with the alias frequency that is less
than fs/2.
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4-4 The Sampling Theorem

This chapter has discussed the issues that arise in sampling continuous-time signals. Using
the example of the continuous-time cosine signal, we have illustrated the phenomenon
of aliasing, and we have shown how the original continuous-time cosine signal can be
reconstructed by interpolation. All of the discussion of this chapter has been aimed at the
goal of establishing confidence in the Shannon sampling theorem, which, because of its
central importance to our study of digital signal processing, is repeated here.

Shannon Sampling Theorem
A bandlimited continuous-time signalx(t)with no spectral components at frequencies
above fmax can be reconstructed exactly from its samples x(nTs), if the samples are
taken at a rate fs = 1/Ts that is greater than 2fmax.

A block diagram representation of the sampling theorem is shown in Fig. 4-21 in terms of
the ideal C-to-D and D-to-C converters that we have defined in this chapter. The sampling
theorem states that if the input is composed of sinusoidal signals with frequencies {fk}
and all those frequencies are in the range 0 ≤ fk ≤ fmax, then the reconstructed signal is
equal to the original signal that was sampled (that is, y(t) = x(t), if fs > 2fmax).

Signals composed of sums of sinusoids such that all frequencies are limited to a “band
of frequencies” of the form 0 ≤ f ≤ fmax are called bandlimited signals.11 Such signals
could be represented as

x(t) =
N
∑

k=0

xk(t) (4.19)

where each of the individual signals is of the form xk(t) = Ak cos(2πfkt + ϕk) with 0 ≤
fk ≤ fmax. As we have seen in Chapter 3 and Appendix C, such an additive combination
of sinusoids can produce an infinite variety of both periodic and nonperiodic signal
waveforms. If we sample the signal represented by (4.19) we obtain

x[n] = x(nTs) =
N
∑

k=0

xk(nTs) =
N
∑

k=0

xk[n] (4.20)

where xk[n] = Ak cos(ω̂kn+ ϕk) with ω̂k = 2πfk/fs . Thus, if we sample a sum of
continuous-time cosines, we obtain a sum of sampled cosines, and if we sample above
the Nyquist rate, then fs > 2fmax ≥ 2fk, and |ω̂k| ≤ π for each xk[n].

Ideal
C-to-D

Converter

Ideal
D-to-C

Converter

x[n]x(t) y(t)

fs =
1
Ts

fs =
1
Ts

Figure 4-21 Sampling and
reconstruction system with identical
rates for the C-to-D and D-to-C
converters.

11The corresponding complex exponential signals would be limited to the band −fmax ≤ f ≤ fmax.
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The final step in the process of sampling followed by reconstruction in Fig. 4-21 is
D-to-C conversion by interpolation with

y(t) =
∞
∑

n=−∞
x[n]p(t − nTs) (4.21)

where for perfect reconstruction, p(t) would be given by (4.18). This expression for the
reconstructed output is a linear operation on the samples x[n]. This means that the total
output y(t) consists of the sum of the outputs due to each of the different components
xk[n]. We can see this by substituting (4.20) into (4.21) as in

y(t) =
∞
∑

n=−∞

(

N
∑

k=0

xk[n]
)

p(t − nTs) =
N
∑

k=0

( ∞
∑

n=−∞
xk[n]p(t − nTs)

)

(4.22)

Now since each individual sinusoid is assumed to satisfy the conditions of the sampling
theorem, it follows that the D-to-C converter reconstructs each component perfectly, and
therefore we conclude that

y(t) =
N
∑

k=0

xk(t) = x(t)

Thus, we have shown that the Shannon sampling theorem applies to any signal that can be
represented as a bandlimited (finite) sum of sinusoids, and since it can be shown that most
real-world signals can be represented as bandlimited signals, it follows that the sampling
theorem is a very general guide to sampling all kinds of signals.

4-5 Strobe Demonstration

One effective means for demonstrating aliasing is to use a strobe light to illuminate a
spinning object. Prior to computer-controlled ignition, this stroboscopic effect was the
routine method to set the ignition timing of automobile engines and it gives a practical
example where aliasing is a desirable effect. In this section, we consider a disk attached
to the shaft of an electric motor that rotates at a constant angular speed (see Fig. 4-22).
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Figure 4-22 The disk attached to the shaft of a
motor rotates clockwise at a constant speed.



150 CHAPTER 4 SAMPLING AND ALIASING

n = 0 n = 1

n = 3

n = 2

n = 4 n = 5

Figure 4-23 Six successive positions of the spot
for a very high flashing rate. Light spots indicate
previous locations of the dark spot. The disk is
rotating clockwise, and the spot appears to move
in the same direction. Angular change is −40◦ per
flash.

On this white disk is painted a spot that is easily seen whenever the strobe light flashes.
Initially, we assume that the rotation speed of the motor is constant at 750 rpm, and the
flash rate of the strobe light is variable over a wide range.

DEMO
Strobe Movies

Suppose that the flashing rate is very high, say nine times the rotation rate (that is,
9× 750 = 6750 rpm). In this case, the disk does not rotate very far between flashes.
In fact, for the 9× case, it moves only 360◦/9 = 40◦ per flash, as in Fig. 4-23.
Since the movement is clockwise, the angular change from one flash to the next
is −40◦. Therefore, a higher rate of rotation is converted into a lower rate.

If the flash rate of the strobe is set equal to 750 flashes/min, the rotation rate of the
disk, then the spot appears to stand still. This happens because the spot makes exactly one
revolution between flashes and therefore is always at the same position when illuminated
by the strobe. It is exactly the same situation illustrated in Fig. 4-10 where the frequency
of the sampled sinusoid aliased to zero. This is not the only flash rate for which the
spot appears to stand still. In fact, a slower flash rate that permits two or three or any
integer number of complete revolutions between flashes will create the same effect. In
our case of a 750 rpm motor, flash rates of 375, 250, 187 1

2 , 150, and 125 flashes/min
also work.

By using flashing rates that are close to these numbers, we can make the spot move
slowly, and we can also control its direction of motion (clockwise or counterclockwise).
For example, if we set the strobe for a flashing rate that is just slightly higher than
the rotation rate, we observe another aliasing effect. Suppose that the flashing rate is
806 flashes/min then the disk rotates slightly less than one full revolution between
flashes. We can calculate the movement if we recognize that one complete revolution
takes 1/750 min. Therefore,

�θ = −360◦ × 1/806

1/750

= −360◦ × 750

806
= −335◦ = +25◦

Once again, the minus sign indicates rotation in a clockwise direction, but since the angular
change is almost −360◦, we would observe a small positive angular change instead, and



4-5 STROBE DEMONSTRATION 151

n = 1n = 0

n = 5n = 4n = 3

n = 2

Figure 4-24 Six successive positions of the
spot for a flashing rate that aliases the spot
motion. Light spots indicate previous locations
of the dark spot. The disk is rotating clockwise,
but the spot appears to move counterclockwise.
Angular change is +25◦ per flash.

the spot would appear to move in the counterclockwise direction, as shown in Fig. 4-24.
The fact that one can distinguish between clockwise rotation and counterclockwise
rotation is equivalent to saying that positive and negative frequencies have separate
physical meanings. Figures 4-23 and 4-24 are reminiscent of an effect often observed
on television where the wheels of a moving car sometimes appear to rotate opposite to
the car’s direction of motion—or, in old Western movies, where stage coach wheels seem
to rotate in strange ways. The effect is due to the sampling inherent in the frame rate of
video: 30 frames/s for analog TV, and 24 frames/s for movie film.

In order to analyze the strobe experiment mathematically, we need a notation for the
motion of the spot as a function of time. The spot moves in an x–y coordinate system,
so a succinct notation is given by a complex number whose real part is x and whose
imaginary part is y. The position of the spot is

p(t) = x(t)+ jy(t)
Furthermore, since the motion of the spot is on a circle of radius r , a better formula for
p(t) is a complex exponential with constant frequency, amplitude and phase:

p(t) = re−j (2πfmt−ϕ) (4.23)

The minus sign in the exponent indicates clockwise rotation, and the initial phase ϕ
specifies the location of the spot at t = 0 (see Fig. 4-25). The frequency of the motor
rotation fm is constant, as is the radius r .

The effect of the strobe light is to sample p(t) at a fixed rate given by the flashing
rate fs . Thus the position of the spot at the nth flash can be expressed as the discrete-time
signal

p[n] = p(t)

∣

∣

∣

t=nTs
= p(nTs) = p(n/fs)

Substituting into the complex exponential (4.23) we get

p[n] = re−j (2π(fm/fs)n−ϕ) (4.24)
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p(t) = re−j(2πfmt − ')

Figure 4-25 The position of the spot on the
disk can be expressed as a rotating phasor
p(t) = x(t)+ jy(t) versus time. The frequency
fm is the rotation rate of the motor in rpm.

If the constraint of the sampling theorem is met (i.e., fs > 2|fm|), then there is no aliasing
in the experiment. In fact, the angular change from one sample time to the next is between
−180◦ and 0◦, so the spot will appear to rotate clockwise.

The more interesting cases occur when the flashing rate drops below 2|fm|. Then
the disk makes one or more revolutions between flashes, which introduces the aliasing
phenomenon. Using the sampled position formula (4.24), we can solve the following type
of problem: Find all possible flashing rates so that the spot moves counterclockwise at a
rate of 25◦ per flash, which is equivalent to one revolution every 14.4 flashes. Assume a
constant motor speed of fm rpm. One twist to this problem is that the flashing rate should
be expressed as flashes/min to match the motor speed in rpm.

A systematic approach is possible if we use the property ej2π� = 1, whenever � is an
integer. The desired rotation of the spot can be expressed as

d[n] = re+j (2π(25/360)n+ψ)

where the term 2π(25/360) equals 25◦ converted to radians. The initial phase ψ is set
equal to ϕ in p[n], so that d[0] = p[0]. Then we can equate p[n] and d[n], but we include
the factor ej2π�n, which is just multiplying by one

p[n] = d[n]ej2π�n

Now with the following analysis we can generate an equation that can be solved for the
flashing rates:

re−j (2π(fm/fs)n−ϕ) = re+j (2π(25/360)n+ϕ) ej2π�n

⇒ −
(

2π
fm

fs
n− ϕ

)

= +
(

2π
25

360
n+ ϕ

)

+ 2π�n

−fm
fs
= 25

360
+ �

⇒ −fm = fs
(

25

360
+ �

)

So, finally we can solve for the flashing rate (per minute)

fs = −fm
(5/72)+ � (4.25)
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where � is any integer. Since we want positive values for the flashing rate, and since there
is a minus sign associated with the clockwise rotation rate of the motor (−fm), we choose
� = −1,−2,−3, . . . to generate the different solutions. For example, when the motor
rpm is 750, the following flashing rates (in flashes/min) give the desired spot movement
of 25◦ per flash:

� −1 −2 −3 −4
fs 805.97 388.49 255.92 190.81

EXERCISE 4.6 To test your knowledge of this concept, try solving for all possible flashing rates so
that the spot moves clockwise at a rate of one revolution every nine flashes. Assume
the same motor rotation speed of 750 rpm clockwise. What is the maximum flashing
rate for this case?

4-5.1 Spectrum Interpretation

The strobe demo involves the sampling of complex exponentials, so we can present the
results in the form of a spectrum diagram rather than using time-domain equations, as
in the foregoing section. The rotating disk has an analog spectrum given by a single
frequency component at f = −fm cycles/min (see Fig. 4-26).

When the strobe light is applied at a rate of fs flashes per minute, the resulting
spectrum of the discrete-time signal p[n] contains an infinite number of frequency lines
at the normalized frequencies

ω̂� = 2π
−fm
fs
+ 2π� = −ω̂m + 2π� (4.26)

for � = 0,±1,±2,±3, . . . . Equation (4.26) reminds us that there are two steps needed
to create the spectrum (Fig. 4-27) of the discrete-time signal representing the sampled
motion:

(a) Compute a normalized motor frequency ω̂m by dividing by fs . Then plot a spectrum
line at ω̂ = −ω̂m. The minus sign represents the clockwise rotation.

(b) Replicate the normalized spectral line for the motor by shifting it by all integer
multiples of 2π . This accounts for the aliases of the discrete-time exponential,
p[n] in (4.24).

0

rej'

ffm fs

Figure 4-26 Analog spectrum representing the
disk spinning clockwise (negative frequency) at
fm rpm. The units for f are cycles/min.



154 CHAPTER 4 SAMPLING AND ALIASING

0

rej'
!

m

!
m

!
m

!
m

!
m

!
m O!

Figure 4-27 Discrete-time spectrum
representing the disk spinning clockwise at
fm rpm, but strobed at fs flashes per minute.
The horizontal axis is normalized frequency:
ω̂ = 2πf/fs . The normalized motor frequency
−ω̂m = 2π(−fm/fs) and its aliases are shown.

How do we use Fig. 4-27 to explain what we see in the strobe-light experiment?
Figure 4-27 contains an infinite number of spectrum lines, so it offers an infinite number
of possibilities for what we will observe. Our visual system, however, must pick one and
it is reasonable that it picks the slowest one. In effect, the human visual system acts as
a D-to-C converter. Thus, in the discrete-time spectrum, only the frequency component
closest to ω̂ = 0 counts in D-to-C reconstruction, so the strobed signal p[n] appears to be
rotating at that lowest normalized frequency. However, one last conversion must be made
to give the perceived analog rotation rate in rpm. The discrete-time frequency (ω̂) must
be converted back to analog frequency via f = ω̂fs . In Fig. 4-27, the alias for � = 2 is
the one closest to zero frequency, so the corresponding analog frequency is

fspot = 1

2π
(ω̂2)fs = 1

2π
(4π − ω̂m)fs = 2fs − fm

This may seem like a roundabout way to say that the observed rotation rate of the spot
differs from −fm by an integer multiple of the sampling rate, but it does provide a
systematic method to draw the graphical picture of the relative frequency locations.
Finally, the spectrum picture makes it easy to identify the lowest discrete-time frequency
as the one that is “reconstructed.” The discussion in Section 4-3 explains why this is
true.

The case where the sampling rate is variable and fm is fixed is a bit harder to solve, but
this is the most common situation for stroboscopic applications. A graphical approach
is still possible because the desired spot frequency defines a line in the discrete-time
spectrum, say ω̂d . The units of ω̂d are radians per flash. This line is the one closest to
the origin, so we must add an integer multiple 2π� to ω̂d to match the normalized motor
rotation frequency.

ω̂d + 2π� = ω̂m = −2πfm
fs

This equation can be solved for the flashing rate fs , but the final answer depends on the
integer �, which predicts, by the way, that there are many answers for fs , as we already
saw in (4.25). The result is

fs = −2πfm
ω̂d + 2π�
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4-6 Summary and Links

This chapter introduced the concept of sampling and the companion operation of
reconstruction. With sampling, the possibility of aliasing always exists, and we have
created the strobe demo to illustrate that concept in a direct and intuitive way.

LAB
Digital Images:
A/D and D/A

The lab entitled Digital Images: A/D and D/A shows how sampling applies to digital
images. Some aspects of sampling have already been used in the music synthesis labs
that are associated with Chapter 3, because the sounds must be produced by creating their
samples in a computer before playing them out through a D-to-A converter.

DEMO
Synthetic Strobe
Movies

The website also contains many demonstrations of sampling and aliasing:

(a) Strobe movie filmed using the natural strobing of a video camera at 30 frames/s.

(b) Synthetic strobe demos produced as MATLAB movies.

(c) Reconstruction movies that show the interpolation process for different pulse
shapes and different sampling rates.

(d) A sampling and aliasing MATLAB GUI called con2dis, shown in Fig. 4-13.
DEMO

Reconstruction Movies (e) Aliasing and folding movies that show how the spectrum changes for different
sampling rates.

4-7 Problems

The problems in this section address the major concepts of sampling and aliasing in this
chapter. On the Companion Website there are many related homework problems which
can be used to review and practice. Most of them have detailed solutions.

NOTE
Problems with Solutions P-4.1 Let x(t) = 10 cos(9πt − π/5). In each of the following parts, the discrete-time

signal x[n] is obtained by sampling x(t) at a rate fs samples/s, and the resultant x[n] can
be written as

x[n] = A cos(ω̂1n+ ϕ)

For each part below, determine the values of A, ϕ, and ω̂1 such that 0 ≤ ω̂1 ≤ π . In
addition, state whether or not the signal has been over-sampled or under-sampled.

(a) Sampling frequency is fs = 11 samples/s.

(b) Sampling frequency is fs = 7 samples/s.

(c) Sampling frequency is fs = 4 samples/s.
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P-4.2 Discrete-time signals with different frequencies can be equal; this is one
manifestation of aliasing and folded aliases. Determine which of the following discrete-
time cosine signals are equal (i.e., plots of xi[n] versus n will be identical):

x1[n] = cos(0.8πn+ 0.2π)

x2[n] = cos(−2.8πn+ 0.2π)

x3[n] = x1[n] + x2[n]
x4[n] = cos(5.2πn− 0.2π)

x5[n] = x1[n] + cos(−7.1πn− 0.1π)

P-4.3 An ideal D-to-C converter produces an output signal whose ω̂ frequency content
is the same as the input signal’s discrete-time frequency content over the range −π <
ω̂ ≤ π . However, the continuous-time frequency axis (ω) is a scaled version of ω̂. For
each of the discrete-time signals y[n] below, determine the continuous-time output signal
y(t) from an ideal D-to-C converter whose sampling rate is fs = 3200 Hz.

(a) y[n] = 8 cos(π4 n− π/3)
(b) y[n] = cos(1.4πn)

(c) y[n] = 2 cos(2.5πn− π/4)+ sin(1.4πn)

P-4.4 The spectrum diagram, which gives the frequency content of a continuous-time
signal, helps in determining the Nyquist rate for sampling that signal.

(a) Given the signal x(t) = cos(3000πt) cos(6000πt), draw a sketch of its spectrum.
Label the frequencies and complex amplitudes of each component spectral line.

(b) Determine the minimum sampling rate that can be used to sample x(t) without
aliasing for any of its components.

(c) Given the signal r(t) = cos(2× 106πt) sin(5× 106πt) sin(9× 106πt), deter-
mine the minimum sampling rate to avoid aliasing for any of its components.

(d) Given the signal v(t) = cos(2× 106πt)+ sin(5× 106πt)+ sin(9× 106πt),
determine the minimum sampling rate to avoid aliasing for any of its components.

P-4.5 The Fourier Series representation of a signal is a summation of complex
exponential signals, so by focusing on the highest frequency, we can determine the Nyquist
rate for sampling a continuous-time signal such as

x(t) =
10
∑

k=−10

(j8πk)ej2πkt (4.27)

(a) For x(t) determine the minimum (Nyquist) sampling rate to guarantee no aliasing.
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(b) Define a new signal r(t) = x(t) cos(24πt). Determine the Nyquist sampling rate
for r(t).

(c) Define another new signal v(t) = r(t)+ r(t − 0.02). Determine the Nyquist
sampling rate for v(t).

P-4.6 Refer to Fig. 4-21 for the system with ideal C-to-D and D-to-C converters. If the
sampling rate is high enough to avoid aliasing, and the D-to-C rate equals the C-to-D
rate, then the reconstructed output signal is equal to the input signal (this is the gist of the
Sampling Theorem). However, when the D-to-C rate is different, a careful analysis of the
spectra is needed. For example, if the output rate is twice the input rate, the output signal
is played out faster and we would expect the frequency content of the output signal to be
higher.

(a) If the input x(t) is given by the two-sided spectrum representation in Fig. P-4.6,
and the sampling rate of the C-to-D converter is fs = 2500 samples/s, sketch the
spectrum of the discrete-time signal x[n].

(b) Use the spectrum for x[n] found in the previous part to determine a simple formula
for the output signal y(t) when the rate of the D-to-C converter is fs = 1500
samples/s (i.e., different from the C-to-D rate).

0 200 500

13ej 0:713e j 0:7

7e j 0:37e j 0:3

f500 200 Figure P-4.6

P-4.7 In the system with ideal C-to-D and D-to-C converters (Fig. 4-21), assume that
the sampling rate of both converters is fs = 475 samples/s, and the input signal x(t) is
given by the two-sided spectrum representation in Fig. P-4.6.

(a) Is the output signal y(t) equal to the input signal x(t)?

(b) For the case where the sampling rate of the C-to-D converter is fs = 475 Hz, sketch
the spectrum of the discrete-time signal x[n]. Label the frequencies and complex
amplitudes of all the spectrum lines.

(c) Use the spectrum for x[n] found in the previous part to determine a simple formula
for the output signal y(t) when fs = 475 Hz (for both the C-to-D and D-to-C
converters).
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P-4.8 In the system with ideal C-to-D and D-to-C converters (Fig. 4-21), assume that
the sampling rate of both converters is fs = 700 samples/s, and the input signal x(t) is
given by the two-sided spectrum representation in Fig. P-4.6.

(a) State the Nyquist rate for x(t) defined in Fig. P-4.6. Is the input signal aliased?

(b) For the case where the sampling rate of the C-to-D converter is fs = 700 Hz, sketch
the spectrum of the discrete-time signal x[n]. Label the frequencies and complex
amplitudes of all the spectrum lines.

(c) Use the spectrum for x[n] found in the previous part to determine a simple formula
for the output signal y(t) when fs = 700 Hz for both converters.

P-4.9 Refer to Fig. 4-21 for the system with ideal C-to-D and D-to-C converters.

(a) Suppose that the output from the C-to-D converter is x[n] = cos(0.4πn), and the
sampling rate of the C-to-D converter is fs = 7000 samples/s. Determine a formula
for the continuous-time sinusoidal input x(t) using the smallest frequency greater
than 9000 Hz.

(b) Suppose the output from the C-to-D converter is x[n] = cos(0.2πn), the input
signal is x(t) = cos(525πt), and the sampling rate (fs) of the C-to-D converter
is less than 135 samples/s. Determine the largest possible sampling rate satisfying
these three conditions.

(c) Suppose the output from the D-to-C converter is y(t) = cos(325πt), and the input
to the C-to-D converter is x(t) = cos(75πt). If both converters are operating at the
same rate (fs), determine the smallest possible sampling rate fs satisfying these
conditions.

P-4.10 A continuous-time sinusoid a1(t) = cos(ω1t + 0.1π) is sampled at fs1 = 40 Hz
to give a1[n], and a second continuous-time sinusoid a2(t) = cos(ω2t + 0.1π) is
sampled at fs2 = 50 Hz to give a2[n]. Equality of the discrete-time sampled signals
(i.e., a1[n] = a2[n]), may or may not be equivalent to equality of the continuous-time
signals (i.e., a1(t) = a2(t)).

(a) If ω2 = 30π rad/s, determine ω1 so that a1[n] = a2[n]. Assume there is no aliasing
when sampling a1(t).

(b) For the previous part, determine the common frequency ω̂ of the discrete-time
signals ai[n] = cos(ω̂n+ ϕi), where i = 1, 2.

(c) Now assume that ω1 = ω2 = 2π(44 4
9) rad/s. Determine the frequencies ω̂1 and

ω̂2 of the discrete-time signals a1[n] and a2[n]. Hint: Use aliasing to obtain
frequencies that satisfy 0 ≤ ω̂1, ω̂2 ≤ π .

(d) Are the discrete-time signals found in the previous part equal? If yes, find the
phases; otherwise, explain why not.
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P-4.11 When the cosine waveform x(t) = 3 cos(500πt) is sampled at a rate fs , we
obtain a discrete-time signal x[n] given by

x[n] = x(n/fs) = 3 cos(800πn/fs)

for −∞ < n <∞. In the following parts, assume that fs = 3600 Hz.

(a) Determine how many samples are taken in one period of the cosine wave x(t). This
answer is the average number of samples per period, which is an integer in this
case.

(b) Now consider another cosine waveform y(t) with a different frequency ω0

y(t) = 3 cos(ω0t)

Find a value for ω0, between 7000π and 9999π rad/s, such that the signal samples
are identical to x[n] above, that is, y[n] = y(n/fs) = x(n/fs) for all n. Hint: The
solution involves aliasing.

(c) For the frequency found in (b), determine the average number of samples taken in
one period of y(t). This answer is unlikely to be an integer.

P-4.12 Suppose that a discrete-time signal x[n] given by the formula

x[n] = 11.3 cos(0.3πn+ 0.6π)

was obtained by sampling a continuous-time signalx(t) = A cos(2πf0t+ϕ) at a sampling
rate of fs = 4000 samples/s. Determine three different continuous-time signals that could
have produced x[n]. All these continuous-time signals have different frequencies which
should be positive and less than 7000 Hz. Write the mathematical formula for all three
continuous-time signals.

P-4.13 When operating on a signal in MATLAB, sampling is always being done
because MATLAB stores signals as vectors which are, in effect, discrete-time signals.
Furthermore, MATLAB performs ideal C-to-D conversion when operating on signals that
are defined by mathematical formulas. As a result, there are cases where aliasing might
occur unintentionally in a MATLAB program. Discrete-time MATLAB signals can be
converted to continuous-time with the function soundscwhich plays out an analog signal
for listening.

(a) In the following MATLAB code, a discrete-time sinusoid is generated and then
played out with soundsc:

nn = 0:2190099;
xx = (7/pi)*cos(1.8*pi*nn + 2.03);
soundsc(xx,16000)

Determine the analog frequency (in hertz) that will be heard.
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(b) The following MATLAB code generates samples of a sinusoidal waveform:

tt = 0:1/2400:10000;
xx = cos(2*pi*1800*tt + pi/3);
soundsc(xx,fsamp);

Although the sinusoid was not written to have a frequency of 2400 Hz, it is possible
to play out the vector xx so that it sounds like a 2400 Hz tone. Determine the value
of fsamp that should be used in soundsc to play the vector xx as a 2400 Hz tone.

(c) The following snippet of MATLAB code generates a very long sinusoid:

tt = 0:(1/8000):64;
xx = 1.23*cos(2*pi*440*tt);
soundsc(xx,40000);

Determine the frequency (in Hz) and the duration (in seconds) of the tone played
by soundsc. Note: Assume that MATLAB has an infinite amount of memory so
that the very long vector xx can be stored.

P-4.14 An amplitude-modulated (AM) cosine wave is represented by the formula

x(t) = [4+ sin(6600 t)] cos(2000πt)

(a) Sketch the two-sided spectrum of this signal. Be sure to label important features
of the plot.

(b) Explain why x(t) is not periodic.

(c) What relation must the sampling rate fs satisfy so that y(t) = x(t) in Fig. 4-21?

P-4.15 Suppose that a discrete-time signal x[n] is given by the formula

x[n] = 9 cos(0.6πn+ 0.4π)

and that it was obtained by sampling a continuous-time signal at a sampling rate of
fs = 1/Ts = 9600 samples/s.

(a) Determine two different continuous-time signals x1(t) and x2(t) whose samples
are equal to x[n]; in other words, find x1(t) and x2(t) such that x[n] = x1(nTs) =
x2(nTs) if Ts = 1/fs . Both of these signals should have a frequency less than
10,000 Hz. Give a formula for each signal.

(b) If x[n] is given by the equation above, what signal is reconstructed by an ideal
D-to-C converter operating at sampling rate of 6000 samples/s? That is, determine
the output y(t) in Fig. 4-21 when the sampling rates are different.
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P-4.16 Bandpass sampling refers to sampling a signal that is known to lie in a restricted
frequency range, for example, all frequencies in x(t) are between 7000 and 8000 Hz. The
usual Sampling Theorem requiresfs > 16000 Hz because the reconstruction is performed
with the lowest frequency possible. However, in this case, the available bandwidth of the
signal is only 1000 Hz, so it turns out that x(t) can be sampled at fs = 2000 Hz and
recovered perfectly from those samples because the range of recovered frequencies is
known. Suppose that a discrete-time signal x[n] is given by the formula

x[n] = cos(0.7πn+ 0.2π)

and that it was obtained by sampling a continuous-time signal at a sampling rate of
fs = 2000 samples/s.

(a) When fs = 2000 Hz and the possible bandwidth is also 2000 Hz, reconstruction
from the sampled signal is ambiguous. Determine two different continuous-time
signals x1(t) and x2(t) with frequencies between 7000 and 9000 Hz, and whose
samples are equal to x[n].

(b) Determine the continuous-time signal x(t)whose frequency lies between 7000 and
8000 Hz and whose samples are equal to x[n].

(c) Suppose that x[n] = cos(ω̂n+ 0.2π), where ω̂ ∈ [0, π ] is the discrete-time signal
obtained by sampling x(t) = cos(2πf t + ϕ) at a sampling rate of fs = 2000 Hz.
Determine the general formula for the frequency f in terms of ω̂ such that the
frequency satisfies f ∈ [7000, 8000] Hz. Also, determine the phase ϕ.

Comment: The answer in the last part is simple only when one end of the frequency
interval is an integer multiple of fs (that is, 8000 = 4fs). The reader is encouraged to go
further with this problem by reworking the last part when f ∈ [8500, 9500] Hz.

P-4.17 A nonideal D-to-C converter takes a discrete-time signal (sequence) y[n] as
input and produces a continuous-time output y(t) according to the relation

y(t) =
∞
∑

n=−∞
y[n]p(t − nTs)

where Ts = 0.4 s. Assume the input sequence is given by the formula

y[n] =
{

0.1(−2)n 0 ≤ n ≤ 4

0 otherwise

(a) For the pulse shape

p(t) =
{

1 −0.2 ≤ t ≤ 0.2

0 otherwise

carefully sketch the output waveform y(t).
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(b) For the pulse shape

p(t) =
{

1− 2.5|t | −0.4 ≤ t ≤ 0.4

0 otherwise

carefully sketch the output waveform y(t).

P-4.18 A continuous-time sinusoid a(t) = 5 cos(ωat) is sampled at fs1 = 25 Hz to give
a[n], and a second continuous-time sinusoid b(t) = 5 cos(ωbt) is sampled at fs2 =
65 Hz to give b[n].

(a) If ωb = 26π rad/s, determine ωa so that a[n] = b[n] = 5 cos(ω̂n). Assume there
is no aliasing when sampling a(t). Determine the frequency ω̂ of the discrete-time
signal.

(b) Now assume that both ωa and ωb are unknown, but they are equal (ωa = ωb).
Determine the common frequency ωa , so that the discrete-time signals are equal
(that is, a[n] = b[n]).

(c) Among the many answers possible in the previous part, only two satisfy 0 < ωa <

40π rad/s. Determine those answers.

(d) If ωa = 30π and ωb = 60π , and a(t) and b(t) are sampled at the same sampling
frequency fs , such that 30 < fs < 60, determine fs for which a[n] = b[n].

P-4.19 Often MATLAB is used to plot a sinusoidal signal and this requires that the time
axis be defined because the plot command operates on vectors for horizontal and vertical
axes. The following MATLAB code generates a signal x[n] and plots x[n] versus n:

Ts = 0.01; % units are seconds
Duration = 0.3;
tt = 0 : Ts : Duration;
Fo = 380; % units are Hz
xn = 2*cos( 2*pi*Fo*tt + 0.6*pi );
stem( 0:length(xn)-1, xn )

(a) Make the stem plot of the signal x[n] with n as the horizontal axis. Either sketch
it or plot it using MATLAB. Assume that the n index starts at zero.

(b) In the plot, measure the period of the discrete-time signal x[n].
(c) Determine the correct formula for the discrete-time signal in the form

x[n] = A cos(ω̂0n+ ϕ)
with ω̂0 ∈ [0, π ].

(d) Explain how aliasing affects the formula and the stem plot that you made.
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P-4.20 The intention of the following MATLAB program is to plot 17 cycles of a 15
Hz sinusoid, but it has a bug:

Fo = 15;
To = 1/Fo; %-- Period
Ts = 0.05;
tt = 0 : Ts : (17*To);
xx = real((1+j*0.1)*exp(j*2*pi*Fo*tt));
%-- The xx vector has samples of the 15-Hz sinusoid
plot( tt, xx, ’-o’ )
xlabel(’TIME (sec)’), grid on

(a) First of all, if you plot 17 periods of a sinusoid how many zero crossings would
you observe in the plot? How many positive peaks and how many negative peaks?

(b) Make the plot in MATLAB, and count the number of zero crossings and peaks.

(c) Measure the period in the plot (in s), and then calculate the frequency (in Hz) of a
sinusoid with that period. Explain how aliasing or folding predicts this frequency.

(d) The samples of the signal xx form a discrete-time signal, x[n]. Determine the
period of x[n] and then write a formula for x[n].

(e) Determine an acceptable value of Ts to get a very smooth plot of the desired 15 Hz
signal.

P-4.21 An amplitude-modulated (AM) wave is represented by the formula

x(t) = [7+ cos(πt)] sin(15πt + π/2)
(a) Use phasors to show that x(t) can be expressed in the form

x(t) = A1 cos(ω1t + ϕ1)+ A2 cos(ω2t + ϕ2)+ A3 cos(ω3t + ϕ3),

whereω1 < ω2 < ω3. In addition, find values for the parametersA1, A2, A3, ϕ1, ϕ2,
ϕ3, ω1, ω2, ω3.

(b) Sketch the two-sided spectrum of this signal on a frequency axis. Be sure to label
important features of the plot, and include the numerical values of the parameters
Ai , ϕi , and ωi for i = 1, 2, 3.

(c) Determine the minimum sampling rate that can be used to sample x(t) without
aliasing of any of the components.

P-4.22 Refer to Fig. 4-21 for the sampling and reconstruction system. Assume that the
sampling rates of the C-to-D and D-to-C converters are equal, and the input to the ideal
C-to-D converter is

x(t) = 2 cos(2π(50)t + π/2)+ cos(2π(150)t)
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(a) If the output of the ideal D-to-C converter is equal to the input x(t), that is,

y(t) = 2 cos(2π(50)t + π/2)+ cos(2π(150)t)

what general statement can you make about the sampling frequency fs in this case?

(b) If the sampling rate is fs = 250 samples/s, determine the discrete-time signal x[n],
and give an expression for x[n] as a sum of cosines. Make sure that all frequencies
in your answer are positive and less than π radians.

(c) Plot the spectrum of the signal in part (b) over the range of frequencies−π ≤ ω̂ ≤
π . Make a plot for your answer, labeling the frequency, amplitude, and phase of
each spectral component.

(d) If the output of the ideal D-to-C converter is

y(t) = 2 cos(2π(50)t + π/2)+ 1

determine the value of the sampling frequency fs . (Remember that the input x(t)
is as defined above.)

P-4.23 In the rotating disk and strobe demo described in Section 4-5, we observed that
different flashing rates of the strobe light would make the spot on the disk stand still or
move in different directions.

(a) Assume that the disk is rotating clockwise at a constant speed of 13 rev/s. If the
flashing rate is 15 flashes/s, express the movement of the spot on the disk as a
rotating complex phasor, p[n], that gives the position of the spot at the nth flash.
Assume that the spot is at the top when n = 0 (the first flash).

(b) For the conditions in (a), determine the apparent speed (in rev/s) and direction of
movement of the “strobed” spot.

(c) Now assume that the rotation speed of the disk is unknown. If the flashing rate is 13
flashes/s, and the spot on the disk moves counterclockwise by 15◦ with each flash,
determine the rotation speed of the disk (in rev/s). If the answer is not unique, give
all possible rotation speeds.

P-4.24 In the rotating disk and strobe demo, we observed that different flashing rates
of the strobe light would make the spot on the disk stand still.

(a) Assume that the disk is rotating in the counterclockwise direction at a constant
speed of 12 rev/s. Express the movement of the spot on the disk as a rotating
complex phasor.
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(b) If the strobe light can be flashed at a rate of n flashes/s, where n is an integer greater
than zero, determine all possible flashing rates such that the disk can be made to
stand still.

Note: The only possible flashing rates are 1 per second, 2 per second, 3 per second,
etc.

(c) If the flashing rate is 13 times/s, explain how the spot moves, and write a complex
rotating phasor that gives the position of the spot at each flash.

P-4.25 The following complex-valued signal is a phasor:

z[n] = ejθ [n]

where θ [n] is the phase.

(a) When the phase changes by a constant amount versus n, the phasor rotates at a
constant speed. For the following phasor:

z[n] = ej (0.08πn−0.25π)

make a plot of the phasor locations for n = 0, 1, 2, 7, 10, 17, 20, 33, 50 and 99.

(b) What is the period of z[n]?
(c) Repeat for the complex phasor that corresponds to the following chirp signal:

c[n] = ej0.1n2

In this case, plot the phasor locations for n = 0, 1, 2, 3, 4, and 7.

(d) It might be surprising to learn that the chirp signal c[n] defined in (c) is periodic.
Determine its period.

P-4.26 A digital chirp signal is synthesized according to the following formula:

x[n] = �{ejθ [n]} = cos(π(0.7× 10−3)n2)

for n = 0, 1, 2, . . . , 200.

(a) Make a plot of the rotating phasor ejθ [n] for n = 10, 50, and 100.

(b) If this signal is the input to a D-to-A converter whose sampling rate is 8 kHz, make
a plot of the instantaneous analog frequency (in Hz) versus time for the analog
signal.

(c) If the constant frequency digital signal v[n] = cos(0.7πn) is the input to a D-to-A
converter whose sampling rate is 8 kHz, what (analog) frequency will be heard?
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P-4.27 In the MATLAB code below, determine the values of ALPHA, BETA, and fs in
the definition of the FM signal whose spectrogram shown in Fig. P-4.27 is produced by
the plotspec function, which is available on the website. Notice that both the positive
and negative frequency regions are shown by adding a tiny imaginary part to the real
signal xn.

%
fs = ????;
tt = 0:1/fs:2;
psi = ALPHA*pi*tt.ˆ4 + BETA*pi*tt;
xn = cos(psi);
plotspec(xn+j*1e-11, fs, 128), grid on %-- make a spectrogram
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5

FIR Filters

Up to this point, we have focused our attention on signals and their mathematical
representations. In this chapter, we begin to emphasize systems or filters. Strictly
speaking, a filter is a system that is designed to remove some component or modify
some characteristic of a signal, but often the two terms are used interchangeably. In this
chapter, we introduce the class of finite impulse response (FIR) systems, or, as we often
refer to them, FIR filters. These filters are systems for which each output value is the
sum of a finite number of weighted values of the input sequence. We define the basic
input–output structure of the FIR filter as a time-domain computation based upon what
is often called a difference equation. The unit impulse response of the filter is defined
and shown to completely describe the filter via the operation of convolution. The general
concepts of linearity and time invariance will also be presented. These two properties
completely characterize a wide class of filters that are exceedingly important in both
the continuous-time and the discrete-time cases.

Our purpose in this chapter is to introduce the basic ideas of discrete-time systems
and to provide a starting point for further study. The analysis of both discrete-time
and continuous-time systems is a rich subject of study that is necessarily based on
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Discrete-Time
System Operator

T gInput Output

x y D T fx g
Figure 5-1 Block-diagram representation of
a discrete-time system.

mathematical representations and manipulations.1 The systems that we introduce in this
chapter are the simplest to analyze. The remainder of the text is concerned with extending
the ideas of this chapter to other classes of systems and with developing tools for the
analysis of these systems.

5-1 Discrete-Time Systems

A discrete-time system is a computational process for transforming one sequence, called
the input signal, into another sequence called the output signal. As we have already
mentioned, systems are often depicted by block diagrams such as the one in Fig. 5-1. In
Chapter 4, we used similar block diagrams to represent the operations of sampling and
reconstruction. In the case of sampling, the input signal is a continuous-time signal and
the output is a discrete-time signal, while for reconstruction the opposite is true. Now
we want to begin to study discrete-time systems where the input and output are both
discrete-time signals. Such systems are important because they can be implemented with
digital computation and because they can be designed to modify signals in many useful
ways.

In general, we represent the operation of a system by the notation

x[n] T�−→ y[n]
which states concisely that the output sequence2 y is related to the input sequence x by a
computational process (or mapping) that can be described mathematically by an operator
T .3 Since a discrete-time signal is a sequence of values, such operators can be described
by giving a formula for computing the values of the output sequence from the values of
the input sequence. For example, the relation

y[n] = (x[n])2

defines a very simple system for which the output sequence values are the square of the
corresponding input sequence values. In this case the output at time index n depends

1Systems can be analyzed effectively by mathematical methods called transforms, such as the Fourier
transform and the z-transform, which are introduced in Chapters 7, 9, and 10, and are covered extensively
in more advanced signals and systems texts.

2The term sequence is equivalent to a discrete-time signal, so the two terms will be used interchangeably.
3An operator is a mathematical concept that is analogous to the concept of a function. Instead of mapping

a number into another number, a discrete-time operator T maps an entire sequence (the input) into another
sequence (the output).
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only on the input value at the same time n. A more complicated example would be the
following definition of a maximum-of-three system:

y[n] = max{x[n], x[n− 1], x[n− 2]}
In this case, the output value depends on three consecutive input values, the “current
value,” indexed by n, and two “previous values” indexed by n−1 and n−2. As these two
simple examples illustrate, a system definition is often given as a formula or computational
process for transforming a sequence x[n] into another sequence y[n].

Since infinite possibilities exist for defining discrete-time systems, it is necessary
to limit the range of possibilities by placing some restrictions on the properties of the
systems that we study. Therefore, we begin our study of discrete-time systems in this
chapter by introducing a very important class of discrete-time systems called FIR filters.
Specifically, we will discuss the representation, implementation, and analysis of discrete-
time FIR systems, and illustrate how such systems can be used to modify signals.

5-2 The Running-Average Filter

A simple but useful transformation of a discrete-time signal is to compute a running
average of two or more consecutive values of the sequence, thereby forming a
new sequence of the average values.4 Averaging is commonly used whenever data
fluctuate and must be smoothed prior to interpretation. For example, stock-market
prices fluctuate noticeably from day to day, or hour to hour. Therefore, one might
take an average of the stock price over several days before looking for any trend.
Another everyday example concerns credit-card balances where interest is charged on
the average daily balance. The FIR filter is a generalization of the idea of a running
average.

In order to motivate the general definition of the class of FIR systems, let us consider
the simple running average as an example of a system that processes an input sequence to
produce an output sequence. To be specific, consider a 3-point running average where each
sample of the output sequence is the sum of three consecutive input sequence samples
divided by three.5 If we apply this algorithm to the triangularly shaped sequence shown
in Fig. 5-2(a), we can compute a new sequence called y[n], which is the output of the
averaging operator. The sequence in Fig. 5-2(a) is an example of a finite-length signal.
The support of such a sequence is the set of indices over which the sequence is nonzero; in
this case, the support of the sequence is the finite interval 0 ≤ n ≤ 4. A 3-point average
of the values {x[0], x[1], x[2]} = {2, 4, 6} gives the answer 1

3(2+ 4+ 6) = 4. This
result defines one of the output values. The next output value is obtained by averaging
{x[1], x[2], x[3]} = {4, 6, 4}, which yields an average value of 14/3. Before going any
further, we should decide on the output indexing. For example, the values 4 and 14/3

4The running average is often called a moving average.
5It is common practice to refer to signal values as points or samples. The term samples is short for sample

values which are signal values since many signals arise from sampling.
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Figure 5-2 (a) Finite-length input signal, x[n].
(b) Output of running-average filter, y[n].

could be assigned to y[0] and y[1], but this is only one of many possibilities. With this
indexing, the equations for computing the output from the input are

y[0] = 1
3(x[0] + x[1] + x[2])

y[1] = 1
3(x[1] + x[2] + x[3])

which generalizes to the following input–output equation:

y[n] = 1
3(x[n] + x[n+ 1] + x[n+ 2]) (5.1)

The equation given in (5.1) is called a difference equation. It is a complete description of
the FIR system because we can use (5.1) to compute the entire output signal for all index
values −∞ < n <∞. For the input of Fig. 5-2(a), the output from (5.1) is the signal
y[n] tabulated as follows:

n n<−2 −2 −1 0 1 2 3 4 5 n>5

x[n] 0 0 0 2 4 6 4 2 0 0

y[n] 0 2
3 2 4 14

3 4 2 2
3 0 0

Note that the values in orange type in the x[n] row are the numbers involved in the
computation of y[2]. Also note that y[n] = 0 outside of the finite interval −2 ≤ n ≤ 4;
so, the output also has finite support. The output sequence is also plotted in Fig. 5-2(b).
Observe that the support of the output sequence is longer (has more nonzero values) than
the input sequence, which is typical for an FIR filter.

The choice of the output indexing is arbitrary, but it does matter when speaking about
properties of the filter because n is often a time index. For example, the filter defined
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in (5.1) has the property that its output starts (becomes nonzero) before the input starts.
This would certainly be undesirable if the input signal values came directly from an
A-to-D converter, as is common in audio signal-processing applications. In this case, n
would stand for time, and we can interpret y[n] in (5.1) as the computation of the present
value of the output based on three input values. Since these inputs are indexed as n, n+1,
and n+2, two of them are “in the future.” This form of the 3-point running-average filter
can be represented compactly by the summation notation on the right-hand side of the
following equation:

y[n] = 1
3(x[n] + x[n+ 1] + x[n+ 2]) = 1

3

n+2
∑

�=n
x[�] (5.2)

In this representation, � is a “dummy” counting index for the sum and n denotes the index
of the nth sample of the output sequence. When we represent the input sequence as x[�],
with −∞ < � <∞, we are considering the sequence in its entirety. If we denote n as
the current time,6 then (5.2) states that the output at n is the average of the input at n (i.e.,
x[n]) and two future values x[n+ 1] and x[n+ 2].

In general, sample values from either the past or the future or both may be used in the
computation of the running average. Figure 5-3 depicts a case when both past and future
samples of the input are involved in computing the present value of the output sequence.
In all cases of a 3-point running average, a sliding window of three samples determines
which three samples are used in the computation of y[n]. Figure 5-3 also depicts the case
when more than three samples are averaged to produce the output sample.

A filter that uses only the present and past values of the input is called a causal
filter, implying that the cause does not precede the corresponding effect. Therefore, a
filter that uses future values of the input is called noncausal. Noncausal systems cannot
be implemented in a real-time application because the input is not yet available when
the output has to be computed. In other cases, where stored data blocks are manipulated
inside a computer, the issue of causality may not be a crucial limitation.

6Oftentimes, we will not be so careful about our notation as in this discussion. When the meaning is
clear, we may simply refer to “the sequence x[n]” even when we mean the entire sequence, not just the value
of the sequence at n.
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An alternative output indexing scheme can produce a 3-point averaging filter that is
causal. In this case, the output value y[n] is the average of input values at n (the present),
n−1 (one sample previous), and n−2 (two samples previous). The difference equation
for this filter7 is

y[n] = 1
3(x[n] + x[n− 1] + x[n− 2]) =

n
∑

�=n−2

1
3x[�] (5.3)

where now the upper limit is n so the index of summation does not include future values,
and the sliding averaging interval is n−2 to n. The form given in (5.3) is a causal running
averager, or it may well be called a backward average. By a straightforward manipulation
of the sum, (5.3) can also be expressed as

y[n] = 1
3(x[n] + x[n− 1] + x[n− 2]) =

2
∑

k=0

1
3x[n− k] (5.4)

In (5.4), the counting index of the sum is denoted k to distinguish it from � in (5.3),
even though this is really not necessary. The indices � and k are “dummy” indices in the
sense that they are used only to count through the terms being summed—hence, they are
replaced by numbers as in the expressions on the left in (5.3) and (5.4). Therefore, both
� and k could be replaced by any convenient symbol distinct from n.

Using the causal difference equation (5.3) or (5.4), we can make a table of all output
values.

n n < −2 −2 −1 0 1 2 3 4 5 6 7 n > 7

x[n] 0 0 0 2 4 6 4 2 0 0 0 0

y[n] 0 0 0 2
3 2 4 14

3 4 2 2
3 0 0

Notice that now the orange-colored values of x[n] are used to compute y[4] instead of
y[2]. The resulting signal y[n] has the same values as before, but its support is now
the index interval 0 ≤ n ≤ 6. Observe that the output of the causal filter is simply
a shifted version of the output of the previous noncausal filter. This filter is causal
because the output depends on only the present and two previous (i.e., past) values of
the input. Therefore, the output does not change from zero until the input changes from
zero.

EXERCISE 5.1 Determine the output of a centralized running averager

y[n] = 1
3(x[n+ 1] + x[n] + x[n− 1])

for the input in Fig. 5-2(a). Is this filter causal or noncausal? What is the support of
the output for this input? How would the plot of the output compare to Fig. 5-2(b)?

7The divide by 3 needed for the 3-pt running averager has been incorporated into a coefficient of 1/3 for
each term in the sums (5.3) and (5.4).
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Figure 5-4 Operation of the M th-order causal FIR filter showing various positions of the (gray) sliding window of
M + 1 samples over which the weighted average is calculated. When the input signal x[�] has finite length (N samples),
the sliding window runs onto and off of the input data, so the resulting output signal also has finite length.

5-3 The General FIR Filter

The causal running average (5.4) is a special case of the general causal difference equation

y[n] =
M
∑

k=0

bk x[n− k] = b0x[n] + b1x[n− 1] + · · · + bMx[n−M] (5.5)

where the coefficients bk are fixed numbers. Usually the bk coefficients are not all
the same, and then we say that (5.5) defines a weighted running average of M + 1
samples. The 3-point running average (5.4) is the case where M = 2 and bk = 1/3 in
(5.5). It follows from (5.5) that the computation of y[n] involves the samples x[�] for
� = n, n− 1, n− 2, . . . , n−M (i.e., x[n], x[n− 1], x[n− 2], etc). Figure 5-4 illustrates
how the causal FIR filter uses x[n] and the pastM samples to compute the output. Since
the sum in (5.5) does not involve future samples of the input, the system is causal, and,
therefore, the output cannot start until the input becomes nonzero.8

A second general form of the FIR filter that reduces to (5.3) whenM = 2 and bk = 1/3
for k = 0, 1, 2 can be obtained from (5.5) by making the substitution � = n− k (or
equivalently, k = n− �) and adjusting the limits on the sum to obtain

y[n] =
n
∑

�=n−M
bn−� x[�] = bMx[n−M] + bM−1x[n−M + 1] + · · · + b0x[n] (5.6)

Equations (5.5) and (5.6) both show that the subscript index of the filter coefficient
sequence bk is reversed with respect to the indexing of the input sequence. In (5.6)
b0 multiplies the present value of the input x[n] while bM multiplies the input value
farthest in the past, x[n−M]. This form gives rise to the sliding window visualization of
Fig. 5-4, where each gray bar contains the filter coefficients listed in reverse order.

8Note that a noncausal system can be represented by altering (5.5) to include negative values of the
summation index k.
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Figure 5-4 also shows what happens when the input signal is finite length with a
beginning and end. In this case, the input is zero for � < 0 and for N ≤ � so it can be
nonzero only when 0 ≤ � ≤ N − 1. This possibly nonzero region is called the support
of the signal x[n]. When the input signal has finite support of length N , there is an
interval ofM samples at the beginning, where the computation involves fewer thanM+1
nonzero samples as the sliding window of the filter engages with the input, and another
interval of M samples at the end where the sliding window of the filter disengages from
the input sequence. Furthermore, Fig. 5-4 shows that when the filter runs off the input
signal, additional output values are created, so the output sequence can have a support
that is as much as M samples longer than the input support. Thus, the length of the
output sequence would be N +M samples, where N is the length of the input signal.
These general statements about the input and output of an FIR filter are illustrated by the
following example.

EXAMPLE 5-1 Pulse Input to 3-Point Running Average

Consider a 3-point running average system expressed in the sliding window form of (5.6)

y[n] =
n
∑

�=n−2

1
3x[�]

with input

x[n] =
{

1 0 ≤ n ≤ 10
0 otherwise

as plotted in Fig. 5-5(a). We refer to this x[n] as a “pulse input” because it is nonzero and
constant over a short interval of length 11. The shaded regions in Fig. 5-5(a) highlight

0 2 4 6 8 10 12 14 16 18
0

0.5

1

(a)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

Output of 3-Point Running-Average Filter

(b)

n D 0 n D 6

n D 14

Pulse Input Signal

Time Index .n/

Time Index for Sum .`/

2

2

4

4
Figure 5-5 Computing the output of 3-point
running-average filter. (a) Input signal x[n] is a
length-11 pulse. Shown in gray are three
positions of the length-3 averaging interval
which is the sliding window of this FIR filter.
(b) Corresponding output of 3-point running
averager with values at n = 0, 6, 13
highlighted (black dots).
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the three samples of x[�] involved in the computation of the output at n = 0, n = 6,
and n = 14. These specific cases illustrate how the causal sliding window interval of
length three scans across the input sequence moving sample-by-sample to produce the
output signal. Note the three highlighted samples of the output in Fig. 5-5(b) which
correspond to the three positions of the averaging interval in Fig. 5-5(a). Finally, note
that the output is zero when n < 0 and n > 12 because for these values of n, the
averaging interval includes only zero values of the input. Also note that the output for
n = 0, 1, 2 follows a straight line from 0 to 1 because the averaging interval includes
an additional unit sample as it moves to the right over the interval 0 ≤ n ≤ 2. A similar
taper occurs at the end of the pulse interval as the averaging interval includes fewer
nonzero samples as it moves to the right. The output is constant and equal to one in the
interval 2 ≤ n ≤ 10, where the averaging interval includes three samples of x[n] where
x[n] = 1.

Example 5-1 illustrates the previous assertion about the support of the input
and output signals: If x[�] is nonzero only in the interval 0 ≤ � ≤ N − 1, then
for a causal FIR filter having M + 1 coefficients {bk} for k = 0, 1, . . . ,M , the
corresponding output y[n] can be nonzero only when n ≥ 0 and n−M ≤ N − 1. Thus
the support of the output signal is the interval 0 ≤ n ≤ N +M − 1, and the length
of the output support is N +M samples. This is true regardless of the values of the
M + 1 coefficients. In Example 5-1, N = 11 and M = 2 so the output is nonzero
in the interval 0 ≤ n ≤ 12 and the length of the output sequence is 13 samples.
Problem P-5.6 considers the general case where the signal x[n] begins at n = N1 and
ends at n = N2.

EXAMPLE 5-2 FIR Filter Coefficients

In general, the FIR filter is completely defined once the set of filter coefficients {bk} is
known. For example, if the coefficients of a causal filter are

{bk} = {3, −1, 2, 1}
then we have a length-4 filter with M = 3, and (5.5) expands into a 4-point difference
equation:

y[n] =
3
∑

k=0

bkx[n− k] = 3x[n] − x[n− 1] + 2x[n− 2] + x[n− 3]

The parameter M is the order of the FIR filter. The number of filter coefficients is
also called the filter length (L). Usually, the length is one greater than the order, i.e.,
L = M+1. The terminology “order” will make more sense after we have introduced the
z-transform in Chapter 9.
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EXERCISE 5.2 Compute the output y[n] for the length-4 filter whose coefficients are {bk} =
{3, −1, 2, 1}. Use the input signal given in Fig. 5-2(a). Verify that the partial answer
tabulated here is correct, then fill in the missing values.

n n<0 0 1 2 3 4 5 6 7 8 n>8

x[n] 0 2 4 6 4 2 0 0 0 0 0

y[n] 0 6 10 18 ? ? ? 8 2 0 0

5-3.1 An Illustration of FIR Filtering

To illustrate some of the things that we have learned so far, and to show how FIR filters
can modify sequences that vary in interesting ways, consider the signal

x[n] =
{

(1.02)n + 1
2 cos(2πn/8+ π/4) 0 ≤ n ≤ 40

0 otherwise

This signal, which is the sum of two components, is shown as the orange dots in Fig. 5-6(a).
We often have real signals of this form; where one component is the signal of interest
which, in this case, is the slowly varying exponential component (1.02)n and the other
component is often considered noise or interference that degrades the observation of the
desired signal. In this case, we consider the sinusoidal component 1

2 cos(2πn/8+π/4) to
be an interfering signal that we wish to remove. The solid, exponentially growing curve
shown superimposed in each of the plots in Fig. 5-6 simply connects the sample values
of the desired signal (1.02)n by straight lines for reference in all three plots.

Now suppose that x[n] is the input to a causal 3-point running averager, that is,

y3[n] =
2
∑

k=0

1
3x[n− k] (5.7)

In this case, M = 2 and all the coefficients are equal to 1/3. The output of this filter is
shown in Fig. 5-6(b). We can notice several things about these plots.

(a) Observe that the input sequence x[n] is zero prior ton = 0, and from (5.7) it follows
that the output must be zero for n < 0.

(b) The output becomes nonzero at n = 0, and the shaded interval9 of length M = 2
samples at the beginning of the nonzero part of the output sequence is the interval
where the 3-point averager “runs onto” the input sequence. For 2 ≤ n ≤ 40, the
input samples within the 3-point averaging window are all nonzero.

9In Example 5-1, shading was used to highlight the moving averaging interval relative to the input
sequence. In Fig. 5-6(b) and (c) shading is used on the output sequence to highlight the fixed intervals at
the beginning and end of the output where the averaging interval engages with and disengages from the
finite-length input sequence.
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Figure 5-6 Illustration of running-average
filtering. (a) Input signal; (b) output of
3-point averager; (c) output of 7-point
averager.

(c) There is another shaded interval of lengthM = 2 samples at the end (after sample
40), where the filter window “runs off of” the input sequence.

(d) Observe that the size of the sinusoidal component in y3[n] has been reduced slightly,
but that the component is not eliminated by the filter. The solid line showing the
values of the exponential component has been shifted to the right by M/2 = 1
sample to account for the shift introduced by the causal filter.

The 3-point running averager has barely reduced the size of the fluctuations in the
input signal, so we have not recovered the desired component. Intuitively, we might think
that averaging over a longer interval might produce better results. The plot in Fig. 5-6(c)
shows the output of a 7-point running averager as defined by

y7[n] =
6
∑

k=0

1
7x[n− k] (5.8)

In this case, sinceM = 6 and all the coefficients are equal to 1/7, we observe the following:

(a) The shaded regions at the beginning and end of the output are nowM = 6 samples
long.
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(b) Now the size of the sinusoidal component is greatly reduced relative to the
input sinusoid, and the component of the output is very close to the exponential
component of the input (after a shift of M/2 = 3 samples).

What can we conclude from this example? First, it appears that FIR filtering can
modify signals in ways that may be useful. Second, the length of the averaging interval
seems to have a big effect on the resulting output. Third, the running-average filters appear
to introduce a shift equal toM/2 samples. All of these observations can be shown to apply
to more general FIR filters defined by (5.5). However, before we can fully appreciate the
details of this example, we must explore the properties of FIR filters in greater detail. We
will gain full appreciation of this example only upon the completion of Chapter 6.

EXERCISE 5.3 Use MATLAB to implement an 8-point averager and process the composite signal in
Fig. 5-6(a). The output should have no sinusoidal interference in the region where the
length-8 sliding window completely overlaps the input signal. Verify that this is true
in the MATLAB output and then explain why this is true by considering the effect of
the 8-point averager on the sinusoid alone.

5-4 The Unit Impulse Response and Convolution

In this section, we introduce three new ideas: the unit impulse sequence, the unit impulse
response, and the convolution sum. We show that the impulse response provides a
complete characterization of the FIR filter, because the convolution sum gives a formula
for computing the output from the input when the unit impulse response is known.

5-4.1 Unit Impulse Sequence

The unit impulse is perhaps the simplest sequence because it has only one nonzero value,
which occurs at n = 0. The mathematical notation is that of the Kronecker delta function

δ[n] =
{

1 n = 0

0 n �= 0
(5.9)

It is tabulated in the second row of this table:

n . . . −2 −1 0 1 2 3 4 5 6 . . .

δ[n] 0 0 0 1 0 0 0 0 0 0 0

δ[n− 2] 0 0 0 0 0 1 0 0 0 0 0

A shifted impulse such as δ[n− 2] is nonzero when its argument is zero, that is, when
n− 2 = 0, or equivalently n = 2. The third row of the previous table gives the values of
the shifted impulse δ[n− 2], and Fig. 5-7 shows a plot of that sequence.
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Figure 5-7 Shifted impulse
sequence, δ[n− 2].

The shifted impulse is a concept that is very useful in representing signals and systems.
For example, we can show that the formula

x[n] = 2δ[n] + 4δ[n− 1] + 6δ[n− 2] + 4δ[n− 3] + 2δ[n− 4] (5.10)

is equivalent to defining x[n] by tabulating its five nonzero values. To interpret (5.10),
we must observe that the appropriate definition of multiplying a sequence by a number
is to multiply each value of the sequence by that number; likewise, adding two or more
sequences is defined as adding the sequence values at corresponding positions (times).
The following table shows the individual sequences in (5.10) and their sum:

n . . . −2 −1 0 1 2 3 4 5 6 . . .

2δ[n] 0 0 0 2 0 0 0 0 0 0 0

4δ[n− 1] 0 0 0 0 4 0 0 0 0 0 0

6δ[n− 2] 0 0 0 0 0 6 0 0 0 0 0

4δ[n− 3] 0 0 0 0 0 0 4 0 0 0 0

2δ[n− 4] 0 0 0 0 0 0 0 2 0 0 0

x[n] 0 0 0 2 4 6 4 2 0 0 0

Equation (5.10) is a compact mathematical representation of the signal in Fig. 5-2(a).
It turns out that any sequence can be represented in this way. The equation

x[n] =
∑

k

x[k]δ[n− k]

= · · · + x[−1]δ[n+ 1] + x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2] + · · ·
(5.11)

is true if k ranges over all the nonzero values of the sequence x[n]. Equation (5.11) states
the obvious: The sequence is formed by using scaled shifted impulses to place samples
of the right size at the correct index positions.

5-4.2 Unit Impulse Response Sequence

The output from a filter is often called the response to the input, so when the input
is the unit impulse, δ[n], the output is called the unit impulse response.10 We reserve
the notation h[n] for this special output signal. To emphasize the impulse response in

10We usually shorten this to impulse response, with unit being understood.
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block diagrams of systems, we show the impulse sequence δ[n] at the input and the
impulse response h[n] at a corresponding position on the output side. This is illustrated
in the block diagram of Fig. 5-8. In other words, it is always true that when the input to
the FIR filter (5.5) is a unit impulse sequence, x[n] = δ[n], the output is the (unit) impulse
response h[n]. Substituting x[n] = δ[n] in (5.5) gives the output y[n] = h[n]:

h[n] =
M
∑

k=0

bk δ[n− k] =
{

bn n = 0, 1, 2, . . . ,M

0 otherwise

As we have observed, the sum evaluates to a single term for each value of n because
each δ[n− k] is nonzero only when n− k = 0, or n = k. In tabular form, the impulse
response is

n n < 0 0 1 2 3 . . . M M + 1 n > M

x[n] = δ[n] 0 1 0 0 0 0 0 0 0

y[n] = h[n] 0 b0 b1 b2 b3 . . . bM 0 0

In other words, the impulse response h[n] of the FIR filter is simply the sequence of
difference equation coefficients. Since h[n] = 0 for n < 0 and for n > M , the length of
the impulse response sequence h[n] is finite. This is why the system (5.5) is called a FIR
system. Figure 5-9 illustrates a plot of the impulse response for the case of the causal
3-point running-average filter. Since the impulse response is identical to the sequence of
difference equation coefficients, it follows that the FIR filter is completely defined by the
impulse response. In Section 5-7, we show that this characterization is also true for the
much broader class of linear time-invariant (LTI) systems.

EXERCISE 5.4 Determine and plot the impulse response of the FIR system

y[n] =
10
∑

k=0

(k − 3)x[n− k]

Discrete-Time
FIR FilterıŒ

xŒ yŒ Figure 5-8 Block diagram showing definition of the impulse
response. When the input signal is x[n] = δ[n], then by definition,
the output signal is called the impulse response, y[n] = h[n].
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Figure 5-9 Impulse response of a
3-point running-average filter, h[n].
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5-4.2.1 The Unit-Delay System

One important system is the operator that performs a delay or shift by an amount n0

y[n] = x[n− n0] (5.12)

When n0 = 1, the system is called a unit delay. The output of the unit delay is particularly
easy to visualize. In a plot, the values of x[n] are moved to the right by one time index.
For example, y[4] takes on the value of x[3], y[5] takes on the value of x[4], y[6] is x[5],
and so on.

The delay system is actually the simplest of FIR filters; it has only one nonzero
coefficient. For example, a system that produces a delay of 2 has filter coefficients {bk} =
{0, 0, 1}. The order of this FIR filter is M = 2, and its difference equation is

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2]
= (0)x[n] + (0)x[n− 1] + (1)x[n− 2] = x[n− 2]

Note: The length of the delay-by-2 filter can be either L = 3 or L = 1, depending on the
situation. In MATLAB a length-3 vector [0,0,1] is needed to implement the filter. On
the other hand, there is only one nonzero filter coefficient and, hence, only one term in
the difference equation.

Figure 5-10 shows the output of the delay-by-2 system for the input of Fig. 5-2(a)
on p. 170. The impulse response of the delay system is obtained by substituting δ[n] for
x[n] in (5.12). For the delay-by-2 case,

h[n] = δ[n− n0] = δ[n− 2] =
{

1 n = 2

0 n �= 2

A plot of this impulse response would be the shifted impulse shown previously in Fig. 5-7.

5-4.3 FIR Filters and Convolution

A general expression for the FIR filter’s output (5.5) can be derived in terms of the impulse
response. Since the filter coefficients in (5.5) are identical to the impulse response values,
we can replace bk in (5.5) by h[k] to obtain

y[n] =
M
∑

k=0

h[k] x[n− k] (5.13)
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Figure 5-10 Delayed finite-length
input signal, y[n] = x[n− 2] for
the input of Fig. 5-2(a).
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Now the relation between the input and the output of the FIR filter is expressed in terms
of the input and the impulse response. The sum in (5.13) is called a finite convolution
sum, and we say that the output is obtained by convolving the sequences h[n] and x[n].
This terminology emphasizes that convolution is an operation between two sequences.
This point of view is formalized by introducing some new notation for the “convolution
operator.” We use a star (∗) to represent the operation of evaluating (5.13) for −∞ <

n <∞ by writing

y[n] = h[n] ∗ x[n] (5.14)

which is read as “the output sequence y[n] is obtained by convolving the impulse response
h[n] with the input sequence x[n].”

Later, in Section 5-7, we will prove that convolution is the fundamental input–output
algorithm for a large class of very useful filters that includes FIR filters as a special
case. We will show that a general form of convolution that also applies to infinite-length
signals is

y[n] = h[n] ∗ x[n] =
∞
∑

k=−∞
h[k] x[n− k] (5.15)

This convolution sum (5.15) has infinite limits to accomodate impulse responses of infinite
length, but reduces to (5.13) when h[n] = 0 for n < 0 and n > M .

5-4.3.1 Computing the Output of a Convolution

In Section 5-2, the output of the running average FIR filter was constructed by tabulating
values. This method works for short signals, but lacks the generality needed in more
complicated problems—however, there is a simple interpretation of (5.13) that leads to
an algorithm for doing numerical convolution. First of all, we describe the algorithm which
can be implemented using the table in Fig. 5-11 that tracks the relative position of the
signal values. The example in Fig. 5-11 shows how to convolve x[n] = {2, 4, 6, 4, 2}
with h[n] = {3, −1, 2, 1}. The first step is to write out the signal values of x[n] and h[n]
on separate rows. Then we use a method similar to what we call11 “synthetic polynomial
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Figure 5-11 Numerical convolution of finite-
length signals via synthetic polynomial
multiplication.

11Our use of this term is motivated by analogy to the more well-known process of synthetic polynomial
division.
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multiplication” to form the output as the sum of shifted rows. Each shifted row is produced
by multiplying the x[n] row by one of the h[k] values and shifting the result to the right
so that it lines up with the h[k] position. The final answer is obtained by summing down
the columns.

The justification of this algorithm for evaluating the convolution sum (5.13) comes
from examining individual terms in the sum

y[n] = h[0]x[n] + h[1]x[n− 1] + h[2]x[n− 2] + · · ·
A term such as x[n− 2] is the x[n] signal with its values shifted two columns to the
right. The multiplier h[2] scales the shifted signal x[n− 2] to produce the contribution
h[2]x[n− 2], which is the highlighted row in the table. All the individual terms must be
added which is accomplished by summing down the columns.

EXERCISE 5.5 Use the “synthetic multiplication” convolution algorithm to compute the output y[n]
for the length-4 filter whose impulse response is h[n] = δ[n]−2δ[n−1]+2δ[n−2]
−δ[n− 3]. Use the input signal given in Fig. 5-2(a) on p. 170.

5-4.3.2 The Length of a Convolution

Using our new terminology, an FIR filter is a system whose output is the convolution of
the finite-length impulse response of the system with the input to the system. From this
view point, Example 5-1 can be reconsidered as the convolution of the 3-point impulse
response

h[n] = 1
3δ[n] + 1

3δ[n− 1] + 1
3δ[n− 2]

with a length-11 pulse signal. The filter’s output y[n] = h[n] ∗ x[n] shown in Fig. 5-5(b)
is nonzero for 0 ≤ n ≤ 12. This example illustrates the general principle that if x[n]
is nonzero only in the interval 0 ≤ n ≤ Lx − 1, then for a causal FIR filter having an
impulse response of length Lh = M + 1 samples, the corresponding output y[n], which
is the convolution ofh[n]with x[n], can be nonzero only whenn ≥ 0 and n−M ≤ Lx−1,
or equivalently, the support of y[n] is the interval 0 ≤ n ≤ Lx +M − 1. Thus the length
of y[n] is

Ly = Lx + Lh − 1, (5.16)

which is Ly = 11+ 3− 1 = 13 in Fig. 5-5(b).
Another example is the convolution in Fig. 5-11 which is the convolution of a

length-5 signal, x[n], with a length-4 signal, h[n]. The result y[n] starts at n = 0 and
ends at n = 7, so it is a length-8 signal. The same result is obtained by using the general
formula (5.16), because Ly = 5+ 4− 1 = 8 in Fig. 5-11.

When the signals start at n = 0, it is possible to use the synthetic multiplication
table to prove that the formula (5.16) is true. Since the length of x[n] is Lx , the last
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nonzero signal value is x[Lx −1]. Likewise, for h[n]where h[Lh−1] is the last nonzero
value. In the figure, the row for h[0]x[n] starts at n = 0 and ends at n = Lx − 1, while
the row for h[Lh − 1]x[n− (Lh − 1)] ends at n = (Lx − 1)+ (Lh − 1). After summing
down the columns, we see that the convolution result y[n] starts at n = 0 and ends at
n = Lh + Lx − 2, so the length of y[n] is Lx + Lh − 1. Problem P-5.6 considers the
general case where the signal x[n] begins at sample N1 and ends at sample N2.

5-4.3.3 Convolution in MATLAB

In MATLAB, FIR systems can be implemented by using the conv function.12 For
example, the following MATLAB statements

xn = sin(0.07*pi*(0:50));
hn = ones(11,1)/11;
yn = conv(hn, xn);

evaluate the convolution of the 11-point sequence hn with the 51-point sinusoidal
sequence xn. The particular choice for the MATLAB vector hn is actually the impulse
response of an 11-point running average system:

h[n] =
{

1/11 n = 0, 1, 2, . . . , 10

0 otherwise

That is, all 11 filter coefficients are the same and equal to 1/11.

EXERCISE 5.6 In MATLAB, we can compute only the convolution of finite-length signals. Determine
the length of the output sequence computed by the MATLAB convolution above.

EXERCISE 5.7 Use MATLAB to duplicate the plots of Fig. 5-5 (without the shading) of Example 5-1.

5-4.3.4 Polynomial Multiplication in MATLAB

We have already hinted that this operation called convolution is equivalent to
polynomial multiplication. In Section 9-4 on z-transforms, we will prove that this
correspondence is true. At this point, we note that in MATLAB there is no function
for multiplying polynomials. Instead, we must know that convolution is equivalent to
polynomial multiplication. Then we can represent the polynomials by sequences of their
coefficients and use the conv function to convolve them, thereby doing polynomial
multiplication.

12Note that MATLAB indexes all data vectors starting at 1, while our mathematical formulas index
sequences such as x[n] starting at n = 0. This difference must be accounted for in MATLAB programs.
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EXERCISE 5.8 Use MATLAB’s conv function to compute the following product of polynomials:

P(x)=(1+2x+3x2+5x4)(1−3x−x2+x3+3x4)

5-4.3.5 Filtering the Unit-Step Signal

In previous sections, we have described the FIR filtering of finite-length signals, but there
is no reason that the input signal cannot be infinite duration. An example is the unit-step
signal which is zero for n < 0 and “turns on” at n = 0

u[n] =
{

0 n < 0

1 n ≥ 0
(5.17)

Figure 5-12(a) shows a plot of u[n]. The symbol u[n] is reserved for the unit step, so
when we want the input signal to be the unit step we write x[n] = u[n], and the output
of an M th-order FIR filter would be

y[n] =
n
∑

�=n−M
bn−�u[�] (5.18)

if we use the form in (5.6). Since the FIR filter is causal and the unit step starts at n = 0,
the output is zero for n < 0. Determining the output for n ≥ 0 can be done by writing
out terms

0 2 4 6 8 10 12 14 16
0

1

(a)

0 2 4 6 8 10 12 14 16
0

1

2

3

Output of 3-Point Running-Sum Filter

(b)

n D 0 n D 5 n D 10

Unit-Step Input Signal

Time Index .n/

Time Index for Sum .`/

2

2

4

4

Figure 5-12 Filtering the unit-step signal with a
3-point running sum filter. (a) Input signal is a unit
step plotted versus �, the dummy time index of the
convolution sum (5.18). Shown in gray are three
positions of the length-3 summing interval which is
the sliding window of this FIR filter.
(b) Corresponding output of 3-point running sum
with values at n = 0, 5, 10 highlighted (black dots).
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y[0] = b0u[0] = b0

y[1] = b1u[0] + b0u[1] = b0 + b1

y[2] = b2u[0] + b1u[1] + b0u[2] =
2
∑

k=0

bk

...
...

y[M] =
M
∑

k=0

bk

y[n] =
M
∑

k=0

bk for n > M

Thus there are three cases for the output: (1) when n < 0, y[n] = 0; (2) when 0 ≤ n < M ,
y[n] is the sum of the first n+ 1 filter coefficients; and (3) whenM ≤ n, y[n] is the sum
of all M + 1 filter coefficients.

When the FIR filter is an L-point running sum all the filter coefficients are equal to
one, so the output signal for n ≥ 0 has the values

y[n] = {1, 2, 3, . . . , L− 1
︸ ︷︷ ︸

rising

, L, L,L, . . .
︸ ︷︷ ︸

flat plateau

}

Figure 5-12(b) shows the result for L = 3.

EXAMPLE 5-3 Pulse as the Difference of Two Shifted Unit Steps

Show that a length-5 pulse can be written as

x[n] = u[n− 100] − u[n− 105]

when the starting index of the pulse is at n = 100.

5-4.3.6 Commutative Property of Convolution

The convolution operator point of view introduced in (5.14) turns out to be a very useful
way to think about FIR filters and the more general class of LTI systems to be discussed in
Sections 5-6 and 5-7. When thought of as an operator, convolution has many interesting
properties that are useful in the analysis and design of linear systems. For example,
convolution is a commutative operation, that is,

y[n] = h[n] ∗ x[n] = x[n] ∗ h[n] (5.19)
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This property is suggested by the equivalence of (5.5) and (5.6) for the FIR filter. Since
the impulse response of an FIR filter is the sequence of filter coefficients, (5.6) can be
rewritten as a convolution

y[n] =
n
∑

k=n−M
x[k]h[n− k] = x[n] ∗ h[n] (5.20)

where h[n] is now flipped within the summation. When x[n] is finite and nonzero only
for 0 ≤ n ≤ Mx , the sum in (5.20) can be simplified further to

y[n] =
Mx
∑

k=0

x[k]h[n− k] = x[n] ∗ h[n] (5.21)

EXERCISE 5.9 Demonstrate that convolution is commutative by interchanging the x[n] andh[n] rows
in Fig. 5-11 and then carrying out the synthetic polynomial multiplication.

The commutative property of convolution is summarized as follows:

Convolution Is Commutative

y[n] = h[n] ∗ x[n] = x[n] ∗ h[n] (5.22)

In Section 5-6, it is shown that the operation of convolution is also associative and that
convolution distributes across addition. Thus, convolution for sequences displays the
same properties as multiplication of numbers.

EXERCISE 5.10 Demonstrate that convolution in MATLAB is commutative by adding to the program
in Section 5-4.3.3 the statement ync = conv(xn, hn);, running it again, and
comparing yn to ync.

5-4.3.7 MATLAB GUI for Convolution

Figure 5-13 shows a screenshot of a MATLAB GUI that can generate examples of
convolution with a variety of simple finite-length signals. The specific case shown in
the GUI is the convolution of a length-11 square pulse of amplitude 0.5 with an impulse
response defined byDEMO

Discrete Convolution

h[n] = δ[n] − δ[n− 1] (5.23)

When the length-2 impulse response values are used in the convolution equation (5.20)
with M = 1 and h[n] given by (5.23), we obtain
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Figure 5-13 Graphical user interface for dconvdemo which illustrates the sliding window nature of FIR filtering (i.e.,
convolution). The impulse response h[n] is flipped before sliding. The user can pick the input signal and the impulse
response, and then slide the filter over the input signal to observe how the output is constructed.

y[n] =
n
∑

k=n−1

x[k]h[n− k]

= x[n− 1]h[n− (n− 1)] + x[n]h[n− n]
= x[n− 1]h[1] + x[n]h[0]

Therefore, the result can be expressed as the difference equation

y[n] = x[n] − x[n− 1]
The impulse response is “flipped” because h[1] = −1 multiplies x[n−1]which is in the
past, whileh[0] = 1 multiplies x[0]which is the present value of the signal. Therefore, the
“flip h[n]” button has to be selected in order to visualize the sliding window interpretation
of FIR filtering. In Fig. 5-13, the pointer to the output index n can be moved back and
forth along the horizontal axis in order to animate the sliding window concept. In the
screen shot, the pointer is at n = 4 and the amplitude of the pulse is 1/2 at both n = 4
and n = 3, so the computation of y[4] is

y[4] =���� 1
21x[4] + ������− 1

2(−1)x[3] = 0
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In this GUI it is possible to flip either x[n] or h[n]. This is an expression of
the commutativity property of convolution as discussed in Section 5-4.3.6. For the
convolution x[n] ∗ h[n] in (5.20), h[n] is flipped in the GUI while for h[n] ∗ x[n] as
in (5.13), x[n] is flipped in the GUI. Other properties of convolution are discussed in
Section 5-7.2.

EXERCISE 5.11 Use the dconvdemo GUI to repeat the example of Fig. 5-13 with the input “flipped”
and thereby verify the commutativity of convolution. Pay close attention to how the
flipped input now slides past the impulse response which is fixed at indices 0 and 1.

5-5 Implementation of FIR Filters

Recall that the general definition of an FIR filter is

y[n] =
M
∑

k=0

bk x[n− k] (5.24)

In order to use (5.24) to compute the output of the FIR filter, we need the following: (1) a
means for multiplying delayed-input signal values by the filter coefficients; (2) a means
for adding the scaled sequence values; and (3) a means for obtaining delayed versions
of the input sequence. We find it useful to represent the operations of (5.24) as a block
diagram. Such representations lead to new insights about the properties of the system and
about alternative ways to implement the system.

5-5.1 Building Blocks

The three basic building-block systems we need are the multiplier, the adder, and the
unit-delay operator. These are depicted in Fig. 5-14.

5-5.1.1 Multiplier

The first elementary system performs multiplication of a signal by a constant (see
Fig. 5-14(a)). The output signal y[n] is given by the rule

y[n] = βx[n]

(c)(b)(a)

Unit
Delay

x1Œn

x2Œn

xŒ xŒyŒ yŒ yŒ

ˇ

Figure 5-14 Building blocks for making any
LTI discrete-time system: (a) multiplier,
y[n] = βx[n]; (b) adder, y[n] = x1[n] + x2[n];
and (c) unit-delay, y[n] = x[n− 1].
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where the coefficient β is a constant. This system can be the hardware multiplier unit
in a computer. For a DSP microprocessor, the speed of this multiplier is one of the
fundamental limits on the throughput of the digital filtering process. In applications such
as image convolution, billions of multiplications per second may have to be performed to
implement a good filter, so quite a bit of engineering work has been directed at designing
fast multipliers for DSP applications. Furthermore, since many filters require the same
sequence of multiplications over and over, pipelining the multiplier also results in a
dramatic speed up of the filtering process.

Notice, by the way, that the simple multiplier is also an FIR filter, with M = 0, and
b0 = β in (5.5). The impulse response of the multiplier system is simply h[n] = βδ[n].

5-5.1.2 Adder

The second elementary system in Fig. 5-14(b) performs the addition of two signals. This is
a different sort of system because it has two inputs and one output. In hardware, the adder
is simply the hardware adder unit in a computer. Since many DSP operations require a
multiplication followed immediately by an addition, it is common in DSP microprocessors
to build a special multiply-accumulate unit, often called a “MADD” or “MAC”
unit.13

Noticethattheadderisapointwisecombinationofthevaluesofthetwoinputsequences.
It is not an FIR filter, because it has more than one input—however, it is a crucial building
block of FIR filters. With many inputs, the adder could be drawn as a multi-input adder,
but, in digital hardware, the additions are typically done two inputs at a time.

5-5.1.3 Unit Delay

The third elementary system performs a delay by one unit of time. It is represented by
the block diagram in Fig. 5-14(c). In the case of discrete-time filters, the time dimension
is indexed by integers, so this delay is by one “count” of the system clock. The hardware
implementation of the unit delay is actually performed by acquiring a sample value,
storing it in memory for one clock cycle, and then releasing it to the output. The delays
by more than one time unit that are needed to implement (5.24) can be implemented (from
the block-diagram point of view) by cascading several unit delays in a row. Therefore,
an M-unit delay requires M memory cells configured as a shift register, which can be
implemented as a circular buffer in computer memory.

5-5.2 Block Diagrams

In order to create a graphical representation that is useful for hardware structures, we use
block-diagram notation, which defines the interconnection of the three basic building
blocks to make more complex structures.14 In such a diagram, the nodes (i.e., junction

13For example, the Texas Instruments C667x DSP can perform up to 320 billion 16-bit fixed-point and
160 billion 32-bit floating-point multiply-adds per second (ca. 2013).

14Such interconnections are called directed graphs.
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Unit
Delay

Unit
Delay

Unit
Delay

b0

b1

b2

b3

y[n]

x[n]

x[n−1]

x[n−2]

x[n−3]
Figure 5-15 Block-diagram
structure for the third-order FIR
filter.

points) are either summing nodes, splitting nodes, or input–output nodes. The connections
between nodes are either delay branches or multiplier branches. Figure 5-15 shows the
general block diagram for a third-order FIR digital filter (M = 3). This structure shows
why the FIR filter is also called a feed-forward difference equation, since all paths lead
forward from the input to the output. There are no closed-loop paths in the block diagram.
In Chapter 10, we discuss filters with feedback, where both input and past output values
are involved in the computation of the output.

Strictly speaking, the structure of Fig. 5-15 is a block-diagram representation derived
from grouping the filter computation as follows:

y[n] = (((b0x[n] + b1x[n− 1])+ b2x[n− 2])+ b3x[n− 3])
which is equivalent to (5.24) with M = 3. The input signal is delayed by the cascaded
unit delays, each delayed signal is multiplied by a filter coefficient, and the products
are accumulated to form the sum. Thus, it is easy to see that there is a one-to-one
correspondence between the block diagram and the difference equation (5.24) of the
FIR filter, because both are defined by the filter coefficients {bk}. A useful skill is to start
with one representation and then produce the other.

The structure in Fig. 5-15 displays a regularity that makes it simple to define longer
filters; the number of cascaded delay elements is increased to M , and then the filter
coefficients {bk} are substituted into the diagram. This standard structure is called the
direct form. Going from the block diagram back to the difference equation is just
as easy, as long as we stick to direct form. Here is a simple exercise to make the
correspondence.

EXERCISE 5.12 Determine the difference equation for the block diagram of Fig. 5-16.
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Unit
Delay

Unit
Delay

Unit
Delay 2

3

−1

−2

y[n]

x[n]

x[n−1]

x[n−2]

x[n−3] Figure 5-16 Third-order FIR filter
in direct form.

5-5.2.1 Other Block Diagrams

A block diagram of a discrete-time system is really just a pictorial representation of a
particular way to organize the computation of the output from the input. Many different
block diagrams implement the same FIR filter, in the sense that the external behavior
from input to output is the same, although the details of the internal computations may
vary. Direct form is just one possibility. Other block diagrams would represent a different
internal computation, or a different order of computation. In some cases, the internal
multipliers might use different coefficients. After we have studied the z-transform in
Chapters 9 and 10, we will have the tools to produce many different implementations.

When faced with an arbitrary block diagram, the following four-step procedure may
be used to derive the difference equation from the block diagram.

(a) Give a unique signal name to the input of each unit-delay block.

(b) Notice that the output of a unit delay can be written in terms of its input.

(c) At each summing node of the structure, write a signal equation. Use the signal
names introduced in steps 1 and 2.

(d) At this point, you have several equations involving x[n], y[n], and the internal
signal names. These can be reduced to one equation involving only x[n] and y[n]
by eliminating variables, as is done with simultaneous equations.

Let us try this procedure on the simple but useful example shown in Fig. 5-17. First of
all, we observe that the internal signal variables {v1[n], v2[n], v3[n]} have been defined
in Fig. 5-17 as the inputs to the three delays. Then the delay outputs are, from top to
bottom, v3[n− 1], v2[n− 1], and v1[n− 1]. We also notice that v3[n] is a scaled version



5-5 IMPLEMENTATION OF FIR FILTERS 193

Unit
Delay

Unit
Delay

Unit
Delay

b3

b2

b1

b0

 v3[n]

 v2[n]

 v1[n]

y[n]

x[n]

Figure 5-17 Transposed form
block diagram structure for the
third-order FIR filter.

of the input x[n]. In addition, we write the three equations at the output of the three
summing nodes:

y[n] = b0x[n] + v1[n− 1]
v1[n] = b1x[n] + v2[n− 1]
v2[n] = b2x[n] + v3[n− 1]
v3[n] = b3x[n]

Now we have four equations in five “unknowns.” To show that this set of equations is
equivalent to the direct form, we can eliminate the vi[n] by combining the equations in
a pairwise fashion.

v2[n] = b2x[n] + b3x[n− 1]
y[n] = b0x[n] + b1x[n− 1] + v2[n− 2]
= b0x[n] + b1x[n− 1] + b2x[n− 2] + b3x[n− 3]

Thus, we have derived the same difference equation as before, so this new structure must
be a different way of computing the same thing. In fact, it is widely used and is called
the transposed form15 for the FIR filter.

EXERCISE 5.13 For the filter in Fig. 5-16, draw the transposed form block diagram.

15This terminology is suggested by a comparison of Figs. 5-15 and 5-17. Transposition of a single-input-
single-output block diagram is explored in more detail in Section 10-4.3.
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5-5.2.2 Internal Hardware Details

A block diagram shows dependencies among the different signal variables. Therefore,
different block diagrams that implement the same input–output operation may have
dramatically different characteristics as far as their internal behavior goes. Several issues
come to mind:

(a) The order of computation is specified by the block diagram. In high-speed
applications where parallelism or pipelining must be exploited, dependencies in
the block diagram represent constraints on the computation.

(b) Partitioning a filter for an ASIC or FPGA implementation would be done (at the
highest level) in terms of the block diagram. Likewise, algorithms that must be
mapped onto special DSP architectures can be managed by using the block diagram
with special compilers that translate the block diagram into optimized code for the
DSP chip.

(c) Finite word-length effects are important if the filter is constructed using fixed-point
arithmetic in order to speed up computation and reduce power consumption. In such
cases, round-off error and overflow are important real-world problems that depend
on the internal order of computation.

Now that we know something about convolution and the implementation of FIR
filters, it is time to consider discrete-time systems in a more general way. In the next
section, we show that FIR filters are a special case of the general class of LTI systems.
Much of what we have learned about FIR filters will apply to this more general class of
systems.

5-6 Linear Time-Invariant (LTI) Systems

In this section, we discuss two general properties of systems. These properties, linearity
and time invariance, lead to greater insight and understanding of system behavior. To
facilitate the discussion of these general properties, it is useful to recall the block-diagram
representation of a general discrete-time system shown in Fig. 5-1 on p. 168. This block
diagram used y[n] = T {x[n]} to mean that the system processes x[n] to produce y[n].
Alternatively, we can say that x[n] goes through the system T and y[n] comes out, which
is captured by the notation

x[n] T�−→ y[n] (5.25)

In a specific case, the system is defined by giving a formula or algorithm for computing all
values of the output sequence from the values of the input sequence. A specific example
is the square-law system (S) defined by the rule:

x[n] S�−→ (x[n])2 (5.26)
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Another example is (5.12), which defines the general delay system—still another is (5.24),
which defines the general FIR filter and includes the delay system as a special case. These
FIR filters are both linear and time-invariant, while the square-law system is not linear,
but is time-invariant.

5-6.1 Time Invariance

A discrete-time system is said to be time-invariant if, when an input is delayed (shifted)
by n0, the output is delayed by the same amount. The condition must be true for any
signal x[n] and for any choice of n0, the integer that determines the amount of time
shift. A block-diagram view of the time-invariance property is given in Fig. 5-18. In the
upper branch, the input is shifted prior to the system; in the lower branch, the output
is shifted. Thus, a system can be tested for time-invariance by checking whether or not
w[n] = y[n− n0] in Fig. 5-18.

Consider the example of the square-law system (S) defined by (5.26). In the top
branch of Fig. 5-18, we use the delayed input as the input to the square-law system, so
we obtain

x[n] D�−→ x[n− n0] S�−→ (x[n− n0])2

where D denotes the delay operator. In the bottom branch, x[n] is the input to the square-
law system, so y[n] = (x[n])2 and

x[n] S�−→ (x[n])2 D�−→ (x[n− n0])2

Since the two outputs are the same, the square-law system is time-invariant.
A second simple example is the time-flip system (F ), defined by the mapping

x[n] F�−→ x[−n]
The flip system simply reverses the order of the input sequence about the origin. If we
delay the input and then reverse the order about the origin, we obtain

System S
under test

System S
under test

Delay
by n0

Delay
by n0

wŒ equals yŒn n0 when
the system is Time-Invariant

xŒn n0 wŒ

xŒ

xŒ

yŒ yŒn n0

Figure 5-18 Testing the
time-invariance property of system
S by checking the interchange of
operations.
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x[n] D�−→ x[n− n0] F�−→ x[(−n)− n0] = w[n]

However, if we first flip the input sequence and then delay it, we obtain a different
sequence from w[n]. Since y[n] = x[−n], the output after delaying y[n] is

x[n] F�−→ x[−n] D�−→ x[−(n− n0)] = x[−n+ n0]

Thus, the time-flip system is not time-invariant.

EXERCISE 5.14 Test the system defined by x[n] T�−→ nx[n] to discover that it is not a time-invariant
system.

5-6.2 Linearity

Linear systems have the property that if x1[n] �−→ y1[n] and x2[n] �−→ y2[n], then

x[n] = αx1[n] + βx2[n] �−→ y[n] = αy1[n] + βy2[n] (5.27)

where, with no name specified, �−→ denotes the system under test. This mathematical
condition must be true for any choice of the constantsα andβ, and for all signals x1[n] and
x2[n]. Equation (5.27) states that if the input consists of a sum of scaled sequences, then
the corresponding output is a sum of scaled outputs corresponding to the individual input
sequences. A block-diagram view of the linearity property is given in Fig. 5-19, which
shows that a system can be tested for the linearity property by checking whether or not
w[n] = y[n].

The linearity condition in (5.27) is also called the principle of superposition: If the
input is the sum (superposition) of two or more scaled sequences, we can find the output
due to each sequence acting alone and then add (superimpose) the separate scaled outputs.
Sometimes it is useful to separate (5.27) into two properties. Setting α = β = 1 we get
the additive property

x[n] = x1[n] + x2[n] �−→ y[n] = y1[n] + y2[n] (5.28a)

and using β = 0 there is only one input, which gives the scaling property

x[n] = αx1[n] �−→ y[n] = αy1[n] (5.28b)

Both (5.28a) and (5.28b) must be true in order for (5.27) to be true.
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Figure 5-19 Testing linearity of
system S by checking the
interchange of operations.

EXERCISE 5.15 Use (5.28b) to show that for linear systems, if x[n] = 0 for all n, then y[n] = 0 for
all n.

Reconsider the example of the square-law system defined by (5.26). The outputw[n]
in the upper part of Fig. 5-19 for this system is

w[n] = α(x1[n])2 + β(x2[n])2

while, in the lower part, the output is

y[n] = (αx1[n] + βx2[n])2
= α2(x1[n])2 + 2αβx1[n]x2[n] + β2(x2[n])2

Thus, w[n] �= y[n], and the square-law system has been shown not to be linear. Systems
that are not linear are called nonlinear systems.

EXERCISE 5.16 Show that the time-flip system y[n] = x[−n] is a linear system.

5-6.3 The FIR Case

FIR systems described by (5.5) satisfy both the linearity and time invariance conditions.A
mathematical proof of time-invariance can be constructed using the procedure in Fig. 5-18.
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If we define the signal v[n] to be x[n− n0], then the difference equation relating v[n] to
w[n] in the upper branch of Fig. 5-18 is

w[n] =
M
∑

k=0

bkv[n− k]

=
M
∑

k=0

bkx[(n− k)− n0]

=
M
∑

k=0

bkx[(n− n0)− k]

For comparison, we construct y[n− n0] in the lower branch

y[n] =
M
∑

k=0

bkx[n− k]

⇒ y[n− n0] =
M
∑

k=0

bkx[n− n0 − k]

These two expressions are identical, so the outputw[n] is equal to y[n−n0], and we have
proven that the FIR filter is time-invariant.

The linearity condition is simpler to prove. Substitute into the difference equation (5.5)
and collect terms with x1[n− k] and x2[n− k]:

y[n] =
M
∑

k=0

bkx[n− k]

=
M
∑

k=0

bk(αx1[n− k] + βx2[n− k])

= α
M
∑

k=0

bkx1[n− k] + β
M
∑

k=0

bkx2[n− k]

= αy1[n] + βy2[n]
The FIR filter obeys the principle of superposition; therefore, it is a linear system.

A system that satisfies both properties is called a linear time-invariant system, or
simply LTI. It should be emphasized that the LTI condition is a general condition. The
FIR filter is an example of an LTI system. Not all LTI systems are described by (5.5), but
all systems described by (5.5) are LTI systems.

5-7 Convolution and LTI Systems

Consider an LTI discrete-time system as depicted in the block diagram of Fig. 5-8. The
impulse response h[n] of the LTI system is simply the output when the input is the
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unit impulse sequence δ[n]. In this section, we will show that the impulse response
is a complete characterization for any LTI system, and that convolution is the general
formula that allows us to compute the output from the input for any LTI system. In our
initial discussion of convolution, we considered only finite-length input sequences and
FIR filters. Now, we give a completely general presentation that allows infinite-length
signals and impulse responses.

5-7.1 Derivation of the Convolution Sum

We begin by recalling from the discussion in Section 5-4 that any signal x[n] can be
represented as a sum of scaled and shifted impulse signals. Each nonzero sample of
the signal x[n] multiplies an impulse signal that is shifted to the index of that sample.
Specifically, we can write x[n] as follows:

x[n] =
∑

�

x[�]δ[n− �] = · · · + x[−2]δ[n+ 2] + x[−1]δ[n+ 1] (5.29)

+ x[0]δ[n] + x[1]δ[n− 1] + x[2]δ[n− 2] + · · ·
In the most general case, the range of summation in (5.29) could be from−∞ to+∞. In
(5.29) we have left the range indefinite, realizing that the sum would include all nonzero
samples of the input sequence.

A sum of scaled sequences such as (5.29) is commonly referred to as a “linear
combination” or superposition of scaled sequences. Thus, (5.29) is a representation of
the sequence x[n] as a linear combination of scaled, shifted impulses. Since LTI systems
respond in simple and predictable ways to sums of signals and to shifted signals, this
representation is particularly useful for our purpose of deriving a general formula for the
output of an LTI system.

Figure 5-8 reminds us that the output due to the input δ[n] is, by definition, the impulse
response h[n]. Time invariance gives us additional information, specifically, the response
due to δ[n−1] is h[n−1]. In fact, we can write a family of input–output pairs as follows:

δ[n] �−→ h[n]
⇒ δ[n− 1] �−→ h[n− 1]
⇒ δ[n− 2] �−→ h[n− 2]
⇒ δ[n− (−1)] �−→ h[n− (−1)] = h[n+ 1]
⇒ δ[n− �] �−→ h[n− �] for any integer �

Now we are in a position to use linearity, because (5.29) expresses a general input signal
as a linear combination of shifted impulse signals. We can write out a few of the cases:

x[0]δ[n] �−→ x[0]h[n]
x[1]δ[n− 1] �−→ x[1]h[n− 1]
x[2]δ[n− 2] �−→ x[2]h[n− 2]
x[�]δ[n− �] �−→ x[�]h[n− �] for any integer �
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Then we use superposition to put it all together as

x[n] =
∑

�

x[�]δ[n− �] �−→ y[n] =
∑

�

x[�]h[n− �] (5.30)

The derivation of (5.30) did not assume that either x[n] or h[n] was of finite duration,
so, in general, we may write the convolution sum with infinite limits as

The Convolution Sum Formula

y[n] = x[n] ∗ h[n] =
∞
∑

�=−∞
x[�]h[n− �] (5.31)

This expression represents the convolution operation in the most general sense, so
we have proved for discrete-time systems that all LTI systems can be represented by a
convolution sum. The infinite limits take care of all possibilities, including the special
cases where either or both of the sequences are finite in length.

5-7.2 Some Properties of LTI Systems

The properties of convolution are the properties of LTI systems. Here we examine some
properties of convolution that can be developed from well-known concepts in algebra.
As discussed in Section 5-4.3, convolution is a binary operation between two signals,
so it has an algebraic nature (like multiplication and addition). The convolution of two
sequences x1[n] and x2[n] is an operation that is denoted by ∗, that is,

y[n] = x1[n] ∗ x2[n] =
∞
∑

�=−∞
x1[�]x2[n− �] (5.32)

We say that the first sequence x1[n] is convolved with the second sequence x2[n] to
produce the result y[n]. In Section 5-4.3.6, we showed that convolution with a finite-
impulse response is a commutative operation, and this is true for infinite sequences as
well. We now show that in the general case of infinite-length sequences, the convolution
operator is commutative, has an identity element, is associative, and has a distributive
property, and then we will relate each of these to properties of LTI systems.

Commutative Property of Convolution An operator is commutative if order does not
matter; in this case, convolving x2[n] with x1[n]must give the same result as convolving
x1[n] with x2[n].

x2[n] ∗ x1[n] = x1[n] ∗ x2[n] (5.33)
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Justifying (5.33) involves a simple algebraic manipulation of the convolution sum, where
we make the change of variables k = n− � and sum on the new dummy variable k:

y[n] = x2[n] ∗ x1[n] (5.34a)

=
∞
∑

�=−∞
x2[�]x1[n− �] (5.34b)

=
−∞
∑

k=+∞
x2[n− k]x1[k] (Note: k = n− �) (5.34c)

=
∞
∑

k=−∞
x1[k]x2[n− k] = x1[n] ∗ x2[n] (5.34d)

On the third line (5.34c), the limits on the sum can be swapped without consequence,
because a set of numbers can be added in any order. When convolution represents an LTI
system, the commutative property (5.33) becomes

y[n] = x[n] ∗ h[n] = h[n] ∗ x[n] (5.35)

which means that the input signal is convolved with the impulse response, or vice versa.
As we have seen, the FIR filter can be written in two ways: the summation in (5.13) or
in (5.20). As pointed out in Exercise 5.9, both FIR summations are consistent with the
computational algorithm in Fig. 5-11 on p. 182, because either x[n] or h[n] could be
written on the first row, so x[n] and h[n] are interchangeable.

Identity Element of Convolution The unit impulse sequence δ[n] is the identity
element of the convolution operator, that is, a signal is unchanged after convolving with
an impulse, x[n] ∗ δ[n] = x[n]. Justification comes from considering the general case of
convolving with a shifted impulse.

Convolution with an Impulse

x[n] ∗ δ[n− n0] = x[n− n0]
(5.36)

To show this, recall that convolution is the representation of an LTI system, where we
convolve the input signal x[n] with the impulse response h[n], x[n] ∗ h[n]. The delay by
n0 system is LTI, and its impulse response is known to be h[n] = δ[n−n0], as previously
discussed in Section 5-4.2.1. Thus we can write the input–output behavior of the LTI
delay system in terms of a convolution as

y[n] = x[n− n0] = x[n] ∗h[n] = x[n] ∗ δ[n− n0]
This is a very useful result because (5.36) states that “to convolve any sequence x[n]

with an impulse located at n = n0, all we need to do is translate the origin of x[n] to n0.”
For example, if x[n] starts at n = 0, then x[n−n0] starts at n = n0. When n0 = 0, we get
the special case x[n] ∗ δ[n] = x[n] which can be stated succinctly as “δ[n] is the identity
element of convolution.”
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Associative Property of Convolution The associative property states that, when
convolving three signals,

(x1[n] ∗ x2[n]) ∗ x3[n] = x1[n] ∗ (x2[n] ∗ x3[n]) (5.37)

we can convolve any two of them and then convolve that result with the third signal.
Furthermore, the commutative property allows these convolutions to be performed in any
order. The justification of the associative property will be given when discussing cascade
systems in the next section.

Distributive Property of Convolution The distributive property states that convolution
distributes over addition

(x1[n] + x2[n]) ∗h[n] = x1[n] ∗h[n] + x2[n] ∗h[n] (5.38)

The convolution written in (5.38) with h[n] is, in fact, a restatement of the additive
property of superposition for an LTI system whose impulse response is h[n].

LAB
Sampling, Convolution,
and FIR Filtering

5-8 Cascaded LTI Systems

In a cascade connection of two systems, the output of the first system is the input to the
second system, and the overall output of the cascade system is taken to be the output of
the second system. Figure 5-20(a) shows two LTI systems (LTI 1 and LTI 2) in cascade.

LTI systems have the remarkable property that two LTI systems in cascade can be
implemented in either order. This property is a direct consequence of the commutative
property applied to the impulse responses of LTI systems. In order to show that the order
of cascaded LTI systems doesn’t matter, we first determine the impulse response of two
systems in cascade. In Fig. 5-20(a), the impulse input and the corresponding outputs are

Equivalent LTI

D h1Œn h2Œn

LTI 1

h1Œn

LTI 1

h1Œn

LTI 2

h2Œn

LTI 2

h2Œn

ıŒ

ıŒ

ıŒ h1Œn h2Œn

h2Œn h1Œn

h1Œn h2Œnh1Œn

h2Œn

wŒ

wŒ

xŒ

xŒ

xŒ

yŒ

yŒ

yŒ

(a)

(b)

(c)

Figure 5-20 Switching the order of
cascaded LTI systems. The single
LTI system in (c) is equivalent to the
cascade connection of the two
systems in (a), and also to the
cascade in (b).
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shown below the arrows. When the input to the first system is an impulse, the output of
LTI 1 is by definition its impulse response, h1[n], which then becomes the input to LTI 2.
Next, the output of LTI 2 is the convolution of LTI 2’s inputh1[n]with its impulse response
h2[n]. Therefore, the overall impulse response of Fig. 5-20(a) is h1[n] ∗ h2[n] according
to (5.31). In the same way, we can easily show that the overall impulse response of the
other cascade system in Fig. 5-20(b) is h2[n] ∗ h1[n]. Since convolution is commutative,
the two cascade systems have the same impulse response

h[n] = h1[n] ∗ h2[n] = h2[n] ∗ h1[n] (5.39)

which could be used as the impulse response h[n] of a single system that is equivalent
to either cascade. Stated another way, if the same signal x[n] is the input to each of the
three systems in Fig. 5-20, the output is the same for all three systems, because the overall
impulse response is the same.

A by-product of this analysis of cascade systems is a proof of the associative property
of convolution. For the cascade in Fig. 5-20(a) the output y[n] for an input x[n] is

y[n] = v[n] ∗ h2[n] = (x[n] ∗ h1[n]) ∗ h2[n]
and for the equivalent system in Fig. 5-20(c)

y[n] = x[n] ∗ h[n] = x[n] ∗ (h1[n] ∗ h2[n])
The equality of these two expressions is precisely the associative property in (5.37).

EXAMPLE 5-4 Impulse Response of Cascaded Systems

To illustrate the utility of the results that we have obtained for cascaded LTI systems, we
derive a single system that is equivalent to the cascade of two systems defined by

h1[n] =
{

1 0 ≤ n ≤ 3

0 otherwise
h2[n] =

{

1 1 ≤ n ≤ 3

0 otherwise

The equivalent system, as in Fig. 5-20(c), has an impulse response equal to h[n] =
h1[n] ∗ h2[n]. Therefore, to find the overall impulse response h[n] we must convolve
h1[n] with h2[n]. This can be done by using the synthetic polynomial multiplication
algorithm of Section 5-4.3.1. In this case, the computation is as follows:

n n < 0 0 1 2 3 4 5 6 n > 6

h1[n] 0 1 1 1 1 0 0 0 0

h2[n] 0 0 1 1 1

h1[0]h2[n] 0 0 0 0 0 0 0 0 0

h1[1]h2[n− 1] 0 0 1 1 1 1 0 0 0

h1[2]h2[n− 2] 0 0 0 1 1 1 1 0 0

h1[3]h2[n− 3] 0 0 0 0 1 1 1 1 0

h[n] 0 0 1 2 3 3 2 1 0
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The equivalent impulse response in the bottom row also defines the filter coefficients {bk},
and we can express h[n] as a sum of weighted shifted impulses

h[n] =
6
∑

k=0

bkδ[n− k]

where {bk} is the sequence { 0, 1, 2, 3, 3, 2, 1}. The system with this impulse response
h[n] can be implemented either by the single difference equation

y[n] =
6
∑

k=0

bkx[n− k] (5.40)

where {bk} is the above sequence, or by the pair of cascaded difference equations

v[n] =
3
∑

k=0

x[n− k]

y[n] =
3
∑

k=1

v[n− k]
(5.41)

Example 5-4 illustrates an important point. There is a difference between (5.40) and
(5.41) when doing computation. It can be seen that the cascade implementation in (5.41)
requires a total of only five additions to compute each value of the output sequence, while
(5.40) requires five additions and an additional four multiplications by coefficients that
are not equal to unity. On a larger scale (longer filters), such differences in the amount
and type of computation can be very important in practical applications of FIR filters.
Thus, the existence of alternative equivalent implementations of the same filter provides
flexibility in design choices.

EXERCISE 5.17 The two difference equations in (5.40) and (5.41) would be represented by two
distinctly different block diagrams of the type shown in Fig. 5-15. Construct the
detailed block diagrams of the direct form (5.40) and the cascade form (5.41) showing
all multiplications and additions. (Multiplications by 1 do not need to be explicitly
shown as multiply operations.)

5-9 Example of FIR Filtering

We conclude this chapter with an example of the use of FIR filtering on a real signal.
An example of sampled data that can be viewed as a signal is the Dow-Jones Industrial
Average (DJIA). The DJIA is a sequence of numbers obtained by averaging the closing
prices of a selected number of representative stocks. It has been computed since 1897,
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Filtered by Causal 51-Point Running Averager

Figure 5-21 DJIA weekly closings (December
1993 to October 2013) filtered by a 51-point
running-average FIR filter. Input (orange) and
output (black). The output samples are connected
to help distinguish them from the input samples.

and is used in many ways by investors and economists. The entire sequence dating back
to 1897 makes up a signal that has positive values and is exponentially growing over the
long term. In order to obtain an example where fine detail is visible, we have selected
the segment from the end of 1993 to 2013 of the weekly closing price average to be our
signal x[n].16 The raw DJIA signal is the one showing high variability in Fig. 5-21, where
each weekly value is plotted as a distinct point. The smoother curve in Fig. 5-21 is the
output of a 51-point causal running averager, that is,

y[n] = 1

51

50
∑

k=0

x[n− k] = h[n] ∗ x[n] (5.42)

where h[n] is the impulse response of the causal 51-point running averager.
Notice that, as we observed in Fig. 5-5 of Section 5-3.1, there are regions at the

beginning and end (50 samples each, in this case) where the filter is engaging and
disengaging the input signal. The left-hand region extends up to n = 50, which is the
smallest value of n such that n− k in (5.42) is never a negative index—specifically, for
n ≥ 50 no zero samples are included in the sum in (5.42). On the scale required to show the
input and output signals over the selected time interval, the output in this region appears
to rise at a constant rate. This is because the input signal varies only slightly around a
value of approximately 3800 over the interval 0 ≤ n ≤ 50, so the output of the running-
average filter increases approximately linearly as more and more samples of the input are
included in the 51 sample averaging interval. Similarly, the output tapers down to zero
when n goes past the last sample index in the input as fewer and fewer of the input samples
in the interval n− 50 to n are nonzero. The nonzero portion of the output is 50 points
longer than the input because the filter eventually gives zero output after the index n−50
goes past the end of the input.

Also notice that much of the fine-scale week-to-week variation has been removed
by the filter. Finally, notice that the output is shifted relative to the input. In

16The complete set of weekly sampled data for the period 1897–2014 would involve more than
6000 samples and would range in value from about 40 to above 17,000. A plot of the entire sequence
would not show the effects that we wish to illustrate.
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Chapter 6, we will develop techniques that will explain why the shift introduced by
this filter is exactly M/2 = 50/2 = 25 samples. Because the sampling period is 1
week, the 51-point averaging is over 51 weeks, and the shift corresponds to a delay of
25 weeks.17

In this example, it is informative to compare the input and output without the
25-sample shift, which can be done if we use the noncausal centralized running averager

ỹ[n] = 1

51

25
∑

k=−25

x[n− k] = x[n] ∗ h̃[n]

where h̃[n] is the impulse response of the centralized running averager. The output ỹ[n]
can be obtained by shifting (advancing) the output of the causal running averager y[n]
by 25 samples to the left. In terms of our previous discussion of cascaded FIR systems,
we could think of the centralized system as a cascade of the causal system with a system
whose impulse response is δ[n+ 25], because (5.36) says that convolution of y[n] with
an impulse shifts the origin of the sequence to the location of the impulse (in this case,
to n = −25).

ỹ[n] = y[n] ∗ δ[n+ 25]
= (x[n] ∗ h[n]) ∗ δ[n+ 25]
= x[n] ∗ (h[n] ∗ δ[n+ 25])
= x[n] ∗ h[n+ 25]

Thus, we find that the impulse response of the centralized running averager, h̃[n] =
h[n+ 25], is a shifted version of the impulse response of the causal running averager. By
shifting the impulse response, we remove the delay introduced by the causal system.

LAB
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EXERCISE 5.18 Determine the impulse response h[n] of the 51-point causal running averager and
determine the impulse response h̃[n] for the 51-point centralized running averager.

The cascade representation of the centralized running averager is depicted in Fig. 5-22.
One way to describe the system in Fig. 5-22 is to say that the second system compensates
for the delay of the first, that is, the centralized running averager is a zero-delay running-
average filter.

Figure 5-23 shows the input x[n] and output ỹ[n] for the delay-compensated running-
average filter. It now can be seen that corresponding features of the input and output are
well aligned.

17We use 51 weeks instead of 52, because a 52-week running average has a delay of 51/2 = 25.5. The
interpretation of a half-sample delay as a shift is not as straightforward as when the delay is an integer
number of samples.
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Figure 5-22 Cascade interpretation of
centralized running averager in terms of causal
running averager with delay compensation.
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Figure 5-23 Input (orange) and output (black)
for delay-compensated 51-point running
averager applied to DJIA weekly closings.

5-10 Summary and Links

This chapter introduced the concept of FIR filtering along with the general concepts
of convolution, the impulse response, and linear time-invariant systems. Among the
laboratory projects on the Companion Website, the one entitled Sampling, Convolution,
and FIR Filtering deals with discrete convolution and the effects of sampling. This lab
also requires the use of two MATLAB GUIs, one for sampling, con2dis from Chapter 4,
the other for discrete convolution, dconvdemo.

DEMO
Discrete Convolution

NOTE
Problems with Solutions

5-11 Problems

The problems in this section address the major concepts of FIR filtering, LTI systems
and convolution in this chapter. On the Companion Website there are many related
homework problems which can be used to review and practice. Most of them have detailed
solutions.

P-5.1 If the impulse response h[n] of an FIR filter is

h[n] = 7δ[n] + δ[n− 2] − 6δ[n− 5]
write the difference equation for the FIR filter.
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P-5.2 Evaluate the expression G =
13
∑

n=0

(4δ[n− 3] − 4δ[n− 8]) e−j( 2π
3 )n. Express the

numerical answer for G as a complex number in polar form.

P-5.3 The length-L running sum is defined as

y[n] = 1

L

L−1
∑

k=0

x[n− k]

When the input x[n] is the unit-step signal, determine the output signal as follows:

(a) Compute the numerical values of y[n] over the time interval −5 ≤ n ≤ 10,
assuming that L = 5.

(b) Make a sketch of the output over the time interval −5 ≤ n ≤ 10, assuming that
L = 5. Use MATLAB if necessary, but learn to do it by hand also.

(c) Finally, derive a general formula for y[n] that will apply for any length L and for
the range n ≥ 0.

P-5.4 An LTI system is described by the difference equation

y[n] = 2x[n] − 3x[n− 1] + 2x[n− 2]
(a) When the input to this system is

x[n] =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

0 n < 0

n+ 1 n = 0, 1, 2

5− n n = 3, 4

1 n ≥ 5

Compute the values of y[n], over the index range 0 ≤ n ≤ 10.

(b) For the previous part, plot both x[n] and y[n].
(c) Determine the response of this system to a unit impulse input, that is, find the output

y[n] = h[n] when the input is x[n] = δ[n]. Plot h[n] as a function of n.

P-5.5 An LTI system is described by the difference equation

y[n] = 4x[n] − 5x[n− 1] + 1.2x[n− 2]
(a) Draw the implementation of this system as a block diagram in direct form.

(b) Give the implementation as a block diagram in transposed direct form.
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P-5.6 Consider a system defined by

y[n] =
M
∑

k=0

bkx[n− k]

(a) Suppose that the input x[n] is nonzero only for 0 ≤ n ≤ N − 1. Show that y[n]
is nonzero at most over a finite interval of the form 0 ≤ n ≤ P − 1, which is the
support of y[n]. Determine P in terms of the filter order M and the input signal
length N .

(b) Suppose that the input x[n] is nonzero only for N1 ≤ n ≤ N2. What is the length
of x[n]? Show that y[n] is nonzero at most over a finite interval of the form N3 ≤
n ≤ N4, which is the support of y[n]. Determine N3 and N4 and also the length of
y[n] in terms of N1, N2, andM . Hint: Draw a sketch similar to Fig. 5-4 on p. 173.

P-5.7 The unit-step u[n] can be used to represent sequences that are zero for n < 0.

(a) Plot the sequence x[n] = (−0.5)nu[n] for −2 ≤ n ≤ 8.

(b) The L-point running sum is defined as

y[n] =
L−1
∑

k=0

x[n− k]

For the input sequence x[n] = (−0.5)nu[n], compute the values of y[n] over the
index range −2 ≤ n ≤ 8, assuming that L = 2.

(c) For the input sequence x[n] = anu[n], derive a general formula for the output of
the running sum y[n] that applies for any value a, for any length L, and for the
index range n ≥ −2. In doing so, you may have use for the formula:

N
∑

k=M
αk = αM − αN+1

1− α

P-5.8 The impulse response h[n] of an FIR filter is shown in Fig. P-5.8. Determine
the filter coefficients {bk} of the difference equation for the FIR filter. If an input x[n] =
{2, 1,−1} is applied to it, obtain the output.

0 1 2 3 4 5 6 7

3

7

13

9

5
……

123 n Figure P-5.8
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P-5.9 If the filter coefficients of an FIR system are {bk} = {−10, 10, 10} and the input
signal is

x[n] =
{

0 for n even

1 for n odd

determine the output signal y[n] for all n. Give your answer as either a plot or a
formula.

P-5.10 For each of the following systems, determine whether or not the system is
(1) linear, (2) time-invariant, and (3) causal:

(a) y[n] = x[n] cos(0.2πn)

(b) y[n] = x[n] − x[n− 1]
(c) y[n] = |x[n]|
(d) y[n] = Ax[n] + B, where A and B are nonzero constants.

P-5.11 Suppose that S is an LTI system whose exact form is unknown. It is tested by
running some inputs into the system, and then observing the output signals. Suppose that
the following input–output pairs are the result of the tests:

Input: x[n] Output: y[n]
δ[n] − δ[n− 1] δ[n] − δ[n− 1] + 2δ[n− 3]

cos(πn/2) 2 cos(πn/2− π/4)

(a) Make a plot of the signal:

y[n] = δ[n] − δ[n− 1] + 2δ[n− 3].

(b) Use linearity and time invariance to find the output of the system when the input is

x[n] = 7δ[n] − 7δ[n− 2]

P-5.12 An LTI system has impulse response

h[n] = 2δ[n] − 3δ[n− 1] + δ[n− 2] + 4δ[n− 5]

(a) Implement the above system in direct form and transposed direct form.

(b) If the difference equation was given instead, how would the implementations differ?
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P-5.13 For a particular LTI system, when the input is the unit step, x1[n] = u[n], the
corresponding output is

y1[n] = δ[n] + 2δ[n− 1] − δ[n− 2] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 n < 0

1 n = 0

2 n = 1

−1 n = 2

0 n ≥ 3

(a) Determine the output when the input to the LTI system is x2[n] = 3u[n]−6u[n−2].
Give your answer as a formula expressing y2[n] in terms of known sequences, or
give a list of values for −∞ < n <∞.

(b) It is possible to write the unit impulse as the difference of two unit steps. Determine
A and B so that the following is true:

δ[n] = Au[n] + Bu[n− 1]

(c) Use the result of part (b) to determine the impulse response h[n] of the system.

P-5.14 For the FIR filter y[n] = x[n]− 2x[n− 1], determine the output signal y[n] for
two similar cases.

(a) The infinite-length input signal x[n] = 2nu[n].
(b) The length-7 input signal x[n] = 2n(u[n] − u[n− 7]).
(c) For part (b), plot x[n] and y[n] for 0 ≤ n ≤ 10.

P-5.15 One form of the deconvolution process starts with the output signal and the
filter’s impulse response, from which it is sometimes possible to find the input signal.

(a) If the output of an FIR filter with h[n] = δ[n− 4] is
y[n] = 3u[n− 3] − 7u[n− 5]

determine the input signal, x[n].
(b) For the first-difference filter defined as

y[n] = x[n] − x[n− 1]
determine the output signal when the input is u[n− 3].

(c) If the output of a first-difference FIR filter is

y[n] = δ[n− 3] − δ[n− 6],
determine the input signal, x[n].
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(d) If the output of a 2-point running sum filter is

y[n] = −6δ[n] − 6δ[n− 3],

determine the input signal, x[n].
P-5.16 Another form of the deconvolution process starts with the output signal and the
input signal, from which it may be possible to find the impulse response.

(a) If the input signal is x[n] = u[n], find the FIR filter that produces the output signal
y[n] = u[n− 1].

(b) If the input signal is x[n] = u[n], find the FIR filter that produces the output signal
y[n] = δ[n].

(c) If the input signal is x[n] = ( 1
2 )
nu[n], find the FIR filter that produces the output

signal y[n] = δ[n− 1].
P-5.17 It is not always possible to solve the deconvolution process for a given input–
output pair. For example, show that there is no FIR filter that can process the input
x[n] = δ[n] + δ[n− 1] to give the output y[n] = δ[n].
P-5.18 Suppose that three systems are connected in cascade. In other words, the output
of S1 is the input to S2, and the output of S2 is the input to S3. The three systems are
specified by the following difference equations:

S1 : y1[n] = x1[n] + x1[n− 1]
S2 : y2[n] = x2[n] − 2x2[n− 2]
S3 : y3[n] = x3[n− 1] − x3[n− 2]

We wish to determine the equivalent system that is a single operation from the input x[n]
(into S1) to the output y[n], which is the output of S3.

(a) Determine the impulse response h[n] of the overall system, that is, find h[n] so
that y[n] = x[n] ∗ h[n].

(b) Write one difference equation that defines the overall system in terms of x[n] and
y[n] only.

(c) If a new system is defined as (S1 + S2) ∗ S3 determine its h[n]. Thus x1[n] =
x2[n] = x[n], x3[n] = y2[n] + y1[n], and y[n] = y3[n].
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P-5.19 Consider a system implemented by the following MATLAB program:

% xx.mat is a binary file containing the
% vector of input samples called "xx"
load xx
yy1 = conv(ones(1,4),xx);
yy2 = conv([1, -1, -1, 1],xx);
ww = yy1 + yy2;
yy = conv(ones(1,3),ww);

The overall system from input xx to output yy is an LTI system composed of three
LTI systems.

(a) Draw a block diagram of the system that is implemented by the program given
above. Be sure to indicate the impulse responses and difference equations of each
of the component systems.

(b) The overall system is an LTI system. What is its impulse response, and what is the
difference equation that is satisfied by the input x[n] and the output y[n]?
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6

Frequency
Response of FIR

Filters

Chapter 5 introduced the class of FIR discrete-time systems. We showed that the weighted
running average of a finite number of input sequence values defines a discrete-time system,
and that such systems are linear and time-invariant (LTI). We also showed that the impulse
response of an FIR system completely defines the system. In this chapter, we introduce
the concept of the frequency response of an LTI FIR filter and show that the frequency
response and impulse response are uniquely related.

It is remarkable that for LTI systems, when the input is a complex sinusoid, the
corresponding output signal is another complex sinusoid of exactly the same frequency,
but with different magnitude and phase. All LTI systems possess this sinusoid-in
gives sinusoid-out property. The frequency-response function, when plotted over all
frequencies, summarizes the response of an LTI system by giving the magnitude and phase
change experienced by all possible sinusoids. Furthermore, since LTI systems obey the

214
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principle of superposition, the frequency-response function is a complete characterization
of the behavior of the system for any input that can be represented as a sum of sinusoids.
Since, as we will show in Chapter 7, almost any discrete-time signal can be represented
by a superposition of sinusoids, the frequency response is sufficient therefore to represent
the system for almost any input signal.

6-1 Sinusoidal Response of FIR Systems

Linear time-invariant systems behave in a particularly simple way when the input is a
discrete-time complex exponential. To see this, consider an FIR system

y[n] =
M
∑

k=0

bkx[n− k] (6.1)

and assume that the input is a complex exponential signal1 with normalized radian
frequency ω̂, amplitude A, and phase φ

x[n] = Aejϕejω̂n −∞ < n <∞
For such inputs, the corresponding output is

y[n] =
M
∑

k=0

bk Ae
jϕejω̂(n−k)

=
(

M
∑

k=0

bke
−jω̂k

)

Aejϕejω̂n

= H(ω̂)Aejϕejω̂n −∞ < n <∞ (6.2)

where

H(ω̂) =
M
∑

k=0

bke
−jω̂k (6.3)

Because we have represented the frequency of the complex exponential signal as the
general symbol ω̂, we have obtained an expression (6.3) that is a function of ω̂. In other
words, (6.3) describes the response of the LTI system to a complex exponential signal of
any frequency ω̂. The quantity H(ω̂) defined by (6.3) is therefore called the frequency-
response function for the system. Generally, we shorten this to frequency response.

However, there is an issue of notation for the frequency response that is dictated by
consistency with the z-transform (to be introduced in Chapter 9). In (6.3) the righthand
side contains powers of the complex exponential ejω̂. This is true of many expressions

1Recall that this discrete-time signal could have been obtained by sampling the continuous-time signal
x(t) = Aejϕejωt . If x[n] = x(nTs), then ω and ω̂ are related by ω̂ = ωTs , where Ts is the sampling period.
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for the frequency response. Therefore, we elect to use the notation H(ejω̂) instead of
H(ω̂) to emphasize the ubiquity of ejω̂. The functionH(ejω̂) still depends on the variable
ω̂. Furthermore, since the impulse response sequence of an FIR filter is the same as the
sequence of filter coefficients, we can express the frequency response in terms of either
the filter coefficients bk or the impulse response h[k], that is,

Frequency Response of an FIR System

H(ejω̂) =
M
∑

k=0

bke
−jω̂k =

M
∑

k=0

h[k]e−jω̂k (6.4)

Several important points can be made about (6.2) and (6.4). First of all, the
precise interpretation of (6.2) is as follows: When the input is a discrete-time
complex exponential signal, the output of an LTI FIR filter is also a discrete-
time complex exponential signal with a different complex amplitude, but the
same frequency ω̂. The frequency response multiplies the complex exponential
input signal, thereby changing the complex amplitude. While it is tempting to
express this fact by the mathematical statement y[n] = H(ejω̂)x[n], it is strongly
recommended that this should never be done because it is too easy to forget that the
mathematical statement is true only for complex exponential signals of frequency ω̂.
The statement y[n] = H(ejω̂)x[n] is meaningless for any signal other than signals
of precisely the form x[n] = Aejϕejω̂n. It is very important to understand this
point.

A second important point is that the frequency response H(ejω̂) is complex-
valued so it can be expressed either as H(ejω̂) = |H(ejω̂)|ej∠H(ejω̂) or as H(ejω̂) =
�{H(ejω̂)} + j�{H(ejω̂)}. The magnitude and angle form of the frequency response
is the most convenient form, since the complex multiplication needed in (6.2) is most
conveniently accomplished in polar form. The effect of the LTI system on the magnitude
(A) and phase (ϕ) of the input complex exponential signal is determined completely by
the frequency response H(ejω̂). Specifically, if the input is x[n] = Aejϕejω̂n, then using
the polar form of H(ejω̂) gives the result

y[n] =
(

|H(ejω̂)|ej∠H(ejω̂)
)

Aejϕejω̂n

= (|H(ejω̂)| · A)ej(∠H(ejω̂)+ϕ)ejω̂n (6.5)

The magnitude of H(ejω̂) multiplies the signal amplitude (A) which changes the size of
the signal. Thus, |H(ejω̂)| is usually referred to as the gain of the system.2 The angle
∠H(ejω̂) simply adds to the phase (ϕ) of the input, thereby producing additional phase
shift in the complex exponential signal.

2The gain can be less than or greater than 1, even though the word suggests greater than.
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EXAMPLE 6-1 Formula for the Frequency Response

Consider an LTI system for which the difference equation coefficients are
{bk} = {1, 2, 1}. Substituting into (6.3) gives

H(ejω̂) = 1+ 2e−jω̂ + e−jω̂2

To obtain formulas for the magnitude and phase of the frequency response of this FIR
filter, we can manipulate the equation as follows:

H(ejω̂) = 1+ 2e−jω̂ + e−jω̂2

= e−jω̂
(

ejω̂ + 2+ e−jω̂
)

= e−jω̂ (2+ 2 cos ω̂
)

Since (2+ 2 cos ω̂) ≥ 0 for frequencies −π < ω̂ ≤ π , the magnitude is |H(ejω̂)| =
(2+ 2 cos ω̂) and the phase is ∠H(ejω̂) = −ω̂.

EXAMPLE 6-2 Complex Exponential Input

Consider the complex input x[n] = 2ejπ/4ej(π/3)n whose frequency is ω̂ = π/3. If this
signal is the input to the system of Example 6-1, then we must evaluate the frequency
response at the input frequency in order to use the frequency-domain method defined in
(6.5). The evaluation gives: |H(ejπ/3)| = 2+ 2 cos(π/3) = 3 and ∠H(ejπ/3) = −π/3.
Therefore, the output of the system for the given input is

y[n] = 3e−jπ/3 · 2ejπ/4ejπn/3
= (3 · 2) · e(jπ/4−jπ/3)ejπn/3
= 6e−jπ/12ejπn/3 = 6ejπ/4ejπ(n−1)/3

Thus, for this system and the given input x[n], the output is equal to the input multiplied
by 3, and the phase shift of −π/3 corresponds to a delay of one sample.

EXERCISE 6.1 When the sequence of coefficients is symmetrical (b0 = bM , b1 = bM−1, etc.), the
frequency response can be manipulated as in Example 6-1. Following the style of
that example, show that the frequency response of an FIR filter with coefficients
{bk} = {1, −2, 4, −2, 1} can be expressed as

H(ejω̂) = [4− 4 cos(ω̂)+ 2 cos(2ω̂)]e−j2ω̂
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6-2 Superposition and the Frequency Response

The principle of superposition makes it very easy to find the output of an LTI system if
the input is a sum of complex exponential signals. This is why the frequency response is
so important in the analysis and design of LTI systems. As an example, suppose that the
input to an LTI system is a cosine wave with a specific normalized frequency ω̂1 plus a
DC level,

x[n] = A0 + A1 cos(ω̂1n+ ϕ1)

If we represent the signal in terms of complex exponentials, the signal is composed of
three complex exponential signals, with frequencies ω̂ = 0, ω̂1, and −ω̂1, so

x[n] = A0e
j0n + A1

2
ejϕ1ejω̂1n + A1

2
e−jϕ1e−jω̂1n

By superposition, we can determine the output due to each term separately and then add
them to obtain the output y[n] corresponding to x[n]. Because the components of the
input signal are all complex exponential signals, it is easy to find their respective outputs
if we know the frequency response of the system; we just multiply each component by
H(ejω̂) evaluated at the corresponding frequency to obtain

y[n] = H(ej0)A0e
j0n +H(ejω̂1)

A1

2
ejϕ1ejω̂1n +H(e−jω̂1)

A1

2
e−jϕ1e−jω̂1n

Note that we have used the fact that a constant signal is a complex exponential with ω̂ = 0.
If we expressH(ejω̂1) asH(ejω̂1) = |H(ejω̂1)|ej∠H(ejω̂1 ), then the algebraic steps3 in (6.6)
show that y[n] can finally be expressed as a modified cosine signal plus a constant.

y[n] = H(ej0)A0e
j0n +H(ejω̂1)

A1

2
ejϕ1ejω̂1n +H ∗(ejω̂1)

A1

2
e−jϕ1e−jω̂1n

= H(ej0)A0 + |H(ejω̂1)|ej∠H(ejω̂1 ) A1

2
ejϕ1ejω̂1n

+ |H(ejω̂1)|e−j∠H(ejω̂1 ) A1

2
e−jϕ1e−jω̂1n

= H(ej0)A0 + |H(ejω̂1)|A1

2
ej (ω̂1n+ϕ1+∠H(ejω̂1 ))

+ |H(ejω̂1)|A1

2
e−j (ω̂1n+ϕ1+∠H(ejω̂1 ))

= H(ej0)A0 + |H(ejω̂1)|A1 cos
(

ω̂1n+ ϕ1 + ∠H(ejω̂1)
)

(6.6)

Notice that the magnitude and phase change of the cosine input signal are taken from the
positive frequency part of H(ejω̂), but also notice that it was crucial to express x[n] as a

3It is assumed thatH(ejω̂) has the conjugate-symmetry propertyH(e−jω̂) = H∗(ejω̂), which is always
true when the filter coefficients are real. (See Section 6-4.3.)
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sum of complex exponentials and then use the frequency response to find the output due
to each complex component separately.

EXAMPLE 6-3 Cosine Input

For the FIR filter with coefficients {bk} = {1, 2, 1}, find the output when the input is

x[n] = 3 cos
(π

3
n− π

2

)

The frequency response of the system was determined in Example 6-1 to be

H(ejω̂) = (2+ 2 cos ω̂)e−jω̂

Note that H(e−jω̂) = H ∗(ejω̂), so H(ejω̂) has conjugate symmetry. Solution of this
problem requires just one evaluation of H(ejω̂) at the frequency ω̂ = π/3:

H(ejπ/3) = e−jπ/3 (2+ 2 cos(π/3))

= e−jπ/3 (2+ 2( 1
2 )
) = 3e−jπ/3

Therefore, the magnitude is |H(ejπ/3)| = 3 and the phase is ∠H(ejπ/3) = −π/3, so the
output is

y[n] = (3)(3) cos
(π

3
n− π

3
− π

2

)

= 9 cos
(π

3
(n− 1)− π

2

)

Notice that the magnitude of the frequency response multiplies the amplitude of the cosine
signal, and the phase angle of the frequency response adds to the phase of the cosine
signal. This problem could also be studied and solved with the dltidemo MATLAB
GUI.

DEMO
DLTI Demo

LAB
Hearing Test via
Frequency Response

If the input signal consists of the sum of many complex exponential signals, the
frequency response can be applied to find the output due to each component separately,
and the results added to determine the total output. This is the principle of superposition
at work. If we can find a representation for a signal in terms of complex exponentials,
the frequency response gives a simple and highly intuitive means for determining what
an LTI system does to that input signal. In the general case, if the input to an LTI system
is a real signal and can be represented as

x[n] = X0 +
N
∑

k=1

(

Xk

2
ejω̂kn + X

∗
k

2
e−jω̂kn

)

= X0 +
N
∑

k=1

|Xk| cos(ω̂kn+ ∠Xk)
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then the corresponding output is y[n] in (6.7), ifH(e−jω̂) = H ∗(ejω̂), which is true when
the filter coefficients are real.

y[n] = H(ej0)X0 +
N
∑

k=1

(

H(ejω̂k )
Xk

2
ejω̂kn +H(e−jω̂k )X

∗
k

2
e−jω̂kn

)

= H(ej0)X0 +
N
∑

k=1

|H(ejω̂k )||Xk| cos
(

ω̂kn+ ∠Xk + ∠H(ejω̂k )
)

(6.7)

For y[n] in (6.7), each individual complex exponential component in x[n] has been
modified by the frequency response evaluated at the frequency of that component.

EXAMPLE 6-4 Three Sinusoidal Inputs

For the FIR filter with coefficients {bk} = {1, 2, 1}, find the output when the input is

x[n] = 4+ 3 cos
(π

3
n− π

2

)

+ 3 cos

(

7π

8
n

)

(6.8)

There are three freqeuencies, 0, π/3, and 7π/8, so the output has three sinusoids
at those same frequencies. The frequency response of the system was determined in
Example 6-1, and is the same as the frequency response in Example 6-3. The input in this
example differs from that of Example 6-3 by the addition of a constant (DC) term and
an additional cosine signal of frequency 7π/8. The solution by superposition therefore
requires that we evaluate H(ejω̂) at frequencies 0, π/3, and 7π/8, giving

H(ej0) = 4

H(ejπ/3) = 3e−jπ/3

H(ej7π/8) = 0.1522e−j7π/8

Therefore, the output is

y[n] = 4 · 4+ 3 · 3 cos
(π

3
n−π

3
− π

2

)

+ 0.1522 · 3 cos

(

7π

8
n− 7π

8

)

= 16+ 9 cos
(π

3
(n− 1)− π

2

)

+ 0.4567 cos

(

7π

8
(n− 1)

)

Notice that, in this case, the DC component is multiplied by 4, the component at frequency
ω̂ = π/3 is multiplied by 3, but the component at frequency ω̂ = 7π/8 is multiplied
by 0.1522. Because the frequency-response magnitude (gain) is so small at frequency
ω̂ = 7π/8, the component at this frequency is essentially filtered out of the input
signal.
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The examples of this section illustrate an approach to solving problems that is often
called the frequency-domain approach. As these examples show, we do not need to deal
with the time-domain description (i.e., the difference equation or impulse response) of
the system when the input is a complex exponential signal. We can work exclusively
with the frequency-domain description (i.e., the frequency response), if we think about
how the spectrum of the signal is modified by the system rather than considering what
happens to the individual samples of the input signal. We will have ample opportunity to
visit both the time domain and the frequency domain in the remainder of this chapter.

DEMO
Introduction to FIR
Filtering

6-3 Steady-State and Transient Response

In Section 6-1, we showed that if the input is

x[n] = Xejω̂n −∞ < n <∞ (6.9)

where X = Aejϕ , then the corresponding output of an LTI FIR system is

y[n] = H(ejω̂)Xejω̂n −∞ < n <∞ (6.10)

where

H(ejω̂) =
M
∑

k=0

bke
−jω̂k (6.11)

In (6.9), the condition that x[n] be a complex exponential signal existing over
−∞ < n <∞ is important. Without this condition, we cannot obtain the simple result
of (6.10). However, this condition appears to be somewhat impractical. In any practical
implementation, we surely would not have actual input signals that exist back to −∞!
Fortunately, we can relax the condition that the complex exponential input be defined
over the doubly infinite interval and still take advantage of the convenience of (6.10).
To see this, consider the following “suddenly applied” complex exponential signal that
starts at n = 0 and is nonzero only for 0 ≤ n:

x[n] = Xejω̂nu[n] =
{

Xejω̂n 0 ≤ n
0 n < 0

(6.12)

Note that multiplication by the unit-step signal is a convenient way to impose the suddenly
applied condition. The output of an LTI FIR system for this input is obtained by using
the definition of x[n] in (6.12) in the FIR difference equation:

y[n] =
M
∑

k=0

bk Xe
jω̂(n−k)u[n− k]

︸ ︷︷ ︸

x[n−k]
(6.13)
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By considering different values of n and the fact that u[n− k] = 0 for k > n, it follows
that the sum in (6.13) can be expressed as three cases

y[n] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 n < 0
( n
∑

k=0

bke
−jω̂k

)

Xejω̂n 0 ≤ n < M

( M
∑

k=0

bke
−jω̂k

)

Xejω̂n M ≤ n

(6.14)

That is, when the complex exponential signal is suddenly applied, the output can be
considered to be defined over three distinct regions. In the first region, n < 0, the input is
zero, and therefore the corresponding output is zero, too. The second region is a transition
region whose length is M samples (i.e., the order of the FIR system). In this region, the
complex multiplier of ejω̂n depends upon n. This region is often called the transient part
of the output. In the third region, M ≤ n, the output is identical to the output that would
be obtained if the input were defined over the doubly infinite interval, that is,

y[n] = H(ejω̂)Xejω̂n M ≤ n (6.15)

This part of the output is generally called the steady-state part. While we have specified
that the steady-state part exists for all n ≥ M , it should be clear that (6.15) holds only
as long as the input remains equal to Xejω̂n. If, at some time n > M , the input changes
frequency or the amplitude becomes zero, another transient region occurs.

EXAMPLE 6-5 Steady-State Output

A simple example illustrates the above discussion. Consider the system of Exercise 6.1,
whose filter coefficients are the sequence {bk} = {1,−2, 4,−2, 1}. The frequency
response of this system is

H(ejω̂) = [4− 4 cos(ω̂)+ 2 cos(2ω̂)]e−j2ω̂

If the input is the suddenly applied cosine signal

x[n] = cos(0.2πn− π)u[n]
we can represent it as the sum of two suddenly applied complex exponential signals.
Therefore, the frequency response can be used as discussed in Section 6-2 to determine
the corresponding steady-state output. Since H(ejω̂) at ω̂ = 0.2π is

H(ejω̂) = [4− 4 cos(0.2π)+ 2 cos(0.4π)]e−j2(0.2π) = 1.382e−j (0.2π)2

and M = 4, the steady-state output is

y[n] = 1.382 cos(0.2π(n− 2)− π) 4 ≤ n
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Figure 6-1 (a) Input x[n] = cos(0.2πn− π)u[n]
and (b) corresponding output y[n] for the FIR
filter with coefficients {1,−2, 4,−2, 1}. The
transient region is the shaded area in (b). (Note
the different vertical scales.)

The frequency response has allowed us to find a simple expression for the output
everywhere in the steady-state region. If we desire the values of the output in the transient
region, we could compute them using the difference equation for the system.

The input and output signals for this example are shown in Fig. 6-1. Since M = 4
for this system, the transient region is 0 ≤ n ≤ 3 (indicated by the shaded region), and
the steady-state region is n ≥ 4. Also note that, as predicted by the steady-state analysis
above, the signal in the steady-state region is simply a scaled (by 1.382) and shifted (by
two samples) version of the input.

6-4 Properties of the Frequency Response

The frequency response H(ejω̂) is a complex-valued function of the normalized fre-
quency variable ω̂. This function has interesting properties that often can be used to
simplify analysis.

6-4.1 Relation to Impulse Response and Difference Equation

H(ejω̂) can be calculated directly from the filter coefficients {bk}. If (6.1) is compared to
(6.4), we see that, given the difference equation, it is simple to write down an expression
forH(ejω̂) by noting that each term bkx[n− k] in (6.1) corresponds to a term bke

−jω̂k or
h[k]e−jω̂k in (6.4), and vice versa. Likewise,H(ejω̂) can be determined directly from the
impulse response since the impulse response of the FIR system consists of the sequence
of filter coefficients (i.e., h[k] = bk for k = 0, 1, . . . ,M). To emphasize this point, we
can write the correspondence

Time Domain ←→ Frequency Domain

h[n] =
M
∑

k=0

h[k]δ[n− k] ←→ H(ejω̂) =
M
∑

k=0

h[k]e−jω̂k
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The process of going from the FIR difference equation, or impulse response, to the
frequency response is straightforward. It is also simple to go from the frequency
response to the FIR difference equation or to the impulse response if we express
H(ejω̂) in terms of powers of e−jω̂. These points are illustrated by the following two
examples.

EXAMPLE 6-6 h[n] ←→ H(ejω̂)

Consider the FIR filter defined by the impulse response

h[n] = −δ[n] + 3δ[n− 1] − δ[n− 2]
The values ofh[n] are the filter coefficients {bk} = {−1, 3,−1}, so the difference equation
corresponding to this impulse response is

y[n] = −x[n] + 3x[n− 1] − x[n− 2]
Thus, the frequency response of this system is

H(ejω̂) = −1+ 3e−jω̂ − e−j2ω̂

EXAMPLE 6-7 Difference Equation from H(ejω̂)

Often the frequency response is given by an equation containing sines or cosines, for
example,

H(ejω̂) = e−jω̂ (3− 2 cos ω̂
)

To obtain the FIR difference equation, it is necessary to write H(ejω̂) using powers of
e−jω̂. In this example, we can use the inverse Euler formula cos ω̂ = 1

2 (e
jω̂ + e−jω̂), and

then obtain

H(ejω̂) = e−jω̂
[

3− 2

(

ejω̂ + e−jω̂
2

)]

= −1+ 3e−jω̂ − e−jω̂2

Now, it should be easy to see that H(ejω̂) corresponds to the following FIR difference
equation:

y[n] = −x[n] + 3x[n− 1] − x[n− 2]
The impulse response, likewise, is easy to determine directly from H(ejω̂), when
expressed in terms of powers of e−jω̂.

EXERCISE 6.2 Use the inverse Euler formula for sines to find the impulse response and difference
equation for H(ejω̂) = 2j sin(ω̂/2)e−jω̂/2.
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6-4.2 Periodicity of H(ejω̂)

An important property of a discrete-time LTI system is that its frequency responseH(ejω̂)
is always a periodic function with period 2π . This can be seen by considering a frequency
ω̂ + 2π where ω̂ is any frequency. Substituting into (6.3) gives

H(ej(ω̂+2π)) =
M
∑

k=0

bke
−j (ω̂+2π)k

=
M
∑

k=0

bke
−jω̂k e−j2πk

︸ ︷︷ ︸

=1

= H(ejω̂)

since e−j2πk = 1 when k is an integer. It is not surprising that H(ejω̂) should have this
property, since, as we have seen in Chapter 4, a change in the frequency of a discrete-time
complex exponential by 2π is not detectable, that is,

x[n] = Xej(ω̂+2π)n = Xejω̂n���� 1
ej2πn = Xejω̂n

In other words, two complex exponential signals with frequencies differing by 2π have
identical time samples, so there is no reason to expect a discrete-time system to behave
differently for two such frequencies. For this reason, it is always sufficient to specify the
frequency response only over an interval of one period, usually, −π < ω̂ ≤ π .

6-4.3 Conjugate Symmetry

The frequency response H(ejω̂) is complex valued, but usually has a symmetry in its
magnitude and phase that allows us to focus on just the interval 0 ≤ ω̂ ≤ π when plotting.
This is the property of conjugate symmetry

H(e−jω̂) = H ∗(ejω̂) (6.16)

which is true whenever the filter coefficients are real (i.e., bk = b∗k , or, equivalently h[k] =
h∗[k]). We can prove this property for the FIR case as follows:

H ∗(ejω̂) =
(

M
∑

k=0

bke
−jω̂k

)∗

=
M
∑

k=0

b∗ke
+jω̂k

=
M
∑

k=0

bke
−j (−ω̂)k = H(e−jω̂)
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The conjugate-symmetry property implies that the magnitude function is an even
function of ω̂ and the phase is an odd function, so we write

|H(e−jω̂)| = |H(ejω̂)|
∠H(e−jω̂) = −∠H(ejω̂)

Similarly, the real part is an even function of ω̂ and the imaginary part is an odd function, so

�{H(e−jω̂)} = �{H(ejω̂)}
�{H(e−jω̂)} = −�{H(ejω̂)}

As a result, plots of the frequency response are often shown only over half a period,
0 ≤ ω̂ ≤ π , because the negative frequency region can be constructed by symmetry.
These symmetries are illustrated by the plots in Section 6-5.

EXERCISE 6.3 Prove that the magnitude is an even function of ω̂ and the phase is an odd function of ω̂
for a conjugate-symmetric frequency response. Start by proving that the magnitude-
squared H(ejω̂)H ∗(ejω̂) is an even function.

6-5 Graphical Representation of the Frequency Response

Two important points should be emphasized about the frequency response of an LTI
system. First, since the frequency response usually varies with frequency, sinusoids of
different frequencies are treated differently by the system. Second, by appropriate choice
of the coefficients,bk, a wide variety of frequency response shapes can be realized. In order
to visualize the variation of the frequency response with frequency, it is useful to plot the
magnitude |H(ejω̂)| and phase ∠H(ejω̂) versus ω̂. Two plots are needed becauseH(ejω̂)
is complex valued. We will see that the plots tell us at a glance what the system does to
complex exponential signals and sinusoids of different frequencies. Several examples are
provided in this section to illustrate the value of plotting the frequency response.

DEMO
Introduction to FIR
Filtering

6-5.1 Delay System

The delay system is a simple FIR filter given by the difference equation

y[n] = x[n− n0]
where the integer n0 is the amount of delay. It has only one nonzero filter coefficient,
bn0 = 1, so its frequency response is

H(ejω̂) = e−jω̂n0 (6.17)
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22
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Figure 6-2 Phase response of pure delay (n0 = 2)
system, H(ejω̂) = e−j2ω̂.

For this system, the two plots of the frequency response are easy to visualize: The
magnitude response is one for all frequencies because |e−jω̂n0 | = 1. The phase plot is
a straight line with a slope equal to −n0, as in Fig. 6-2, because ∠H(ejω̂) = −n0ω̂.
As a result, we can associate the slope of a linear phase versus frequency with time
delay as a general rule in all filters. Since time delay shifts a signal plot horizontally but
does not change its shape, we often think of linear phase as an ideal phase response.

6-5.2 First-Difference System

As another simple example, consider the first-difference system

y[n] = x[n] − x[n− 1]
which forms its output by subtracting adjacent values of the input sequence. The frequency
response of this LTI system is

H(ejω̂) = 1− e−jω̂

SinceH(ejω̂) = 1−(cos(ω̂)−j sin(ω̂)) = (1−cos ω̂)+j sin ω̂, the magnitude and phase
can be written from the real and imaginary parts

|H(ejω̂)| = [(1− cos ω̂)2 + sin2 ω̂]1/2
= [2(1− cos ω̂)]1/2 = 2| sin(ω̂/2)|

∠H(ejω̂) = arctan

(

sin ω̂

1− cos ω̂

)

The magnitude and phase are plotted in Fig. 6-3 for −3π < ω̂ < 3π . These extended
plots allow us to verify thatH(ejω̂) is periodic with period 2π , and to see the conjugate-
symmetry properties discussed in Section 6-4.3. Normally, we would plot the frequency
response of a discrete-time system only for −π < ω̂ ≤ π , or, when there is conjugate
symmetry, 0 ≤ ω̂ ≤ π .

The utility of the magnitude and phase plots ofH(ejω̂) can be seen even for this simple
example. In Fig. 6-3 H(ej0) = 0, so we conclude that the system completely removes
components with ω̂ = 0 (i.e., DC). Furthermore, in the magnitude plot (Fig. 6-3(a)) we
can see that the system boosts components at higher frequencies (near ω̂ = π ) relative to
the lower frequencies. This sort of filter is called a highpass filter. This sort of behavior
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Figure 6-3 (a) Magnitude and (b) phase for
H(ejω̂) = 1− e−jω̂ over three periods showing
periodicity and conjugate symmetry of H(ejω̂).

of a filter in low frequency and high frequency bands is another typical way of thinking
about systems in the frequency domain.

The real and imaginary parts and the magnitude and phase can always be derived by
standard manipulations of complex numbers. However, there is a simpler approach for
getting the magnitude and phase when the sequence of coefficients is either symmetric
or antisymmetric about a central point. The following algebraic manipulation of H(ejω̂)
is possible because the {bk} coefficients satisfy the antisymmetry condition:

bk = −bM−k (6.18)

where M = 1 for the first-difference filter. The trick, which we used previously in
Example 6-1 on p. 217, is to factor out an exponential whose phase is half of the filter
order (M/2) times ω̂, and then use the inverse Euler formula to combine corresponding
positive- and negative-frequency complex exponentials. For the first-difference filter, we
exploit (6.18) to write

H(ejω̂) = 1− e−jω̂

= e−jω̂/2
(

ejω̂/2 − e−jω̂/2
)

= 2je−jω̂/2 sin(ω̂/2)

= 2 sin(ω̂/2)
︸ ︷︷ ︸

Magnitude?

exp(j (π/2− ω̂/2)
︸ ︷︷ ︸

Phase?

)

The form derived for H(ejω̂) is almost a valid polar form, but since sin(ω̂/2) is negative
for −π < ω̂ < 0, we must write the magnitude as |H(ejω̂)| = 2| sin(ω̂/2)|, and then
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absorb the negative sign4 into the phase response for −π < ω̂ < 0. Thus the correct
phase in polar form is

∠H(ejω̂) =
{

π/2− ω̂/2 0 < ω̂ ≤ π
−π + π/2− ω̂/2 −π ≤ ω̂ < 0

This formula for the phase is consistent with the phase plot in Fig. 6-3(b), which exhibits
several straight line segments, but has discontinuities at ω̂ = 0 and ω̂ = ±2π . The size
of these discontinuities is π , since they correspond to sign changes in H(ejω̂).

EXAMPLE 6-8 First-Difference Removes DC

Suppose that the input to a first-difference system isx[n] = 4+ 2 cos(0.3πn−π/4). Since
the output is related to the input by the difference equation y[n] = x[n] − x[n− 1], it
follows that

y[n] = 4+ 2 cos(0.3πn− π/4)− 4− 2 cos(0.3π(n− 1)− π/4)
= 2 cos(0.3πn− π/4)− 2 cos(0.3πn− 0.55π)

From this result, we see that the first-difference system removes the constant value and
leaves two cosine signals of the same frequency, which could be combined by phasor
addition. However, the solution using the frequency-response function is simpler. Since
the first-difference system has frequency response

H(ejω̂) = 2 sin(ω̂/2)ej (π/2−ω̂/2)

the output of this system for the given input can be obtained more quickly via

y[n] = 4H(ej0)+ 2|H(ej0.3π)| cos(0.3πn− π/4+ ∠H(ej0.3π))

In other words, we need to evaluate the frequency response only at ω̂ = 0 and ω̂ = 0.3π .
Since H(ej0) = 0 and

H(ej0.3π) = 2 sin(0.3π/2)ej (0.5π−0.15π)

= 0.908ej0.35π

the output is

y[n] = (0.908)(2) cos(0.3πn− π/4+ 0.35π)

= 1.816 cos(0.3πn+ 0.1π)

6-5.3 A Simple Lowpass Filter

In Examples 6-1, 6-3, and 6-4, the system had frequency response

H(ejω̂) = 1+ 2e−jω̂ + e−j2ω̂ = (2+ 2 cos ω̂)e−jω̂

4Remember that−1 = e±jπ , so we can add either+π or−π to the phase for−π < ω̂ < 0. In this case,
we add −π so that the resulting phase curve remains between −π and +π radians for all ω̂.
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Figure 6-4 Magnitude (a) and phase (b) of system
with frequency response H(ejω̂)= (2+ 2 cos ω̂)e−jω̂.
Gray dots indicate points where the frequency
response is evaluated to calculate the sinusoidal
response in Example 6-9.

Since the factor (2+ 2 cos ω̂) ≥ 0 for all ω̂, it follows that

|H(ejω̂)| = (2+ 2 cos ω̂)

and

∠H(ejω̂) = −ω̂

These functions are plotted in Fig. 6-4 for−π < ω̂ ≤ π . The phase response (Fig. 6-4(b))
is linear (a straight line) with a slope of −1, so we know that the system introduces a
delay of one sample. The magnitude response (Fig. 6-4(a)) shows that the system tends to
favor the low frequencies (close to ω̂ = 0) with high gain, while it tends to suppress high
frequencies (close to ω̂ = π ). In this case, there is a gradual decrease in gain from ω̂ = 0
to ω̂ = π , so that the midrange frequencies receive more gain than the high frequencies,
but less than the low frequencies. Filters with magnitude responses that suppress the high
frequencies of the input are called lowpass filters.

EXAMPLE 6-9 Lowpass Filter

If we repeat Example 6-4, we can show how the plot ofH(ejω̂) in Fig. 6-4 makes it easy
to find the filter’s output for sinusoidal inputs. In Example 6-4, the input was

x[n] = 4+ 3 cos
(π

3
n− π

2

)

+ 3 cos

(

7π

8
n

)

(6.19)
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as shown in Fig. 6-5(a), and the filter coefficients were {bk} = {1, 2, 1 }. In order to get
the output signal, we must evaluate H(ejω̂) at frequencies 0, π/3, and 7π/8 giving

H(ej0) = 4

H(ejπ/3) = 3e−jπ/3

H(ej7π/8) = 0.1522e−j7π/8

These values are the points indicated with gray dots on the graphs of Fig. 6-4. As in
Example 6-4, the output is

y[n] = 4 · 4+ 3 · 3 cos
(π

3
n− π

3
− π

2

)

+ 0.1522 · 3 cos

(

7π

8
n− 7π

8

)

= 16+ 9 cos
(π

3
(n− 1)− π

2

)

+ 0.4567 cos

(

7π

8
(n− 1)

)

We can see two features in the output signal y[n]. The sinusoid with ω̂ = 7π/8 has a
very small magnitude because the magnitude response around ω̂ = π is relatively small.
Also, the linear phase slope of −1 means that the filter introduces a time delay of one
sample which is evident in the second and third terms of y[n].

The output of the simple lowpass filter is the time waveform shown in Fig. 6-5(b).
Note that the DC component is indicated in both parts of the figure as a gray horizontal
line. The output appears to be the sum of a constant level of 16 plus a cosine that has
amplitude 9 and seems to be periodic with period 6. Closer inspection reveals that this is
not exactly true because there is a third output component at frequency ω̂ = 7π/8, which
is just barely visible in Fig. 6-5(b). Its size is about 5% of the size of the component with
frequency ω̂ = π/3.
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Figure 6-5 Input and output of a system with
frequency response H(ejω̂) = (2+ 2 cos ω̂)e−jω̂.
(a) Segment of the input signal x[n] given by (6.19),
and (b) the corresponding segment of the output.
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6-6 Cascaded LTI Systems

The cascade connection of systems allows us to treat small systems as building blocks
in two ways: several low-order systems can be cascaded to create a more complicated
high-order system, or a high-order system can be broken down into a few simple low-
order systems that are easier to design and analyze. In Section 5-8, we showed that if two
LTI systems are connected in cascade (output of the first is input to the second), then the
overall impulse response is the convolution of the two individual impulse responses. In
other words, the cascade system is equivalent to a single system whose impulse response
is the convolution of the two individual impulse responses. In this section, we show that
the frequency response of a cascade connection of two LTI systems is simply the product
of the individual frequency responses.

DEMO
Cascading FIR Filters

Figure 6-6(a) shows the cascade connection of two LTI systems. To find the frequency
response of the overall system (from input x[n] to output y1[n]), we let

x[n] = ejω̂n
where ω̂ is a fixed frequency. Then, the output of the first LTI system is

w1[n] = H1(e
jω̂)ejω̂n

The signal w1[n] is a complex exponential and the term H1(e
jω̂) is a complex constant

that determines its magnitude and phase. Thus, the output of the second system is

y1[n] = H2(e
jω̂)

(

H1(e
jω̂)ejω̂n

)

= H2(e
jω̂)H1(e

jω̂)ejω̂n

From a similar analysis of Fig. 6-6(b), it follows that

y2[n] = H1(e
jω̂)

(

H2(e
jω̂)ejω̂n

)

= H1(e
jω̂)H2(e

jω̂)ejω̂n

(c)

(b)
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Figure 6-6 Frequency response of three
equivalent cascaded LTI systems. All three
systems have the same frequency response so that
y[n] = y1[n] = y2[n] for the same input x[n].
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Since ω̂ is a fixed frequency, the multiplication of frequency response values,
H2(e

jω̂)H1(e
jω̂) or H1(e

jω̂)H2(e
jω̂), must give the same answer because complex

multiplication is commutative, and it follows that y1[n] = y2[n]. Thus, the two cascade
systems are equivalent for the same complex exponential input, and both of them are
equivalent to a single LTI system with frequency response

H(ejω̂) = H1(e
jω̂)H2(e

jω̂) (6.20)

The output y[n] of any system with frequency response H(ejω̂) given by (6.20) is the
same as either y1[n] or y2[n]. This is depicted in Fig. 6-6(c).

DEMO
Cascading FIR Filters

Recall from Section 5-8 on p. 202 that the overall impulse response ish1[n]∗h2[n]. We
can conclude therefore that “convolution in the time domain is equivalent to multiplication
in the frequency domain.” For cascaded systems, convolution of impulse responses
corresponds to multiplication of the frequency responses.

Convolution ←→ Multiplication

h1[n] ∗ h2[n] ←→H1(e
jω̂)H2(e

jω̂)
(6.21)

The correspondence shown in (6.21) is useful because it provides another way of
representing and manipulating LTI systems. This is illustrated by the following example.

EXAMPLE 6-10 Frequency Responses in Cascade

Suppose that the first system in a cascade of two FIR LTI systems is defined by the set of
coefficients {2, 1, 2} and the second system is defined by the coefficients {0, 3, 0,−3}.
Therefore, the frequency responses of the individual systems are

H1(e
jω̂) = 2+ e−jω̂ + 2e−jω̂2

and

H2(e
jω̂) = 3e−jω̂ − 3e−jω̂3

The overall frequency response is obtained by carrying out the multiplication of terms:

H(ejω̂) = H1(e
jω̂)H2(e

jω̂)

=
(

2+e−jω̂+2e−jω̂2
) (

3e−jω̂−3e−jω̂3
)

= 6e−jω̂+3e−jω̂2+(6− 6)e−jω̂3−3e−jω̂4−6e−jω̂5

Thus, the overall equivalent impulse response is

h[n] = 6δ[n− 1] + 3δ[n− 2] − 3δ[n− 4] − 6δ[n− 5]
and the filter coefficients of the equivalent FIR system are {0, 6, 3, 0,−3,−6}.
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This example illustrates that convolving two impulse responses is equivalent
to multiplying their frequency responses. For FIR systems, the frequency response
is a polynomial in the variable e−jω̂. Thus, multiplying two frequency responses
requires polynomial multiplication. This result provides the theoretical basis for the
“synthetic” polynomial multiplication algorithm discussed in Section 5-4.3.1 on p. 182.

EXERCISE 6.4 Suppose that two systems are cascaded. The first system is defined by the set
of coefficients {1, 2, 3, 4}, and the second system is defined by the coefficients
{−1, 1,−1}. Determine the frequency response and the impulse response of the
overall cascade system.

6-7 Running-Sum Filtering

Another common LTI system is defined by the difference equation

y[n] =
L−1
∑

k=0

x[n− k] (6.22)

= x[n] + x[n− 1] + · · · + x[n− L+ 1]

This system (6.22) is called an L-point running sum because the output at time n is
computed as the sum of x[n] and the L− 1 previous samples of the input. The system
defined by (6.22) can be implemented in MATLAB for L = 11 by the statements:

bb = ones(11,1);
yy = conv(bb, xx);

where xx is a vector containing the samples of the input. The vector bb contains the 11
filter coefficients, which are all equal to one in this case.

Using (6.4) on p. 216, the frequency response of the L-point running sum is

H(ejω̂) =
L−1
∑

k=0

e−jω̂k (6.23)

We can derive a simple formula for the magnitude and phase of the running sum by
making use of the formula for the sum of the first L terms of a geometric series,

L−1
∑

k=0

αk = 1− αL
1− α (for α 
= 1) (6.24)



6-7 RUNNING-SUM FILTERING 235

First of all, we identify e−jω̂ as α, and then do the following steps:

H(ejω̂) =
L−1
∑

k=0

e−jω̂k =
(

1− e−jω̂L
1− e−jω̂

)

=
(

e−jω̂L/2(ejω̂L/2 − e−jω̂L/2)
e−jω̂/2(ejω̂/2 − e−jω̂/2)

)

=
(

sin(ω̂L/2)

sin(ω̂/2)

)

e−jω̂(L−1)/2 (6.25)

The numerator and denominator in the second line are simplified by using the inverse
Euler formula for sines. We find it convenient to express (6.25) in the form

H(ejω̂) = DL(ω̂)e
−jω̂(L−1)/2 (6.26)

where

DL(ω̂) = sin(ω̂L/2)

sin(ω̂/2)
(6.27)

We refer to the function DL(ω̂) as a Dirichlet form,5 and the subscript L indicates that
it comes from an L-point running sum. In MATLAB, a scaled version of DL(ω̂) can be
evaluated with the diric function.

6-7.1 Plotting the Frequency Response

The frequency response of an 11-point running-sum filter is given by the equation

H(ejω̂) = D11(ω̂)e
−jω̂5 (6.28)

where, in this case, D11(ω̂) is the Dirichlet form defined by (6.27) with L = 11, that is,

D11(ω̂) = sin(11ω̂/2)

sin(ω̂/2)
(6.29)

As (6.28) makes clear, the frequency-response function,H(ejω̂), can be expressed as the
product of the real amplitude function D11(ω̂) and the complex exponential term e−j5ω̂.
The latter has a magnitude of 1 and a phase angle −5ω̂. Figure 6-7(a) shows a plot of
the amplitude function, D11(ω̂); the phase function −5ω̂ is shown in Fig. 6-7(b). We
use the terminology amplitude rather than magnitude, because D11(ω̂) can be negative.
We can make the plot of the magnitude |H(ejω̂)| by taking the absolute value ofD11(ω̂).

5We cannot use the terminology “Dirichlet function” because it has a different well-defined meaning in
mathematics. In Fourier analysis, DL(ω̂) is called the Dirichlet kernel.
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(a)

(b)
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Figure 6-7 (a) Amplitude and (b) phase functions
for frequency response of 11-point running-sum
filter. The amplitude is a Dirichlet form, but it is not
the magnitude since it has negative values.

Figure 6-7 shows only one period,−π < ω̂ ≤ π , but the frequency response is, of course,
periodic with period 2π , so the plots in Fig. 6-7 would simply repeat with that period.

In the case of the 11-point running sum, the phase factor is easy to plot, since it is a
straight line with slope of −5. The amplitude factor is somewhat more involved, but the
following properties of the function D11(ω̂) will aid in plotting:

(a) D11(ω̂) is an even function of ω̂ that is periodic with period6 2π .

(b) D11(ω̂) has a maximum value of 11 at ω̂ = 0. In general, the max value is L.

(c) D11(ω̂) has zeros at nonzero integer multiples of 2π/11. (In general, the zeros of
DL(ω̂) are at nonzero multiples of 2π/L.)

(d) D11(ω̂) decays as ω̂ increases; the local extrema between the zeros (called
sidelobes) decrease when going from ω̂ = 0 to ω̂ = ±π .

To show evenness, note that D11(ω̂) is the ratio of two sine functions. The ratio of
two odd functions (i.e., sines) is an even function, soD11(−ω̂) = D11(ω̂). SinceD11(ω̂)

is even and periodic with period 2π , we need only to consider its values in the interval
0 ≤ ω̂ ≤ π . All others can be inferred from symmetry and periodicity.

The behavior for ω̂ = 0 is of particular interest because, at this frequency, D11(ω̂)

appears to be indeterminate, because the numerator and denominator are zero and,

D11(0) = 0

0

By L’Hôpital’s rule, however, it is easily shown that lim
ω̂→0

D11(ω̂) = 11.

6The Dirichlet form DL(ω̂) has a period of 4π when L is even.
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The numerator is sin(11ω̂/2), which oscillates between +1 and −1 and is zero
whenever 11ω̂/2 = πk, where k is an integer; solving for ω̂,D11(ω̂) is zero at frequencies
ω̂k = 2πk/11 where k is a nonzero integer. The first zeros at ±2π/11 define the width
of the mainlobe.

The denominator of D11(ω̂) is sin(ω̂/2), which is zero at ω̂ = 0 and increases
monotonically to a maximum of one at ω̂ = π . Therefore,D11(ω̂) is large around ω̂ = 0,
where the denominator is small, and it oscillates with decreasing amplitude as ω̂ increases
to π .

Together, the amplitude and phase plots of Fig. 6-7 completely define the frequency
response of the 11-point running-sum filter. Normally, however, the frequency response
is represented in polar form

H(ejω̂) = |H(ejω̂)|ej∠H(ejω̂)

This would require plotting |H(ejω̂)| and ∠H(ejω̂) as functions of ω̂. It is easy to see from
(6.28) that |H(ejω̂)| = |D11(ω̂)|. Figure 6-8(a) shows a plot of |H(ejω̂)| = |D11(ω̂)| for
the 11-point running-sum filter, and we see that the negative sidelobes have been flipped
to be positive. On the other hand, the phase response, ∠H(ejω̂), in Fig. 6-8(b) is more
complicated to plot than the linear function shown in Fig. 6-7(b). There are two reasons
for this:

(a) The algebraic sign of D11(ω̂) must be represented in the phase function, since
|H(ω̂)| = |D11(ω̂)| discards the sign of D11(ω̂).

(b) The plot of the phase function is usually a plot of the principal value between −π
and +π .

The sign of D11(ω̂) can be incorporated into the phase by noting that D11(ω̂) =
|D11(ω̂)|e±jπ whenever D11(ω̂) < 0. The principal value of the angle of a complex
number is defined to be the angle between −π and +π radians. Using the result

ej (θ±2πk) = ejθe±j2πk = ejθ

where k is any integer, we see that we can add or subtract integer multiples of 2π from
the angle of a complex number without changing the value of the complex number. In
fact, we can always find a multiple of 2π , which, when added to or subtracted from θ ,
produces a result in the range −π < θ ≤ +π .

This is called reducing θ modulo 2π . The principal value is generally what is
computed when an inverse-tangent function is evaluated on a scientific calculator, in
MATLAB, or in other computer languages. In Fig. 6-7(b), we were able to plot angle
values outside the principal value range simply because we had an equation for the
phase angle.
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Figure 6-8 (a) Magnitude and (b) phase functions
for frequency response of the 11-point running-sum
filter. Magnitude is equal to the absolute value of the
amplitude in Fig. 6-7(a). Phase has jumps of π
whenever the magnitude is zero.

A plot like Figure 6-8 could be produced using the following MATLAB code:

omega = -pi:(pi/500):pi;
bb = ones(1,11)/11;
HH = freqz(bb,1,omega);
subplot(2,1,1), plot(omega,abs(HH))
subplot(2,1,2), plot(omega,angle(HH))

The MATLAB function angle uses the 4-quadrant arctangent function to return the
principal value of the angle determined by the real and imaginary parts of the elements
of the vector HH.

In Fig. 6-8, the phase curve is seen to have discontinuities that occur at the zeros of
D11(ω̂). These discontinuities arise from the multiples ofπ radians added to the phase due
to the negative sign of D11(ω̂) in the intervals 2π/11 < |ω̂| < 4π/11, 6π/11 < |ω̂| <
8π/11, and 10π/11 < |ω̂| < π , as well as multiples of 2π that are added implicitly in the
computation of the principal value. The equation for the phase curve plotted in Fig. 6-8 is
dominated by the linear term (−5ω̂), but has the following special cases for frequencies
0 ≤ ω̂ ≤ π :

∠H(ejω̂) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

−5ω̂ 0 ≤ ω̂< 2π/11

−5ω̂ + π 2π/11 <ω̂< 4π/11

−5ω̂ + 2π 4π/11 <ω̂< 6π/11

−5ω̂ + π + 2π 6π/11 <ω̂< 8π/11

−5ω̂ + 4π 8π/11 <ω̂< 10π/11

−5ω̂ + π + 4π 10π/11 <ω̂≤ π
The values for negative frequency, −π < ω̂ < 0, can be filled in using the fact that the
phase is an odd function (i.e., ∠H(e−jω̂) = −∠H(ejω̂)).
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EXERCISE 6.5 Test yourself to see whether you understand the principal value of ∠H(ejω̂) by
plotting (the principal value of) the phase of H(ejω̂) = e−j4ω̂ for −π < ω̂ ≤ π .

6-7.2 Cascade of Magnitude and Phase

It can be seen from (6.25) that H(ejω̂) is the product of two functions, H(ejω̂) =
H2(e

jω̂)H1(e
jω̂), where

H1(e
jω̂) = e−jω̂(L−1)/2 (6.30)

and

H2(e
jω̂) = DL(ω̂) = sin(ω̂L/2)

sin(ω̂/2)
(6.31)

which is the Dirichlet form defined earlier. The component H1(e
jω̂) contributes only to

the phase of H(ejω̂), and this phase contribution is a linear function of ω̂. Earlier, we
saw that a linear phase such as ∠H1(e

jω̂) = −ω̂(L− 1)/2 corresponds to a time delay
of (L− 1)/2 samples. For L = 11 the linear-phase slope of−(L− 1)/2 = −5 is clearly
in evidence in Fig. 6-7(b). The frequency response of the second system H2(e

jω̂) is real.
It contributes to the magnitude ofH(ejω̂), and when it is negative, it also contributes±π
to the phase of H(ejω̂) causing the discontinuities at multiples of 2π/11 in Fig. 6-8(b).

The product representation suggests the block diagram of Fig. 6-9, which shows
that the running sum can be viewed as a cascade combination of a delay followed by
a “lowpass filter” that accentuates low frequencies relative to high frequencies. This
decomposition is useful for thinking about how the system affects the input. On the other
hand, an implementation that conforms to the block diagram of Fig. 6-9 consists of a
causal delay system followed by a noncausal filter H2(e

jω̂) = DL(ω̂). Strictly speaking,
we have not treated the implementation of noncausal filters in this chapter. Therefore,
the overall causal moving average system would still be implemented by the difference
equation (6.22) on p. 234.

Finally, there are issues with the implementation of the causal delay system in Fig. 6-9
as well. When (L− 1)/2 is a integer, w[n] = x[n− (L− 1)/2] is a delay of the input
samples. The case when (L−1)/2 is not an integer requires special interpretation, which
will be provided in Section 6-8.2.

H1.ej O!/ D e j O!.L 1/=2 H2.ej O!/ D sin. O!L=2/

sin. O!=2/

Delay = 1
2
.L 1/ Dirichlet

wŒxŒ yŒ
Figure 6-9 Representation of L-point running sum
as the cascade of a delay and a real frequency
response.
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Running L-pt. Sum

G1.ej O!/

Multiply by 1=L

G2.ej O!/

wŒxŒ yŒ
Figure 6-10 Representation of L-point
running-average filter as the cascade of a running
sum and a multiplier.

6-7.3 Frequency Response of Running Averager

The running sum and running-average filters are nearly the same because the running
averager involves adding up L consecutive signal samples and dividing by L.

y[n] = 1
L
(x[n] + x[n− 1] + · · · + x[n− L+ 1])
︸ ︷︷ ︸

Running Sum

(6.32)

In hardware the divide-by-L operation would be done with a multiplier, so the running
averager can be expressed as the cascade of two LTI systems as shown in Fig. 6-10.
From this cascade representation, it is easy to write the frequency response of the L-pt.
averager as

G2(e
jω̂)G1(e

jω̂) = 1
L
DL(ω̂)e

−jω̂(L−1)/2 (6.33)

6-7.4 Experiment: Smoothing an Image

As a simple experiment to show the filtering effect of the running-average system,
consider the image in Fig. 6-11. The image is a two-dimensional discrete signal that
can be represented as a two-dimensional array of samples xi[m, n]. In an image, each
sample value is called a pixel, which is shorthand for picture element. A single horizontal
scan line (at m = 40) was extracted from the image yielding the one-dimensional signal
x[n] = xi[40, n], plotted in Fig. 6-12. The position in the image from which x[n] was
extracted is shown by the orange line in the image. The values in the image signal are all
positive integers in the range 0 ≤ xi[m, n] ≤ 255. These numbers can be represented by
8-bit binary numbers.7 If you compare the one-dimensional plot to the gray levels in the
region around the line, you can see that dark regions in the image have large values (near
255), and bright regions have low values (near zero). This is actually a “negative” image,
but that is appropriate since it is a scan of black ink written on a white background.

An 11-point running averager was applied to x[n], and the input and output were
plotted on the same graph (Fig. 6-13(a)). Notice that the output y[n] appears to be a
smoother version of x[n] with a slight shift to the right. The smoothness is a result of
the lowpass Dirichlet filter that attenuates the higher frequencies in the signal, which
correspond to the edges of the handwritten characters in the image. The shift is the
5-sample delay that we expect for an 11-point running averager. To verify the effect of
this delay, Fig. 6-13(b) shows a plot of w[n] = x[n− 5] and y[n]. Now we see that the
output appears to be aligned perfectly with the input.

7We often say that the total dynamic range of such image values is 8 bits.
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Figure 6-11 “Homework” image
with row 40 indicated by the orange
line.

0  50 100 150 200 250 300 350
0

128

256
Row #40 of the Homework Image

Column Index .n/

Figure 6-12 Signal values x[n] along row 40
in the “homework” image.

The 11-point running averager is applied over all the rows of the image to get a visual
assessment of the lowpass filtering operation.8 The result is shown in Fig. 6-14, where it
is obvious that the lowpass filter has blurred the image only in the horizontal dimension.
There is no blurring in the vertical dimension as can be verified by examining the equals
signs in Fig. 6-14. As we have seen, the filter attenuates the high-frequency components
of the image. Thus, we can conclude that sharp edges in an image must be associated
with high frequencies.

As another example of the effect of filtering, the “homework” image signal was
corrupted by adding a cosine signal plus a constant to each row of the image. Along one
row of the image the signal is now:

x1[n] = x[n] + 128 cos(2πn/11)+ 128

The cosine is the corrupting interference signal, while the constant (DC value) of 128 is
needed to keep the image values positive. For line 40 of the image, this corrupted signal
x1[n] was filtered with the 11-point running averager. The delayed input x1[n− 5] and
the corresponding output are shown in Fig. 6-15. By comparing Figs. 6-13(b) and 6-15,
it is clear that the output is the same9 for x[n] and x1[n] except for the offset of 128. The

8In MATLAB, the function filter2( ) does this two-dimensional filtering without using for loops.
9A careful comparison reveals that there is a small difference over the transient region 0 ≤ n ≤ 9.
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Figure 6-13 (a) Output y[n] of 11-point
running averager (solid orange line) and input
(thin gray line). (b) Output of 11-point running
averager (orange line) and input delayed by 5
samples (thin gray line).
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Figure 6-14 Result of filtering the rows of the
“homework” image with an 11-point running
averager. Note that the blurring is only in the
horizontal dimension.

reason is clear: ω̂ = 2π/11 is one of the frequencies that is completely removed by the
averaging filter, becauseH(ej2π/11) = 0. Since the system is LTI and obeys superposition,
the output due to x1[n] must be the same as the output due to x[n] alone. If the cosine is
added to each row of an image, it appears visible as vertical stripes (Fig. 6-16(a)). When
each row is processed with an 11-point running-average filter, the cosine is removed, but
the image will still be blurred horizontally (Fig. 6-16(b)).
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Figure 6-15 Output of an 11-point running averager
with 128 cos(2πn/11) added to the image scan line.
The solid orange line is the output; the thin gray line
is the input delayed by five samples. Note that the
vertical scale is twice that of Fig. 6-13(b).
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Figure 6-16 (a) “Homework plus cosine” input
image. The periodic nature of the cosine across each
row causes a vertical striping. (b) After filtering the
rows of the “homework plus cosine” image with an
11-point running averager, the processed image is
blurred, but has no traces of the cosine stripes. The
filter transient on the left edge was removed ,
reducing the horizontal width by ten pixels. (Both
input and output were rescaled for 8-bit image
display.)
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6-8 Filtering Sampled Continuous-Time Signals

Discrete-time filters can be used to filter bandlimited continuous-time signals that have
been sampled. In this section, we study the relationship between the frequency response
of the discrete-time filter and the effective frequency response applied to the continuous-
time signal. When the input to a discrete-time system is a sequence derived by sampling
a continuous-time signal, we can use our knowledge of sampling and reconstruction to
relate the frequency response of the discrete-time filter to the effect of the filter on the
spectrum of the original continuous-time signal.

Consider the system depicted in Fig. 6-17, and assume that the input is the complex
sinusoid

x(t) = Xejωt
with X = Aejϕ . After sampling, the input sequence to the discrete-time filter is

x[n] = x(nTs) = XejωnTs = Xejω̂n
The relationship between the discrete-time frequency ω̂ and continuous-time frequencies
ω and f is

ω̂ = ωTs = 2πf

fs
(6.34)

If the frequency of the continuous-time complex exponential satisfies the condition of
the sampling theorem (i.e., |ω| < π/Ts), then there is no aliasing, and the normalized
discrete-time frequency in (6.34) satisfies |ω̂| < π .

The frequency response of the discrete-time system gives us a quick way to calculate
the output y[n] in Fig 6-17.

y[n] = H(ejω̂)Xejω̂n
If we now make the substitution ω̂ = ωTs , then we can write y[n] in terms of the analog
frequency ω as

y[n] = H(ejωTs )XejωTsn
Finally, since no aliasing occurred in the original sampling, the ideal D-to-C converter
reconstructs the original complex exponential, but with a new complex amplitude, giving

y(t) = H(ejωTs )Xejωt (6.35)

This formula for y(t) is correct only for frequencies such that−π/Ts <ω<π/Ts , because
the ideal D-to-C converter reconstructs all digital frequency components in the band

Ideal

C-to-D

Ideal

D-to-C

LTI System

H.ej O!/;

x.t/ xŒ y.t/yŒ

fs D 1
Ts

fs D 1
Ts

Figure 6-17 System for doing discrete-time
filtering of bandlimited continuous-time signals.
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|ω̂| < π as analog frequencies in the band |ω| < π/Ts . As long as there is no aliasing,
the frequency band of the input signal x(t) matches the frequency band of the output
y(t). Thus, the overall system of Fig. 6-17 behaves as though it is an LTI continuous-time
system whose frequency response is H(ej(ωTs)), but only for |ω| < π/Ts .

When the system of Fig. 6-17 is used to implement LTI filtering operations on
bandlimited continuous-time signals, there are two factors that control the effective
frequency reponse. First, we can change the discrete-time system H(ejω̂) to vary the
overall effective frequency response, for a fixed sampling period.Alternatively, for a fixed
discrete-time systemH(ejω̂), we can change the sampling period Ts (avoiding aliasing of
the input) and obtain a new effective frequency response. Usually we select a sampling rate
close to the Nyquist rate to avoid aliasing, and then design a discrete-time LTI filter whose
effective frequency response H(ejωTs ) has the desired frequency-selective properties.

6-8.1 Example: A Lowpass Averager for Continuous-Time Signals

As an example, we use the 11-point running averager

y[n] = 1

11

10
∑

k=0

x[n− k]

as the filter in Fig. 6-17. The frequency response of this discrete-time system is

H(ejω̂) = sin(ω̂11/2)

11 sin(ω̂/2)
e−jω̂5

The magnitude of this frequency response is shown in Fig. 6-18(a).

1
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Figure 6-18 (a) Frequency response
(magnitude) of an 11-point running averager
and (b) effective analog-frequency response,
when the system in Fig. 6-17 is used to filter
bandlimited analog signals with sampling rate
fs = 1000 Hz. The black dots at f = 25 Hz
and f = 250 Hz indicate two values of the
frequency response needed for the input x(t) in
the example.
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When the 11-point running averager is used as the discrete-time system in Fig. 6-17
with sampling frequency fs = 1000, we want to answer two questions: What is the
effective analog-frequency response, and how would the signal

x(t) = cos(2π(25)t)+ sin(2π(250)t)

be processed by the system?
The frequency-response question is easy. The effective continuous-time frequency

response is

H(ejωTs ) = H(ejω/1000) = H(ej2πf/1000)

for |f | < 500 Hz where f is in hertz. A plot of the effective continuous-time frequency
response versus f is shown in Fig. 6-18(b). Note that the frequency response of the overall
system stops abruptly at |f | = fs/2 = 500 Hz, since the ideal D-to-C converter does not
reconstruct frequencies above fs/2.

The second question is also easy to answer if we track the two frequencies of the
input signal through the three systems of Fig. 6-17 by using the effective continuous-
time frequency response (6.35). The input x(t) contains two sinusoids with frequencies
at ω = 2π(25) and 2π(250). Since fs = 1000 > 2(250) > 2(25), there is no aliasing,10

so the same frequency components appear in the output signal y(t). The magnitude and
phase changes are found by evaluating the effective frequency response at 25 and 250 Hz.

H(ej2π(25)/1000) = sin(π(25)(11)/1000)

11 sin(π(25)/1000)
e−j2π(25)(5)/1000 = 0.8811e−jπ/4

H(ej2π(250)/1000) = sin(π(250)(11)/1000)

11 sin(π(250)/1000)
e−j2π(250)(5)/1000 = 0.0909e−jπ/2

These values are marked on the plot in Fig. 6-18(b). Thus the final output is

y(t) = 0.8811 cos(2π(25)t − π/4)+ 0.0909 sin(2π(250)t − π/2)
The lowpass nature of the running-average filter has greatly attenuated the 250-Hz
component, while the 25-Hz component suffered only slight attenuation because it lies
in the passband of the filter near 0 Hz.

EXERCISE 6.6 Assuming the same input signal and the same discrete-time system, work the example
of this section again, but use a sampling rate of fs = 750 Hz.

6-8.2 Interpretation of Delay

We have seen that a frequency response of the form H(ejω̂) = e−jω̂n0 implies a time
delay of n0 samples. For n0, an integer, the interpretation of this is straightforward. If the

10When there is aliasing, this sort of problem is less straightforward because the output signal y(t) has
different frequency components from the input.
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input to the system is x[n], the corresponding output is y[n] = x[n−n0]. However, if n0

is not an integer, the interpretation is less obvious. An example of where this can occur
is the L-point running-average system whose frequency response is

H(ejω̂) = 1
L
DL(ω̂)e

−jω̂(L−1)/2

where DL(ω̂) is the Dirichlet form defined in (6.27). The exponential term tells us that
theL-point running averager includes a delay of 1

2 (L−1) samples. IfL is an odd integer,
this delay causes the output to be shifted 1

2 (L− 1) samples with respect to the input.
However, if L is an even integer, then 1

2 (L− 1) is not an integer. The analyis of this
section provides an interpretation of this non-integer delay factor.

Suppose that the input to the ideal C-to-D converter is

x(t) = Xejωt

where ω < π/Ts so that there is no aliasing. Then the sampled input to the L-point
running averager is

x[n] = XejωnTs = Xejω̂n

where ω̂ = ωTs , and the output is

y[n] = H(ejω̂)Xejω̂n = 1
L
DL(ω̂)e

−jω̂(L−1)/2Xejω̂n

Finally, since ω < π/Ts , the ideal D-to-C converter reconstructs y(t) as a complex
exponential signal which can be written as

y(t) = 1
L
DL(ω̂)Xe

−jω̂(L−1)/2ejωt

= 1
L
DL(ωTs)Xe

−jωTs(L−1)/2ejωt

= 1
L
DL(ωTs)Xe

jω(t−Ts(L−1)/2)

The term (t − Ts(L− 1)/2) in the exponent indicates that the complex exponential has
a time shift of 1

2 (L− 1)Ts seconds with respect to continuous-time signals sampled with
sampling period Ts , and this is true regardless of whether or not 1

2 (L− 1) is an integer.
Note that the exact 1

2 (L−1)Ts second delay is a result of using an ideal D-to-C converter
that performs perfect bandlimited reconstruction.

EXAMPLE 6-11 Time Delay of FIR Filter

To illustrate the effect of noninteger delay with the running-average filter, consider the
cosine signal x[n] = cos(0.2πn), which could have resulted in Fig 6-17 from sampling
the signal x(t) = cos(200πt) with sampling rate fs = 1000 Hz. Figure 6-19(a) shows
x(t) and x[n]. If x[n] is the input to a 5-point running-average filter, the steady-state part
of the output is

y5[n] = sin (0.2π(5/2))

5 sin(0.2π/2)
cos(0.2πn− 0.2π(2)) = 0.6472 cos(0.2π(n− 2))
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For this filter output, the output of the ideal D-to-C converter in Fig. 6-17(b) would be

y5(t) = y5[n]
∣

∣

n=1000t = 0.6472 cos (200π(t − 0.002))

The delay is 2 samples. On the other hand, if the same signal x[n] is the input to a 4-point
running-average system, the steady-state part of the output (Fig. 6-19(c)) is

y4[n] = sin (0.2π(4/2))

4 sin(0.2π/2)
cos(0.2πn− 0.2π(3/2)) = 0.7694 cos(0.2π(n− 3/2))

Now the delay is 3/2 samples, so we cannot write y4[n] as an integer shift with respect
to the input sequence. In this case, the “3/2 samples” delay introduced by the filter can
be interpreted in terms of the corresponding output of the ideal D-to-C converter in
Fig. 6-17(c), which in this case would be

y4(t) = y4[n]
∣

∣

n=1000t = 0.7694 cos (200π(t − 0.0015))

Figure 6-19 shows the input and the corresponding outputs y5[n] and y5(t) and y4[n] and
y4(t). In all cases, the solid gray curve is the continuous-time cosine signal that would
be reconstructed by the ideal D-to-C converter for the given discrete-time signal.
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Figure 6-19 (a) Input signal sampled at
fs = 1000 Hz, (b) output of 5-point running
averager, and (c) output of 4-point running
averager. The solid gray curve is the
corresponding continuous-time signal: (a) x(t),
(b) y5(t), and (c) y4(t).
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The following specific points are illustrated by this example:

1. Both outputs are smaller than the input. This is because DL(0.2π) < 1 for both
cases.

2. The gray vertical lines in Fig. 6-19(b,c) show the peaks of the output cosine signals
that correspond to the peak of the input atn = 0. Note that the delay is (5−1)/2 = 2
for the 5-point averager and (4− 1)/2 = 1.5 for the 4-point running averager.

3. When the ideal D-to-C converter processes the fractional delay of 1.5, it has to
implement an interpolation of the cosine signal at points halfway between the
original samples.

6-9 Summary and Links

This chapter introduced the concept of the frequency response for the class of FIR filters.
The frequency response applies to any LTI system, as we will see in upcoming chapters.
The MATLAB GUI shown in Fig. 6-20 embodies the “sinusoid-in gives sinusoid-
out” concept which is the primary result of this chapter. It shows that one evaluation
of the frequency response is sufficient to predict how a sinusoid is processed by an
LTI system. When the filter changes, the frequency response changes so sinusoidal

Figure 6-20 Screen shot of the dltidemo GUI which illustrates the sinusoid-in gives sinusoid-out concept.
The user can change the LTI system as well as the input sinusoidal frequency, amplitude, and phase.
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frequency components are treated differently. The specific case shown in Fig. 6-20 is
from Example 6-11 when x[n] = cos(0.2πn) is filtered with a 4-point running averager.
The frequency response is shown in the middle with dots indicating the values ofH(ejω̂)
needed to determine the new amplitude and phase of the output sinusoid. The output
signal on the right is exactly the same as y4[n] in Fig. 6-19(c).

DEMO
DLTI: Sinusoid-in gives
Sinusoid-out

EXERCISE 6.7 Use the dltidemoGUI in MATLAB to find a case where the input sinusoid is nulled
out by the 4-point running-average filter. In other words, determine a frequency ω̂1

for the input x[n] = cos(ω̂1n) such that the output signal is y[n] = 0.

This chapter extends the discussion of Chapter 5, which introduced the basics of FIR
filtering. The labs, in particular, require the student to be familiar with both chapters. The
lab entitled Bandpass and Nulling Filters is an experiment with the frequency response
of two classes of useful FIR filters.

LAB
Bandpass and Nullling
Filters Three other labs involving FIR filtering and the frequency response require the

implementation of complete processing systems. These are: (1) a system to decode Touch-
Tone signals, (2) an octave-band system that determines automatically which note is
played on a piano, and (3) a filter bank system that simulates a cochlear implant device
used to restore intelligible hearing for a patient with complete hearing loss. Each of these
implementations involves many filters with a variety of frequency responses. Thus, these
projects become easier to attack once the ideas of Chapters 7–10 are studied, but the
projects rely primarily on the concept of the frequency response.

LAB
Encoding and Decoding
Touch-Tones

LAB
Octave Band Filtering

The Companion Website also contains the following demonstrations of lowpass and
highpass filtering: filtering photographic images to show that lowpass filtering is blurring,
and that highpass filtering enhances edges in images, cascade processing of images to
show that a highpass filter can undo the blurring effects of a lowpass filter, and filtering
of sound signals to illustrate bass and treble emphasis.

DEMO
Cascading FIR Filters

NOTE
Problems with Solutions

6-10 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used for review and
practice. Most of them have detailed solutions.

P-6.1 Suppose the input signal to an FIR system is

x[n] = ej (0.2πn−0.7π)

If we define a new signal y[n] to be the first difference y[n] = x[n] − x[n− 1], it is
possible to express y[n] in the form

y[n] = Aej(ω̂0n+ϕ)

Determine the numerical values of A, ϕ, and ω̂0.
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P-6.2 Suppose that the input to a discrete-time system is the complex signal

x[n] = ej0.2πn + ej0.5πn

(a) Determine the output when the system is a 2-point running sum filter

(b) Explain why the output can be written as the sum of two complex exponential
signals

y[n] = A1e
jϕ1ejω̂1n + A2e

jϕ2ejω̂2n

Determine the values of A1, ϕ1, A2, ϕ2 by using the frequency response of the
system.

(c) Determine the output when the system is a 3-point running sum filter.

P-6.3 Suppose that a discrete-time system is described by the input–output relationship

y[n] = (x[n])2

(a) Determine the output when the input is the sum of two complex exponential signals

x[n] = ej0.2πn + ej0.6πn

(b) Explain why the output cannot be written as the sum of two complex exponential
signals.

y[n] 
= A1e
jϕ1ejω̂1n + A2e

(jϕ2)ejω̂2n

(c) Explain why this example is sufficient to conclude that this is not an LTI
system.

P-6.4 An LTI system is described by the difference equation

y[n] = x[n] − √2x[n− 1] + x[n− 2]
(a) Determine an equation for the frequency response H(ejω̂) and express it in the

form

H(ejω̂) = R(ejω̂)e−jω̂n0

where R(ejω̂) is a real function and n0 is an integer.

(b) H(ejω̂) is a periodic function of ω̂; determine the period.

(c) Plot the magnitude ofH(ejω̂) as a function of ω̂ for π < ω̂ < 3π . Do this by hand,
and then check with the MATLAB function freqz.

(d) Find all frequencies ω̂ in the interval−π < ω̂ ≤ π , for which the output response
to the input e−jω̂n is zero.
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(e) When the input to the system is x[n] = cos(πn/3), determine the output signal
and express it in the form y[n] = A cos(ω̂0n+ ϕ).

P-6.5 An LTI filter is described by the difference equation

y[n] = 2x[n] + x[n− 1] + 3x[n− 2]

(a) Obtain an expression for the frequency response of this system.

(b) Determine the output when the input is x[n] = 1+ 4 cos(0.6πn+ 0.2π) for
−∞ < n <∞.

(c) Determine the step response, which is the output when the input is the unit-step
sequence, u[n].

(d) As n→∞ the step response is a constant. Explain why that constant is equal to
the DC value of the frequency response.

P-6.6 A linear time-invariant filter is described by the difference equation

y[n] = x[n] − x[n− 2]

(a) Obtain an expression for the frequency response of this system.

(b) Sketch the frequency response (magnitude and phase) as a function of frequency.

(c) Determine the output if the input signal is x[n] = 4+ cos(0.25πn− π/4).
(d) The signal x1[n] = (4+ cos(0.25πn− π/4)) u[n] is zero for n < 0, so it “starts”

at n = 0. If the input signal is x1[n], for which values of n will the corresponding
output be equal to the output obtained in (c)?

P-6.7 For each of the following frequency responses determine the corresponding
impulse response

(a) H(ejω̂) = 4− e−j3ω̂

(b) H(ejω̂) = 6e−j4ω̂ cos(3ω̂)

(c) H(ejω̂) = e−j3.5ω̂ sin(4ω̂)

sin(ω̂/2)

P-6.8 The frequency response of an LTI filter is given by the formula

H(ejω̂) = (1− e−jω̂)(1− ej2π/3e−jω̂)(1− e−j2π/3e−jω̂)
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(a) Write the difference equation that gives the relation between the input x[n] and the
output y[n].

(b) Determine the step response of this filter (i.e., the output when the input is x[n] =
u[n]).

(c) If the input is of the form x[n] = Aejϕejω̂n, for what values of −π < ω̂ ≤ π is
y[n] = 0 for all n?

P-6.9 The frequency response of an LTI filter is given by the formula

H(ejω̂) = (1− e−j3ω̂)(2− 4e−jω̂ + 3e−j3ω̂)

(a) Write the difference equation and determine the impulse response of this LTI filter.

(b) If the input is of the form x[n] = Aejϕejω̂n, for what values of −π < ω̂ ≤ π is
y[n] = 0 for all n?

(c) If y[n] = 0.3, what was the input x[n]?
P-6.10 Suppose that S is an LTI system whose exact form is unknown. It has been tested
by observing the output signals corresponding to several different test inputs. Suppose
that the following input–output pairs were the result of the tests:

Input: x[n] Output: y[n]
δ[n] δ[n] − δ[n− 3]

cos(2πn/3) 0

cos(πn/3+ π/2) 2 cos(πn/3+ π/2)

(a) Make a plot of the signal x[n] = 3δ[n] − 2δ[n− 2] + δ[n− 3].
(b) When the input is x[n] = 3δ[n] − 2δ[n− 2] + δ[n− 3], determine the output of

the system and make a plot of it.

(c) Determine the output when the input is x[n] = cos(π(n− 3)/3).

(d) Is the following statement true or false? Explain.

H(ej(π/2)) = 0

P-6.11 The Dirichlet form is defined in (6.27) as

DL(ω̂) = sin(Lω̂/2)

sin(ω̂)

For the case L = 6:
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(a) Make a plot of D6(ω̂) over the range −3π < ω̂ ≤ 3π .

(b) Determine the period and maximum magnitude of D6(ω̂).

(c) Determine the period of H(ejω̂) = D6(ω̂)e
−j2.5ω̂.

P-6.12 An LTI filter is described by the difference equation

y[n] = x[n] − 3x[n− 1] + 3x[n− 2] − x[n− 3]
(a) Obtain an expression for the frequency response of this system, and, using the fact

that (1− a)3 = 1− 3a+ 3a2− a3, show thatH(ejω̂) can be expressed in the form

H(ejω̂) = 8 sin3(ω̂/2)ej (−π/2−3ω̂/2)

(b) Sketch the frequency response magnitude as a function of ω̂.

(c) What is the output if the input is x[n] = 5+ 6 cos(0.5π(n− 2))?

(d) Determine the impulse response of this LTI filter.

(e) Use superposition to find the output when x[n] = 5+ 6 cos(0.5πn)+ 9δ[n− 3].
P-6.13 Suppose that three systems are connected in cascade, where the output of S1 is
the input to S2, and the output of S2 is the input to S3. The three systems are specified as
follows:

S1 : y1[n] = x1[n] + x1[n− 1]
S2 : y2[n] = x2[n] − x2[n− 2]
S3 : y3[n] = x3[n− 2] − x3[n− 3]

where the output of Si is yi[n] and its input is xi[n].
(a) Determine the frequency responses of the three individual systems.

(b) Determine the overall frequency response of the cascade system as a simple
formula.

(c) Determine the difference equation of the equivalent system that is a single operation
from the input x[n] (into S1) to the overall output y[n], which is the output of S3.
Thus, x[n] is x1[n] and y[n] is y3[n].

P-6.14 An LTI filter is described by the difference equation

y[n] = 1

4

(

x[n] + x[n− 1] + x[n− 2] + x[n− 3]
)

(a) What is the impulse response h[n] of this system?
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(b) Obtain an expression for the frequency response of this system.

(c) Suppose that the input is

x[n] = 5+ 4 cos(0.2πn)+ 3 cos(0.5πn)

for −∞ < n <∞. Obtain an expression for the output in the form
y[n] = A+ B cos(ω̂0n+ φ0).

(d) Suppose that the input is

x1[n] =
[

5+ 4 cos(0.2πn)+ 3 cos(0.5πn)
]

u[n]
where u[n] is the unit-step sequence. For what values of n will the output y1[n] be
equal to the output y[n] in (d)?

P-6.15 A system for filtering continuous-time signals is shown in Fig. P-6.15.

Ideal
C-to-D

LTI
System

Ideal
D-to-C

y[n]

H(ejω̂), h[n]

x(t) x[n] y(t)

fs = 1
Ts

fs = 1
Ts Figure P-6.15

The input to the C-to-D converter in this system is

x(t) = 10+ 8 cos(200πt)+ 6 cos(500πt + π/4)
for −∞ < t <∞. The impulse response of the LTI system is

h[n] = 1

4

3
∑

k=0

δ[n− k]

If fs = 1000 samples/sec, determine an expression for y(t), the output of the D-to-C
converter.

Hint: The results of Problem P-6.14 can be applied here.

P-6.16 The input to the C-to-D converter in Fig. P-6.15 is

x(t) = 10+ 20 cos(ω0t + π/3) −∞ < t <∞

(a) Suppose that the impulse response of the LTI system is h[n] = δ[n]. If
ω0 = 2π(500), for what values of fs = 1/Ts is it true that y(t) = x(t)?
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(b) Now suppose that the impulse response of the LTI system is changed to h[n] =
δ[n− 10]. Determine the sampling rate fs = 1/Ts and a range of values for ω0 so
that the output of the overall system is

y(t) = x(t − 0.001) = 10+ 20 cos(ω0(t − 0.001)+ π/3)
for −∞ < t <∞.

(c) Suppose that the LTI system is a 5-point moving averager whose frequency response
is

H(ejω̂) = sin(5ω̂/2)

5 sin(ω̂/2)
e−jω̂2

If the sampling rate is fs = 2000 samples/sec, determine all values of ω0 such that
the output is equal to a constant (i.e., y(t) = A for−∞ < t <∞). Also, determine
the constant A in this case.

P-6.17 The diagram in Fig. P-6.17 depicts a cascade connection of two linear time-
invariant systems, where the first system is a 3-point moving averager and the second
system is a first difference.

LTI 1 LTI 2x[n] y[n]v[n]

H1(ejω̂), h1[n] H2(ejω̂), h2[n]

Figure P-6.17

(a) If the input is of the form x[n] = 10+x1[n], the output, y[n], of the overall system
will be of the form y[n] = y1[n], where y1[n] is the output due only to x1[n].
Explain why this is true.

(b) Determine the frequency-response function of the overall cascade system.

(c) Sketch the frequency-response (magnitude and phase) functions of the individual
systems and the overall cascade system for −π < ω̂ ≤ π .

(d) Obtain a single-difference equation that relates y[n] to x[n] for the overall cascade
system.

P-6.18 A linear time-invariant system is described by the difference equation

y[n] = −x[n] + 2x[n− 2] − x[n− 4]
(a) Find the impulse response h[n] and plot it.
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(b) Determine an equation for the frequency response H(ejω̂) and express it in the
form

H(ejω̂) = R(ejω̂)e−jω̂n0

where R(ejω̂) is a real function and n0 is an integer.

(c) Carefully sketch and label a plot of |H(ejω̂)| for −π < ω̂ < π .

(d) Carefully sketch and label a plot of the principal value of ∠H(ejω̂) for
−π < ω̂ ≤ π .

P-6.19 For the cascade configuration in Fig. P-6.17, the two systems are defined by

H1(e
jω̂) = 1+ 2e−jω̂ + e−jω̂2 and

h2[n] = δ[n] − δ[n− 1] + δ[n− 2] − δ[n− 3]

(a) Determine the frequency responseH(ejω̂) for the overall cascade system (i.e., from
input x[n] to output y[n]). Simplify your answer as much as possible.

(b) Determine and plot the impulse response h[n] of the overall cascade system.

(c) Write down the difference equation that relates y[n] to x[n].
P-6.20 An LTI system whose frequency response has a first-order term such as

H(ejω̂) = (1− ejω̂0e−jω̂)

completely nulls out the input signal of the form ejω̂0n. The concept of cascading systems
can be used to null out additional complex exponential signals.

(a) Design an FIR filter that nulls out the signal x[n] = 3+ 7 cos(0.2πn− 0.4π) by
determining the filter coefficients of the difference equation for the nulling filter.

(b) Design the minimum-order FIR filter that nulls out the signal

x[n] =
5
∑

k=0

(k2 + 9) cos(0.2πkn)

by determining the filter coefficients of the difference equation for the nulling filter.

P-6.21 The input to the C-to-D converter in Fig. P-6.15 is

x(t) = 10 cos(120πt)+ 20 cos(240πt + π/3) −∞ < t <∞
(a) If the sampling rate is fs = 1000 Hz, determine the two normalized frequencies in

the sampled signal x[n] = x(n/fs).
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(b) Design the FIR filter H(ejω̂) so that the output y(t) is zero. In other words, find
the filter coefficients of the lowest possible order FIR system.

(c) Check your design by using MATLAB to plot the frequency response (magnitude)
versus ω̂, and also versus the analog frequency f in hertz where the frequencies
60 Hz and 120 Hz should be nulled out.

P-6.22 The frequency response of a first-difference system is plotted in Fig. 6-3.

(a) Use these plots to find the output of the system if the input is x[n] =
10+ 10 cos(0.5πn).

(b) Explain why the phase-response curve is discontinuous at frequencies around ω̂ =
0 and at multiples of 2π .

P-6.23 The frequency response of an LTI system is plotted in Fig. P-6.23

(a) Use these plots to find the output of the system if the input is

x[n] = 10+ 10 cos(0.2πn)+ 10 cos(0.5πn)

(b) Explain why the phase-response curve is discontinuous at frequencies around ω̂ =
2π(0.17) and also around ω̂ = 0.5π .
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7

Discrete-Time
Fourier Transform

In Chapter 3 and Appendix C, we showed that interesting continuous-time waveforms
x(t) can be synthesized by summing sinusoids, or complex exponential signals, having
different frequencies fk and complex amplitudes ak. We also introduced the concept
of the spectrum of a signal as the collection of information about the frequencies
and corresponding complex amplitudes {fk, ak} of the complex exponential signals,
and found it convenient to display the spectrum as a plot of spectrum lines versus
frequency, each labeled with amplitude and phase. This spectrum plot is a frequency-
domain representation that tells us at a glance “how much of each frequency is present
in the signal.”

In Chapter 4, we extended the spectrum concept from continuous-time signals x(t)
to discrete-time signals x[n] obtained by sampling x(t). In the discrete-time case, the
line spectrum is plotted as a function of normalized frequency ω̂. In Chapter 6, we
developed the frequency responseH(ejω̂) which is the frequency-domain representation
of an FIR filter. Since an FIR filter can also be characterized in the time domain by its
impulse response signal h[n], it is not hard to imagine that the frequency response is the
frequency-domain representation, or spectrum, of the sequence h[n].

259



260 CHAPTER 7 DISCRETE-TIME FOURIER TRANSFORM

In this chapter we show that the frequency response is identical to the result of applying
the more general concept of the discrete-time Fourier transform (DTFT) to the impulse
response of the LTI system. The DTFT is a frequency-domain representation for a wide
range of both finite- and infinite-length discrete-time signals x[n]. The DTFT is denoted
as X(ejω̂), which shows that the frequency dependence always includes the complex
exponential function ejω̂. The operation of taking the Fourier transform of a signal will
become a common tool for analyzing signals and systems in the frequency domain.1

The application of the DTFT is usually called Fourier analysis, or spectrum analysis or
“going into the Fourier domain or frequency domain.” Thus, the words spectrum, Fourier
transform, and frequency-domain representation become equivalent, even though each
one retains its own distinct character.

7-1 DTFT: Fourier Transform for Discrete-Time Signals

The concept of frequency response discussed in Chapter 6 emerged from analysis
showing that if an input to an LTI discrete-time system is of the form x[n] = ejω̂n,
then the corresponding output has the form y[n] = H(ejω̂)ejω̂n, where H(ejω̂) is called
the frequency response of the LTI system. This fact, coupled with the principle of
superposition for LTI systems leads to the fundamental result that the frequency response
function H(ejω̂) is sufficient to determine the output due to any linear combination of
signals of the form ejω̂n or cos(ω̂n+ θ). For discrete-time filters such as the causal
FIR filters discussed in Chapter 6, the frequency response function is obtained from the
summation formula

H(ejω̂) =
M
∑

n=0

h[n]e−jω̂n = h[0] + h[1]e−jω̂ + · · · + h[M]e−jω̂M (7.1)

where h[n] is the impulse response. In a mathematical sense, the impulse response h[n]
is transformed into the frequency response by the operation of evaluating (7.1) for each
value of ω̂ over the domain−π < ω̂ ≤ π . The operation of transformation (adding up the
terms in (7.1) for each value ω̂) replaces a function of a discrete-time index n (a sequence)
by a periodic function of the continuous frequency variable ω̂. By this transformation,
the time-domain representation h[n] is replaced by the frequency-domain representation
H(ejω̂). For this concept to be complete and useful, we need to know that the result of the
transformation is unique, and we need the ability to go back from the frequency-domain
representation to the time-domain representation. That is, we need an inverse transform
that recovers the original h[n] from H(ejω̂). In Chapter 6, we showed that the sequence
can be reconstructed from a frequency response represented in terms of powers of e−jω̂
as in (7.1) by simply picking off the coefficients of the polynomial since h[n] is the
coefficient of e−jω̂n. While this process can be effective if M is small, there is a much
more powerful approach to inverting the transformation that holds even for infinite-length
sequences.

1It is common in engineering to say that we “take the discrete-time Fourier transform” when we mean
that we consider X(ejω̂) as our representation of a signal x[n].
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In this section, we present the general concept of the discrete-time Fourier transform
which gives the frequency response when applied to the impulse response of an LTI
system. We give an integral form for the inverse DTFT that can be used even when
H(ejω̂) does not have a finite polynomial representation such as (7.1). Furthermore,
we show that the DTFT can be used to represent a wide range of sequences, including
sequences of infinite length, and that these sequences can be impulse responses, inputs
to LTI systems, outputs of LTI systems, or indeed, any sequence that satisfies certain
conditions to be discussed in this chapter.

7-1.1 Forward DTFT

The DTFT of a sequence x[n] is defined as

Discrete-Time Fourier Transform

X(ejω̂) =
∞
∑

n=−∞
x[n]e−jω̂n (7.2)

The DTFT X(ejω̂) that results from this definition is a function of frequency ω̂. Going
from the signal x[n] to its DTFT is referred to as “taking the forward transform,” and
going from the DTFT back to the signal is referred to as “taking the inverse transform.”
The limits on the sum in (7.2) are shown as infinite so that the DTFT is defined for
infinitely long signals as well as finite-length signals.2 However, a comparison of (7.2)
to (7.1) shows that if the sequence were a finite-length impulse response, then the DTFT
of that sequence would be the same as the frequency response of the FIR system. More
generally, if h[n] is the impulse response of an LTI system, then the DTFT of h[n] is
the frequency response H(ejω̂) of that system. Examples of infinite-duration impulse
response filters will be given in Chapter 10.

EXERCISE 7.1 Show that the DTFT function X(ejω̂) defined in (7.2) is always periodic in ω̂ with
period 2π , that is,

X(ej(ω̂+2π)) = X(ejω̂).

7-1.2 DTFT of a Shifted Impulse Sequence

Our first task is to develop examples of the DTFT for some common signals. The simplest
case is the time-shifted unit-impulse sequence x[n] = δ[n− n0]. Its forward DTFT is by
definition

X(ejω̂) =
∞
∑

n=−∞
δ[n− n0]e−jω̂n

2The infinite limits are used to imply that the sum is over all n, where x[n] �= 0. This often avoids
unnecessarily awkward expressions when using the DTFT for analysis.
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Since the impulse sequence is nonzero only at n = n0 it follows that the sum has only
one nonzero term, so

X(ejω̂) = e−jω̂n0

To emphasize the importance of this and other DTFT relationships, we use the notation
DTFT←→ to denote the forward and inverse transforms in one statement:

DTFT Representation of δ[n− n0]
x[n] = δ[n− n0] DTFT←→ X(ejω̂) = e−jω̂n0

(7.3)

7-1.3 Linearity of the DTFT

Before we proceed further in our discussion of the DTFT, it is useful to consider one of
its basic properties. The DTFT is a linear operation, that is, the DTFT of a sum of two
or more scaled signals results in the identical sum and scaling of their corresponding
DTFTs. To verify this, assume that x[n] = ax1[n] + bx2[n], where a and b are (possibly
complex) constants. The DTFT of x[n] is by definition

X(ejω̂) =
∞
∑

n=−∞
(ax1[n] + bx2[n])e−jω̂n

If both x1[n] and x2[n] have DTFTs, then we can use the algebraic property that
multiplication distributes over addition to write

X(ejω̂) = a
∞
∑

n=−∞
x1[n]e−jω̂n + b

∞
∑

n=−∞
x2[n]e−jω̂n = aX1(e

jω̂)+ bX2(e
jω̂)

That is, the frequency-domain representations are combined in exactly the same way as
the signals are combined.

EXAMPLE 7-1 DTFT of an FIR Filter

The following FIR filter

y[n] = 5x[n− 1] − 4x[n− 3] + 3x[n− 5]
has a finite-length impulse response:

h[n] = 5δ[n− 1] − 4δ[n− 3] + 3δ[n− 5]
Each impulse in h[n] is transformed using (7.3), and then combined according to the
linearity property of the DTFT which gives

H(ejω̂) = 5e−jω̂ − 4e−j3ω̂ + 3e−j5ω̂
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7-1.4 Uniqueness of the DTFT

The DTFT is a unique relationship between x[n] andX(ejω̂); in other words, two different
signals cannot have the same DTFT. This is a consequence of the linearity property
because if two different signals have the same DTFT, then we can form a third signal by
subtraction and obtain

x3[n] = x1[n] − x2[n] DTFT←→ X3(e
jω̂) = X1(e

jω̂)−X2(e
jω̂)

︸ ︷︷ ︸

identical DTFTs

= 0

However, from the definition (7.2) it is easy to argue that x3[n] has to be zero if its DTFT
is zero, which in turn implies that x1[n] = x2[n].

The importance of uniqueness is that if we know a DTFT representation such as
(7.3), we can start in either the time or frequency domain and easily write down the
corresponding representation in the other domain. For example, if X(ejω̂) = e−jω̂3, then
we know that x[n] = δ[n− 3].

7-1.5 DTFT of a Pulse

Another common signal is the L-point rectangular pulse, which is a finite-length time
signal consisting of all ones:

rL[n] = u[n] − u[n− L] =
{

1 n = 0, 1, 2, . . . , L− 1

0 elsewhere

Its forward DTFT is by definition

RL(e
jω̂) =

L−1
∑

n=0

1 e−jω̂n = 1− e−jω̂L
1− e−jω̂ (7.4)

where we have used the formula for the sum of L terms of a geometric series to “sum”
the series and obtain a closed-form expression for RL(ejω̂). This is a signal that we
studied before in Chapter 6 as the impulse response of an L-point running-sum filter.
In Section 6-7, the frequency response of the running-sum filter was shown to be the
product of a Dirichlet form and a complex exponential. Referring to the earlier results in
Section 6-7 or further manipulating (7.4), we obtain another DTFT pair:

DTFT Representation of L-Point Rectangular Pulse

rL[n] = u[n] − u[n− L] DTFT←→ RL(e
jω̂) = sin(Lω̂/2)

sin(ω̂/2)
e−jω̂(L−1)/2 (7.5)

Since the filter coefficients of the running-sum filter are L times the filter coefficients of
the running-average filter, there is no L in the denominator of (7.5).
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7-1.6 DTFT of a Right-Sided Exponential Sequence

As an illustration of the DTFT of an infinite-duration sequence, consider a “right-sided”
exponential signal of the form x[n] = anu[n], where a can be real or complex. Such a
signal is zero for n < 0 (on the left-hand side of a plot). It decays “exponentially” for
n ≥ 0 if |a| < 1; it remains constant at 1 if |a| = 1; and it grows exponentially if |a| > 1.
Its DTFT is by definition

X(ejω̂) =
∞
∑

n=−∞
anu[n]e−jω̂n =

∞
∑

n=0

ane−jω̂n

We can obtain a closed-form expression for X(ejω̂) by noting that

X(ejω̂) =
∞
∑

n=0

(ae−jω̂)n

which can now be recognized as the sum of all the terms of an infinite geometric series,
where the ratio between successive terms is (ae−jω̂). For such a series there is a formula
for the sum that we can apply to give the final result

X(ejω̂) =
∞
∑

n=0

(ae−jω̂)n = 1

1− ae−jω̂

There is one limitation, however. Going from the infinite sum to the closed-form result
is only valid when |ae−jω̂| < 1 or |a| < 1. Otherwise, the terms in the geometric series
either grow without bound or remain constant, and their sum is infinite.

This DTFT pair is another widely used result, worthy of highlighting as we have done
with the shifted impulse and pulse sequences.

DTFT Representation of anu[n]
x[n] = anu[n] DTFT←→ X(ejω̂) = 1

1− ae−jω̂ if |a| < 1
(7.6)

EXERCISE 7.2 Use the uniqueness property of the DTFT along with (7.6) to find x[n]whose DTFT is

X(ejω̂) = 1

1− 0.5e−jω̂

EXERCISE 7.3 Use the linearity of the DTFT and (7.6) to determine the DTFT of the following sum
of two right-sided exponential signals: x[n] = (0.8)nu[n] + 2(−0.5)nu[n].
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7-1.7 Existence of the DTFT

In the case of finite-length sequences such as the impulse response of an FIR filter, the
sum defining the DTFT has a finite number of terms. Thus, the DTFT of an FIR filter
as in (7.1) always exists because X(ejω̂) is always finite. However, in the general case,
where one or both of the limits on the sum in (7.2) are infinite, the DTFT sum may
diverge (become infinite). This is illustrated by the right-sided exponential sequence in
Section 7-1.6 when |a| > 1.

A sufficient condition for the existence of the DTFT of a sequence x[n] emerges from
the following manipulation that develops a bound on the size of X(ejω̂):

|X(ejω̂)| =
∣

∣

∣

∣

∣

∞
∑

n=−∞
x[n]e−jω̂n

∣

∣

∣

∣

∣

≤
∞
∑

n=−∞

∣

∣

∣x[n]e−jω̂n
∣

∣

∣ (magnitude of sum ≤ sum of magnitudes)

≤
∞
∑

n=−∞
|x[n]|

�
�

���
1

∣

∣

∣e
−jω̂n

∣

∣

∣ (magnitude of product = product of magnitudes)

≤
∞
∑

n=−∞
|x[n]|

If the sum of |x[n]| is finite, then the DTFT will exist.

Sufficient Condition for Existence of the DTFT
∣

∣

∣X(e
jω̂)

∣

∣

∣ ≤
∞
∑

n=−∞
|x[n]| <∞ (7.7)

A sequence x[n] satisfying (7.7) is said to be absolutely summable, and when (7.7) holds,
the infinite sum defining the DTFT X(ejω̂) in (7.2) is said to converge to a finite result
for all ω̂.

EXAMPLE 7-2 DTFT of a Complex Exponential?

Consider a right-sided complex exponential sequence, x[n] = rnejω̂0nu[n] when r = 1.
Applying the condition of (7.7) to this sequence leads to

∞
∑

n=0

|ejω̂0n| =
∞
∑

n=0

1 →∞

Thus, the DTFT of a right-sided complex exponential is not guaranteed to exist, and it
is easy to verify that |X(ejω̂0)| → ∞. On the other hand, if r < 1, the DTFT of x[n] =
rnejω̂0nu[n] exists and is given by the result of Section 7-1.6 with a = rejω̂0 . The non-
existence of the DTFT is also true for the related case of a two-sided complex exponential,
defined as ejω̂0n for −∞ < n <∞.
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7-1.8 The Inverse DTFT

Now that we have a condition for the existence of the DTFT, we need to address the
question of the inverse DTFT. The uniqueness property implies that if we have a table
of known DTFT pairs such as (7.3), (7.5), and (7.6), we can always go back and forth
between the time-domain and frequency-domain representations simply by table lookup
as in Exercise 7.2. However, with this approach, we would always be limited by the size
of our table of known DTFT pairs.

Instead, we want to continue the development of the DTFT by studying a general
expression for performing the inverse DTFT. The DTFT X(ejω̂) is a function of the
continuous variable ω̂, so an integral (7.8) with respect to normalized frequency ω̂ is
needed to transform X(ejω̂) back to the sequence x[n].

Inverse DTFT

x[n] = 1

2π

π
∫

−π
X(ejω̂)ejω̂ndω̂.

(7.8)

Observe that n is an integer parameter in the integral, while ω̂ now is a dummy variable
of integration that disappears when the definite integral is evaluated at its limits. The
variable n can take on all integer values in the range −∞ < n <∞, and hence, using
(7.8) we can extract each sample of a sequence x[n] whose DTFT is X(ejω̂). We could
verify that (7.8) is the correct inverse DTFT relation by substituting the definition of the
DTFT in (7.2) into (7.8) and rearranging terms.

Instead of carrying out a general proof, we present a simpler and more intuitive
justification by working with the shifted impulse sequence δ[n− n0], whose DTFT is
known to be

X(ejω̂) = e−jω̂n0

The objective is to show that (7.8) gives the correct time-domain result when operating
on X(ejω̂). If we substitute this DTFT into (7.8), we obtain

1

2π

π
∫

−π
X(ejω̂)ejω̂ndω̂ = 1

2π

π
∫

−π
e−jω̂n0ejω̂ndω̂ = 1

2π

π
∫

−π
ejω̂(n−n0)dω̂ (7.9)

The definite integral of the exponential must be treated as two cases: first, when n = n0,

1

2π

π
∫

−π
ejω̂(n−n0)dω̂ = 1

2π

π
∫

−π
dω̂ = 1 (7.10a)

and then for n �= n0,

1

2π

π
∫

−π
ejω̂(n−n0)dω̂ = 1

2π

ejω̂(n−n0)

j (n− n0)

∣

∣

∣

∣

∣

π

−π
= ejπ(n−n0) − e−jπ(n−n0)

j2π(n− n0)
= 0 (7.10b)

since the numerator is zero when n− n0 is a nonzero integer.
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Equations (7.10a) and (7.10b) also show that the complex exponentials ejω̂n and e−jω̂n0

(when viewed as periodic functions of ω̂) are orthogonal to each other.3

Putting these two cases together, we have

1

2π

π
∫

−π
e−jω̂n0ejω̂ndω̂ =

{

1 n = n0

0 n �= n0

}

= δ[n− n0] (7.11)

Thus, we have shown that (7.8) correctly returns the sequence x[n] = δ[n− n0], when
the DTFT is X(ejω̂) = e−jω̂n0 .

This example is actually strong enough to justify that the inverse DTFT integral
(7.8) will always work for finite-length sequences, because the DTFT of a general finite-
length sequence is always a finite linear combination of complex exponential terms like
e−jω̂n0 . The linearity property of the DTFT, therefore, guarantees that the inverse DTFT
integral will recover a finite-length sequence that is the same linear combination of shifted
impulses, which is the correct sequence for a finite-length signal. If the signal is of infinite
extent, it can be shown that if x[n] is absolutely summable as in (7.7) so that the DTFT
exists, then (7.8) recovers the original sequence from X(ejω̂).

EXERCISE 7.4 Recall that X(ejω̂) defined in (7.2) is always periodic in ω̂ with period 2π . Use this
fact and a change of variables to argue that we can rewrite the inverse DTFT integral
with limits that go from 0 to 2π , instead of −π to +π ; that is, show that

1

2π

π
∫

−π
X(ejω̂)ejω̂ndω̂ = 1

2π

2π
∫

0

X(ejω̂)ejω̂ndω̂

7-1.9 Bandlimited DTFT

Ordinarily we define a signal in the time domain, but the inverse DTFT integral enables
us to define a signal in the frequency domain by specifying its DTFT as a function of
frequency. Once we specify the magnitude and phase ofX(ejω̂), we apply (7.8) and carry
out the integral to get the signal x[n]. An important example of this process is to define
an ideal bandlimited signal, which is a function that is nonzero in the low frequency band
|ω̂| ≤ ω̂b and zero in the high frequency band ω̂b < |ω̂| ≤ π . If the nonzero portion of
the DTFT is a constant value of one with a phase of zero, then we have

X(ejω̂) =
{

1 |ω̂| ≤ ω̂b
0 ω̂b < |ω̂| ≤ π

which is plotted in Fig. 7-1(a).

3This same property is used in Section C-1 of Appendix C to derive the Fourier series integral for periodic
continuous-time signals. Note, for example, the similarity between equations (C.1) and (7.8).
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Figure 7-1 Bandlimited DTFT. (a) DTFT is a
rectangle bandlimited to |ω̂| < ω̂b. (b) Inverse DTFT is
a sampled sinc function with ω̂b = 0.25π .

For this simple DTFT function, the integrand of (7.8) is a piecewise constant function
that is relatively easy to integrate after we substitute the definition of X(ejω̂) into the
inverse DTFT integral (7.8)

x[n] = 1

2π

π
∫

−π
X(ejω̂)ejω̂ndω̂

=
��������� 0

1

2π

−ω̂b∫

−π
0 ejω̂ndω̂ + 1

2π

ω̂b∫

−ω̂b

1 ejω̂ndω̂ +
���������

0
1

2π

π
∫

ω̂b

0 ejω̂ndω̂

The integral has been broken into three cases for the three intervals, where X(ejω̂) is
either zero or one. Only the middle integral is nonzero, and the integration yields

x[n] = 1

2π

ω̂b∫

−ω̂b

1 ejω̂ndω̂

= ejω̂n

2πjn

∣

∣

∣

∣

∣

ω̂b

−ω̂b
= ejω̂bn − e−jω̂bn

(2j)πn
= sin(ω̂bn)

πn

The last step uses the inverse Euler formula for sine.
The result of the inverse DTFT is the discrete-time signal

x[n] = sin(ω̂bn)

πn
−∞ < n <∞ (7.12)
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where 0 < ω̂b < π . This mathematical form, which is called a “sinc function,” is plotted
in Fig. 7-1(b) for ω̂b = 0.25π . Although the “sinc function” appears to be undefined at
n = 0, a careful application of L’Hôpital’s rule, or the small angle approximation to the
sine function, shows that the value is actually x[0] = ω̂b/π . Since a DTFT pair is unique,
we have obtained another DTFT pair that can be added to our growing inventory.

DTFT Representation of a Sinc Function

x[n] = sin(ω̂bn)

πn

DTFT←→ X(ejω̂) =
{

1 |ω̂| ≤ ω̂b
0 otherwise

(7.13)

We will revisit this transform as a frequency response in Section 7-3 when discussing
ideal filters.

Our usage of the term sinc function refers to a form, rather than a specific
function definition. The form of the “sinc function” has a sine function in the
numerator and the argument of the sine in the denominator. In signal processing,
the normalized sinc function is defined as

sinc(θ) = sin πθ

πθ

and this is the definition used in the MATLAB M-file sinc. If we expressed
x[n] in (7.12) in terms of this definition of the sinc function, we would write

x[n] = ω̂b

π
sinc

(

ω̂b

π
n

)

While it is nice to have the name sinc for this function, which turns up often in
Fourier transform expressions, it can be cumbersome to figure out the proper
argument and scaling. On the other hand, the term “sinc function” is widely used
as a convenient shorthand for any function of the general form of (7.12), so we
use the term henceforth in that sense.

The sinc signal is important in discrete-time signal and system theory, but it is
impossible to determine its DTFT by directly applying the forward transform summation
(7.2). This can be seen by writing out the forward DTFT of a sinc function, which is the
infinite summation below.

X(ejω̂) =
∞
∑

n=−∞

sin(ω̂bn)

πn
e−jω̂n =

{

1 |ω̂| ≤ ω̂b
0 otherwise

(7.14)

However, because of the uniqueness of the DTFT, we have already obtained the desired
DTFT transform pair by starting in the frequency domain with the correct transform
X(ejω̂) and taking the inverse DTFT of X(ejω̂) to get the sinc function sequence.
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Another property of the sinc function sequence is that it is not absolutely summable.
If we recall from (7.7) that absolute summability is a sufficient condition for the DTFT
to exist, then the sinc function must be an exception. We know that its DTFT exists
because the right-hand side of (7.14) is finite and well defined. Therefore, the transform
pair (7.13) shows that the condition of absolute summability is a sufficient, but not a
necessary condition, for the existence of the DTFT.

7-1.10 Inverse DTFT for the Right-Sided Exponential

Another infinite-length sequence is the right-sided exponential signal x[n] = anu[n]
discussed in Section 7-1.6. In this case, we were able to use a familiar result for geometric
series to “sum” the expression for the DTFT and obtain a closed-form representation

X(ejω̂) = 1

1− ae−jω̂ |a| < 1 (7.15)

On the other hand, suppose that we want to determine x[n] given X(ejω̂) in (7.15).
Substituting this into the inverse DTFT expression (7.8) gives

x[n] = 1

2π

π
∫

−π

ejω̂n

1− ae−jω̂ dω̂ (7.16)

Although techniques exist for evaluating such integrals using the theory of complex
variables, we do not assume knowledge of these techniques. Instead, we invoke the
uniqueness property of the DTFT which tells us that we can always rely on the tabulated
result in (7.6). In other words, we can write the inverse transform by “table lookup.” The
important point of this example and the sinc function example is that once a transform
pair has been determined, by whatever means, we can use that DTFT relationship to
move back and forth between the time and frequency domains without integrals or sums.
Furthermore, in Section 7-2 we will introduce a number of general properties of the DTFT
that can be employed to simplify forward and inverse DTFT manipulations even more.

7-1.11 The DTFT Spectrum

So far, we have not used the term “spectrum” when discussing the DTFT, but it should be
clear at this point that it is appropriate to refer to the DTFT as a spectrum representation of
a discrete-time signal. Recall that we introduced the term spectrum in Chapter 3 to mean
the collection of frequency and complex amplitude information required to synthesize
a signal using the Fourier synthesis equation (3.26) in Section 3-5. In the case of the
DTFT, the synthesis equation is the inverse transform integral (7.8), and the analysis
equation (7.2) provides a means for determining the complex amplitudes of the complex
exponentials ejω̂n in the synthesis equation. To make this a little more concrete, we can
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Figure 7-2 Riemann sum approximation to
the integral of the inverse DTFT. Here,
X(ejω̂) = 2(1+ cos ω̂), which is the DTFT
of x[n] = δ[n+ 1] + 2δ[n] + δ[n− 1].

view the inverse DTFT integral as the limit of a finite sum by writing (7.8) in terms of
the Riemann sum definition4 of the integral

x[n] = 1

2π

2π
∫

0

X(ejω̂)ejω̂ndω̂ = lim
�ω̂→0

N−1
∑

k=0

(

1

2π
X(ejω̂k )�ω̂

)

ejω̂kn (7.17)

where �ω̂ = 2π/N is the spacing between the frequencies ω̂k = 2πk/N , with the
range of integration5 0 ≤ ω̂ < 2π being covered by choosing k = 0, 1, . . . , N − 1. The
expression on the right in (7.17) contains a sum of complex exponential signals whose
spectrum representation is the set of frequencies ω̂k together with the corresponding
complex amplitudes X(ejω̂k )�ω̂/(2π). This is illustrated in Fig. 7-2 which shows the
values X(ejω̂k ) as gray dots and the rectangles have area equal to X(ejω̂k )�ω̂. Each one
of the rectangles can be viewed as a spectrum line, especially when�ω̂→ 0. In the limit
as�ω̂→ 0, the magnitudes of the spectral components become infinitesimally small, as
does the spacing between frequencies. Therefore, (7.17) suggests that the inverse DTFT
integral synthesizes the signal x[n] as a sum of infinitely small complex exponentials with
all frequencies 0 ≤ ω̂ < 2π being used in the sum. The changing magnitude of X(ejω̂)
specifies the relative amount of each frequency component that is required to synthesize
x[n]. This is entirely consistent with the way we originally defined and subsequently used
the concept of spectrum in Chapters 3–6, so we henceforth feel free to apply the term
spectrum also to the DTFT representation.

7-2 Properties of the DTFT

We have motivated our study of the DTFT primarily by considering the problem of
determining the frequency response of a filter, or more generally the Fourier representation
of a signal. While these are important applications of the DTFT, it is also important to
note that the DTFT also plays an important role as an “operator” in the theory of discrete-
time signals and systems. This is best illustrated by highlighting some of the important
properties of the DTFT operator.

4The Riemann sum approximation to an integral is
∫ u

0 q(t)dt ≈
∑Nu−1
n=0 q(tn)�t, where the integrand

q(t) is sampled at Nu equally spaced times tn = n�t , and �t = u/Nu.
5For convenience in indexing the sum, we have used the result of Exercise 7.4 to change the limits to

0 to 2π .
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7-2.1 Linearity Property

As we showed in Section 7-1.3, the DTFT operation obeys the principle of superposition
(i.e., it is a linear operation). This is summarized in (7.18)

Linearity Property of the DTFT

x[n] = ax1[n] + bx2[n] DTFT←→ X(ejω̂) = aX1(e
jω̂)+ bX2(e

jω̂)
(7.18)

7-2.2 Time-Delay Property

When we first studied sinusoids, the phase was shown to depend on the time-shift of
the signal. The simple relationship is “phase equals the negative of frequency times
time-shift.” This concept carries over to the general case of the Fourier transform. The
time-delay property of the DTFT states that time-shifting results in a phase change in the
frequency domain:

Time-Delay Property of the DTFT

y[n] = x[n− nd] DTFT←→ Y (ejω̂) = X(ejω̂)e−jω̂nd (7.19)

The reason that the delay property is so important and useful is that (7.19) shows that
multiplicative factors of the form e−jω̂nd in frequency-domain expressions always signify
time delay.

EXAMPLE 7-3 Delayed Sinc Function

Let y[n] = x[n− 10], where x[n] is the sinc function of (7.13):

y[n] = sin ω̂b(n− 10)

π(n− 10)

Using the time-delay property and the result forX(ejω̂) in (7.13), we can write down the
following expression for the DTFT of y[n] with virtually no further analysis:

Y (ejω̂) = X(ejω̂)e−jω̂10 =
{

e−jω̂10 0 ≤ |ω̂| ≤ ω̂b
0 ω̂b < |ω̂| ≤ π

Notice that the magnitude plot of |Y (ejω̂)| is still a rectangle as in Fig. 7-1(a); time delay
only changes the phase in the frequency domain.

To prove the time-delay property, consider a sequence y[n] = x[n− nd], which is
simply a time-shifted version of another sequence x[n]. We need to compare the DTFT
of y[n] to the DTFT of x[n]. By definition, the DTFT of y[n] is

Y (ejω̂) =
∞
∑

n=−∞
x[n− nd]
︸ ︷︷ ︸

y[n]
e−jω̂n (7.20)
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If we make the substitution m = n− nd for the index of summation in (7.20), we obtain

Y (ejω̂) =
∞
∑

m=−∞
x[m]e−jω̂(m+nd) =

∞
∑

m=−∞
x[m]e−jω̂me−jω̂nd (7.21)

Since the factor e−jω̂nd does not depend on m and is common to all the terms in the sum
on the right in (7.21), we can write Y (ejω̂) as

Y (ejω̂) =
( ∞
∑

m=−∞
x[m]e−jω̂m

)

e−jω̂nd = X(ejω̂)e−jω̂nd (7.22)

Therefore, we have proved that time-shifting results in a phase change in the frequency
domain.

7-2.3 Frequency-Shift Property

Consider a sequence y[n] = ejω̂0nx[n] where the DTFT of x[n] is X(ejω̂). The
multiplication by a complex exponential causes a frequency shift in the DTFT of y[n]
compared to the DTFT of x[n]. By definition, the DTFT of y[n] is

Y (ejω̂) =
∞
∑

n=−∞
ejω̂0nx[n]
︸ ︷︷ ︸

y[n]
e−jω̂n (7.23)

If we combine the exponentials in the summation on the right side of (7.23), we obtain

Y (ejω̂) =
∞
∑

n=−∞
x[n]e−j (ω̂−ω̂0)n = X(ej(ω̂−ω̂0)) (7.24)

Therefore, we have proved the following general property of the DTFT:

Frequency-Shift Property of the DTFT

y[n] = ejω̂0nx[n] DTFT←→ Y (ejω̂) = X(ej(ω̂−ω̂0))
(7.25)

7-2.3.1 DTFT of a Finite-Length Complex Exponential

An excellent illustration of the frequency-shifting property comes from studying the
DTFT of a finite-duration complex exponential. This is an important case for bandpass
filter design and for spectrum analysis. In spectrum analysis, we would expect the DTFT
to have a large value at the frequency of the finite-duration complex exponential signal,
and the frequency-shifting property makes it easy to see that fact.

Consider a length-L complex exponential signal

xL[n] = Aej(ω̂0n+ϕ) for n = 0, 1, 2, . . . , L− 1
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Figure 7-3 Illustration of DTFT frequency-shifting
property. (a) DTFT magnitude for the length-20 unit
amplitude rectangular pulse. (b) DTFT of a
length-20 complex exponential with amplitude
A = 0.2, and whose frequency is ω̂0 = 0.4π .

which is zero for n < 0 and n ≥ L. An alternative representation for xL[n] is the product
of a length-L rectangular pulse times the complex exponential.

xL[n] = Aejϕ ej (ω̂0n) rL[n]
︸ ︷︷ ︸

frequency shift

where the rectangular pulse rL[n] is equal to one for n = 0, 1, 2, . . . , L− 1, and zero
elsewhere.

To determine an expression for the DTFT of xL[n], we use the DTFT of rL[n]
which is known to contain a Dirichlet form6 as in (7.5) (also see Table 7-1 on p. 293).
Figure 7-3(a) shows the DTFT magnitude for a length-20 rectangular pulse (i.e.,
|R20(e

jω̂)| = |D20(ω̂)|). The peak value of the Dirichlet magnitude is 20 at ω̂ = 0, and
there are zeros at integer multiples of 2π/20 = 0.1π , when L = 20.

Then the DTFT of x
L
[n] is obtained with the frequency-shifting property:

XL(e
jω̂) = Aejϕ RL(ej (ω̂−ω̂0)) (7.26a)

= AejϕDL(ω̂ − ω̂0) e
−j (ω̂−ω̂0)(L−1)/2 (7.26b)

where DL(ω̂ − ω̂0) is a frequency-shifted version of the Dirichlet form

DL(ω̂ − ω̂0) = sin((ω̂ − ω̂0)L/2)

sin((ω̂ − ω̂0)/2)
(7.27)

Since the exponential terms in (7.26b) only contribute to the phase, this result says that
the magnitude |X

L
(ejω̂)| = A|DL(ω̂− ω̂0)| is a frequency-shifted Dirichlet that is scaled

byA. For ω̂0 = 0.4π ,A = 0.2, andL = 20, the length-20 complex exponential, x20[n] =
0.2 exp(j0.4πn)r20[n] has the DTFT magnitude shown in Fig. 7-3(b). Notice that the
peak of the shifted Dirichlet envelope is at the frequency of the complex exponential,
ω̂0 = 0.4π . The peak height is the product of the Dirichlet peak height and the amplitude
of the complex exponential, AL = (0.2)(20) = 4.

6The Dirichlet form was first defined in Section 6-7 on p. 235.
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Figure 7-4 DTFT of a length-20 sinusoid with
amplitude A = 0.2, and frequency ω̂0 = 0.4π .

7-2.3.2 DTFT of a Finite-Length Real Cosine Signal

A sinusoid is composed of two complex exponentials, so the frequency-shifting property
has to be applied twice to obtain the DTFT. Consider a length-L sinusoid

s
L
[n] = A cos(ω̂0n+ ϕ) for n = 0, 1, . . . , L− 1 (7.28a)

which we can write as the sum of complex exponentials at frequencies +ω̂0 and −ω̂0 as
follows:

s
L
[n] = 1

2Ae
jϕejω̂0n + 1

2Ae
−jϕe−jω̂0n for n = 0, 1, . . . , L− 1 (7.28b)

Using the linearity of the DTFT and (7.26b) for the two frequencies ±ω̂0 leads to the
expression

S
L
(ejω̂)= 1

2Ae
jϕDL(ω̂ − ω̂0)e

−j (ω̂−ω̂0)(L−1)/2

+ 1
2Ae

−jϕDL(ω̂ + ω̂0)e
−j (ω̂+ω̂0)(L−1)/2 (7.29)

where the functionDL(ω̂) is the Dirichlet form in (7.27). In words, the DTFT is the sum
of two Dirichlets: one shifted up to +ω̂0 and the other down to −ω̂0.

Figure 7-4 shows |S20(e
jω̂)| as a function of ω̂ for the case ω̂0 = 0.4π with A = 0.2

and L = 20. The DTFT magnitude exhibits its characteristic even symmetry, and the
peaks of the DTFT occur near ω̂0 = ±0.4π . Furthermore, the peak heights are equal to
approximately 1

2AL. This approximation comes from evaluating (7.29) for ω̂0 = 0.4π ,
and assuming that the value of |S20(e

jω̂0)| is determined entirely by the first term in (7.29).
In Section 8-7, we will revisit the fact that isolated spectral peaks are often indicative

of sinusoidal signal components. Knowledge that the peak height depends on both the
amplitude A and the duration L is useful in interpreting spectrum analysis results for
signals involving multiple frequencies.

7-2.4 Convolution and the DTFT

Perhaps the most important property of the DTFT concerns the DTFT of a sequence that
is the discrete-time convolution of two sequences. The following property says that the
DTFT transforms convolution into multiplication.

Convolution Property of the DTFT

y[n] = x[n] ∗ h[n] DTFT←→ Y (ejω̂) = X(ejω̂)H(ejω̂) (7.30)
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To illustrate the convolution property, consider the convolution of two signals
h[n] ∗ x[n], where x[n] is a finite-length signal with three nonzero values

x[n] = 3δ[n] + 4δ[n− 1] + 5δ[n− 2] (7.31)

and h[n] is a signal whose length may be finite or infinite. When the signal x[n] is
convolved with h[n], we can write

y[n] =
M
∑

k=0

x[k]h[n− k]

= x[0]h[n] + x[1]h[n− 1] + x[2]h[n− 2] + x[3]h[n− 3] + · · ·
︸ ︷︷ ︸

these terms are zero

(7.32)

If we then take the DTFT of (7.32), we obtain

Y (ejω̂) = x[0]H(ejω̂)+ x[1]e−jω̂H(ejω̂)+ x[2] e−j2ω̂H(ejω̂)
︸ ︷︷ ︸

(7.33)

where the delay property applied to a term like h[n− 2] creates the term e−j2ω̂H(ejω̂).
Then we observe that the term H(ejω̂) on the right-hand side of (7.33) can be factored
out to write

Y (ejω̂) =
(

x[0] + x[1]e−jω̂ + x[2]e−j2ω̂
)

︸ ︷︷ ︸

DTFT of x[n]

H(ejω̂) (7.34a)

and, therefore, we have the desired result which is multiplication of the DTFTs as asserted
in (7.30).

Y (ejω̂) = X(ejω̂)H(ejω̂) (7.34b)

Substituting the signal values for x[n] in this example we obtain

Y (ejω̂) = X(ejω̂)H(ejω̂) =
(

3+ 4e−jω̂ + 5e−j2ω̂
)

︸ ︷︷ ︸

coefficients are signal values

H(ejω̂) (7.34c)

The steps above do not depend on the numerical values of the signal x[n], so a general
proof could be constructed along these lines. In fact, the proof would be valid for signals of
infinite length, where the limits on the sum in (7.32) would be infinite. The only additional
concern for the infinite-length case would be that the DTFTs X(ejω̂) and H(ejω̂) must
exist as we have discussed before.

EXAMPLE 7-4 Frequency Response of Delay

The delay property is a special case of the convolution property of the DTFT. To see this,
recall that we can represent delay as the convolution with a shifted impulse

y[n] = x[n] ∗ δ[n− nd] = x[n− nd]
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so the impulse response of a delay system is h[n] = δ[n− nd]. The corresponding
frequency response (i.e., DTFT) of the delay system is

H(ejω̂) =
∞
∑

n=−∞
δ[n− nd]e−jω̂n = e−jω̂nd

Therefore, using the convolution property, the DTFT of the output of the delay system is

Y (ejω̂) = X(ejω̂)H(ejω̂) = X(ejω̂)e−jω̂nd
which is identical to the delay property of (7.19).

7-2.4.1 Filtering is Convolution

The convolution property of LTI systems provides an effective way to think about LTI
systems. In particular, when we think of LTI systems as “filters” we are thinking of
their frequency responses, which can be chosen so that some frequencies of the input
are blocked while others pass through with little modification. As we discussed in
Section 7-1.11, the DTFTX(ejω̂) plays the role of spectrum for both finite-length signals
and infinite-length signals. The convolution property (7.30) reinforces this view. If we use
(7.30) to write the expression for the output of an LTI system using the DTFT synthesis
integral, we have

y[n] = 1

2π

2π
∫

0

H(ejω̂)X(ejω̂)ejω̂ndω̂ (7.35a)

which can be approximated with a Riemann sum as in Section 7-1.11

y[n] = lim
�ω̂→0

N−1
∑

k=0

H(ejω̂k )

(

�ω̂

2π
X(ejω̂k )

)

ejω̂kn (7.35b)

Now we see that the complex amplitude �ω̂
2π X(e

jω̂k ) at each frequency is modified by
the frequency response H(ejω̂k ) of the system evaluated at the given frequency ω̂k. This
is exactly the same result as the sinusoid-in gives sinusoid-out property that we saw
in Chapter 6 for case where the input is a discrete sum of complex exponentials. In
Section 7-3, we will expand on this idea and define several ideal frequency-selective
filters whose frequency responses are ideal versions of filters that we might want to
implement in a signal processing application.

7-2.5 Energy Spectrum and the Autocorrelation Function

An important result in Fourier transform theory is Parseval’s Theorem:

Parseval’s Theorem for the Energy of a Signal
∞
∑

n=−∞
|x[n]|2 = 1

2π

π
∫

−π
|X(ejω̂)|2dω̂ (7.36)
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The left-hand side of (7.36) is a scalar value which is the energy in the signal. Thus, the
right-hand side of (7.36) is also the energy, but the DTFT |X(ejω̂)|2 shows how the energy
is distributed versus frequency. Therefore, the DTFT |X(ejω̂)|2 is called the magnitude-
squared spectrum or the energy spectrum of x[n].7 If we first define the energy of a signal
as the sum of the squares

E =
∞
∑

n=−∞
|x[n]|2 (7.37)

then the energy E is a single number that is often a convenient measure of the size of the
signal.

EXAMPLE 7-5 Energy of the Sinc Signal

The energy of the sinc signal (expressed in the time domain) is

E =
∞
∑

n=−∞

(

sin ω̂bn

πn

)2

While it is impossible to evaluate this sum directly, application of Parseval’s theorem
yields

E =
∞
∑

n=−∞

(

sin ω̂bn

πn

)2

= 1

2π

ω̂b∫

−ω̂b

|1|2dω̂ = ω̂b

π

because the DTFT of the sinc signal is one for −ω̂b ≤ ω̂ ≤ ω̂b. A simple interpretation
of this result is that the energy is proportional to the bandwidth of the sinc signal and
evenly distributed in ω̂ across the band |ω̂| ≤ ω̂b.

7-2.5.1 Autocorrelation Function

The energy spectrum is the Fourier transform of a time-domain signal which turns out
to be the autocorrelation of x[n]. The autocorrelation function is widely used in signal
detection applications. Its usual definition (7.39) is equivalent to the following convolution
operation:

cxx[n] = x[−n] ∗ x[n] =
∞
∑

k=−∞
x[−k]x[n− k] (7.38)

By making the substitution m = −k for the dummy index of summation, we can write

cxx[n] =
∞
∑

m=−∞
x[m]x[n+m] −∞ < n <∞ (7.39)

7In many physical systems, energy is calculated by taking the square of a physical quantity (like voltage)
and integrating, or summing, over time.
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which is the basic definition of the autocorrelation function when x[n] is real. Observe that
in (7.39), the index n serves to shift x[n+m] with respect to x[m] when both sequences
are thought of as functions ofm. It can be shown that cxx[n] is maximum atn = 0, because
then, x[n+m] is perfectly aligned with x[m]. The independent variable n in cxx[n] is
often called the “lag” by virtue of its meaning as a shift between two copies of the same
sequence x[n]. When the lag is zero (n = 0) in (7.39), the value of the autocorrelation is
equal to the energy in the signal (i.e., E = cxx[0]).

EXERCISE 7.5 In (7.38), we use the time-reversed signal x[−n]. Show that the DTFT of x[−n] is
X(e−jω̂).

EXERCISE 7.6 In Chapter 6, we saw that the frequency response for a real impulse response must
be conjugate symmetric. Since the frequency response function is a DTFT, it must
also be true that the DTFT of a real signal x[n] is conjugate symmetric. Show that if
x[n] is real, X(e−jω̂) = X∗(ejω̂).

Using the results of Exercises 7.5 and 7.6 for real signals, the DTFT of the
autocorrelation function cxx[n] = x[−n] ∗ x[n] is

Cxx(e
jω̂) = X(e−jω̂)X(ejω̂) = X∗(ejω̂)X(ejω̂) = |X(ejω̂)|2 (7.40)

SinceCxx(ejω̂) can be written as a magnitude squared, it is purely real andCxx(ejω̂) ≥ 0.
A useful relationship results if we represent cxx[n] in terms of its inverse DTFT, that is,

cxx[n] = 1

2π

π
∫

−π
|X(ejω̂)|2ejω̂ndω̂ (7.41)

If we evaluate both (7.39) and (7.41) at n = 0, we see that the energy of the sequence can
also be computed from Cxx(e

jω̂) = |X(ejω̂)|2 as follows:

∞
∑

m=−∞
|x[n]|2 = cxx[0] = 1

2π

π
∫

−π
|X(ejω̂)|2dω̂ (7.42)

Finally, equating (7.37) and (7.42) we obtain Parseval’s Theorem (7.36).

7-3 Ideal Filters

In any practical application of LTI discrete-time systems, the frequency response function
H(ejω̂) would be derived by a filter design procedure that would yield an LTI system
that could be implemented with finite computation. However, in the early phases of the
system design process it is common practice to start with ideal filters that have simple
frequency responses that provide ideal frequency selectivity.
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7-3.1 Ideal Lowpass Filter

An ideal lowpass filter (LPF) has a frequency response that consists of two regions: the
passband near ω̂ = 0 (DC), where the frequency response is one, and the stopband away
from ω̂ = 0, where it is zero. An ideal LPF is therefore defined as

Hlp(e
jω̂) =

{

1 |ω̂| ≤ ω̂co

0 ω̂co < |ω̂| ≤ π
(7.43)

The frequency ω̂co is called the cutoff frequency of the LPF passband. Figure 7-5 shows a
plot ofHlp(e

jω̂) for the ideal LPF.The shape is rectangular andHlp(e
jω̂) is even symmetric

about ω̂ = 0. As discussed in Section 6-4.3, this property is needed because real-valued
impulse responses lead to filters with a conjugate symmetric frequency responses. Since
Hlp(e

jω̂) has zero phase, it is real-valued, so being conjugate symmetric is equivalent to
being an even function.

EXERCISE 7.7 In Chapter 6, we saw that the frequency response for a real impulse response must
be conjugate symmetric. Show that a lowpass frequency response defined with linear
phase

H(ejω̂) = e−j7ω̂Hlp(e
jω̂)

is conjugate symmetric, which would imply that its inverse DTFT is real.

The impulse response of the ideal LPF, found by applying the DTFT pair in (7.13),
is a sinc function form

hlp[n] = sin ω̂con

πn
−∞ < n <∞ (7.44)

The ideal LPF is impossible to implement because the impulse response hlp[n] is non-
causal and, in fact, has nonzero values for large negative indices as well as large positive
indices. However, that does not invalidate the ideal LPF concept—the idea of selecting
the low-frequency band and rejecting all other frequency components. Even the running
average filter discussed in Section 6-7.3 might be a satisfactory LPF in some applications.
Figure 7-6 shows the frequency response of an 11-point running average filter. Note

0

1

HLP.ej O!/

– O!
Frequency . O!/

O!co– O!co
Figure 7-5 Frequency response of an ideal LPF with
its cutoff at ω̂co rad. Recall that Hlp(e

jω̂) must also be
periodic with period 2π .
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Figure 7-6 Magnitude response of an 11-point
running average filter. (Also shown in full detail in
Fig. 6-8.)

that this causal filter has a lowpass-like frequency response magnitude, but it is far
away from zero in what might be considered the stopband. In more stringent filtering
applications, we need better approximations to the ideal characteristic. In a practical
application, the process of filter design involves mathematical approximation of the ideal
filter with a frequency response that is close enough to the ideal frequency response while
corresponding to an implementable filter.

The following example shows the power of the transform approach when dealing
with filtering problems.

EXAMPLE 7-6 Ideal Lowpass Filtering

Consider an ideal LPF with frequency response given by (7.43) and impulse response
in (7.44). Now suppose that the input signal x[n] to the ideal LPF is a bandlimited sinc
signal

x[n] = sin ω̂bn

πn
(7.45)

Working in the time domain, the corresponding output of the ideal LPF would be given
by the convolution expression

y[n] = x[n] ∗ hlp[n] =
∞
∑

m=−∞

(

sin ω̂bm

πm

)(

sin ω̂co(n−m)
π(n−m)

)

(7.46)

Evaluating this convolution directly in the time domain is impossible both analytically
and via numerical computation. However, it is straightforward to obtain the filter output
if we use the DTFT because in the frequency domain the transforms are both rectangles
and they are multiplied. From (7.13), the DTFT of the input is

X(ejω̂) =
{

1 |ω̂| ≤ ω̂b
0 ω̂b < |ω̂| ≤ π

(7.47)

Therefore, the DTFT of the ideal filter’s output is Y (ejω̂) = X(ejω̂)H(ejω̂), which would
be of the form

Y (ejω̂) = X(ejω̂)Hlp(e
jω̂) =

{

1 |ω̂| ≤ ω̂a
0 ω̂a < |ω̂| ≤ π

(7.48a)
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When multiplying the DTFTs to get the right-hand side of (7.48a), the product of the two
rectangles is another rectangle whose width is the smaller of ω̂b and ω̂co, so the bandlimit
frequency ω̂a is

ω̂a = min(ω̂b, ω̂co) (7.48b)

Since we want to determine the output signal y[n], we must take the inverse DTFT of
Y (ejω̂). Thus, using (7.13) to do the inverse transformation, the convolution in (7.46)
must evaluate to another sinc signal

y[n] =
∞
∑

m=−∞

(

sin ω̂bm

πm

)(

sin ω̂co(n−m)
π(n−m)

)

= sin ω̂an

πn
(7.49)

EXERCISE 7.8 The result given (7.48a) and (7.48b) is easily seen from a graphical solution that shows
the rectangular shapes of the DTFTs. With ω̂b = 0.4π and ω̂co = 0.25π , sketch plots
ofX(ejω̂) from (7.47) andHlp(e

jω̂) in (7.43) on the same set of axes and then verify
the result in (7.48b).

We can generalize the result of Example 7-6 in several interesting ways. First, when
ω̂b > ω̂co we can see that the output is the impulse response of the ideal LPF, so the input
(7.45) in a sense acts like an impulse to the ideal LPF. Furthermore, for ideal filters where
a band of frequencies is completely removed by the filter, many different inputs could
produce the same output. Also, we can see that if the bandlimit ω̂b of the input to an
ideal LPF is less than the cutoff frequency (i.e., ω̂b ≤ ω̂co), then the input signal passes
through the filter unchanged. Finally, if the input consists of a desired bandlimited signal
plus some sort of competing signal such as noise whose spectrum extends over the entire
range |ω̂| ≤ π , then if the signal spectrum is concentrated in a band |ω̂| ≤ ω̂b, it follows
by the principle of superposition that an ideal LPF with cutoff frequency ω̂co = ω̂b passes
the desired signal without modification while removing all frequencies in the spectrum
of the competing signal above the cutoff frequency. This is often the motivation for using
a LPF.

7-3.2 Ideal Highpass Filter

The ideal highpass filter (HPF) has its stopband centered on low frequencies, and its
passband extends from |ω̂| = ω̂co out to |ω̂| = π . (The highest normalized frequency in
a sampled signal is, of course, π .)

Hhp(e
jω̂) =

{

0 |ω̂| ≤ ω̂co

1 ω̂co < |ω̂| ≤ π
(7.50)

Figure 7-7 shows an ideal HPF with its cutoff frequency at ω̂co rad/s. In this case, the
high frequency components of a signal pass through the filter unchanged while the
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Figure 7-7 Frequency response of
an ideal HPF with cutoff at ω̂co rad.

low frequency components are completely eliminated. Highpass filters are often used
to remove constant levels (DC) from sampled signals. Like the ideal LPF, we should
define the ideal highpass filter with conjugate symmetry Hhp(e

−jω̂) = H ∗hp(e
jω̂) so that

the corresponding impulse response is a real function of time.

EXERCISE 7.9 If Hlp(e
jω̂) is an ideal LPF with its cutoff frequency at ω̂co as plotted in Fig. 7-5,

show that the frequency response of an ideal HPF with cutoff frequency ω̂co can be
represented by

Hhp(e
jω̂) = 1−Hlp(e

jω̂)

Hint: Make a plot of the function 1−Hlp(e
jω̂).

EXERCISE 7.10 Using the results of Exercise 7.9, show that the impulse response of the ideal HPF is

hhp[n] = δ[n] − sin(ω̂con)

πn

7-3.3 Ideal Bandpass Filter

The ideal bandpass filter (BPF) has a passband centered away from the low-frequency
band, so it has two stopbands, one near ω̂ = 0 and the other at high frequencies. Two
cutoff frequencies must be given to specify the ideal BPF, ω̂co1 for the lower cutoff, and
ω̂co2 for the upper cutoff. Thus, the ideal BPF has frequency response

Hbp(e
jω̂) =

⎧

⎪
⎨

⎪
⎩

0 |ω̂| < ω̂co1

1 ω̂co1 ≤ |ω̂| ≤ ω̂co2

0 ω̂co2 < |ω̂| ≤ π
(7.51)

Figure 7-8 shows an ideal BPF with its cutoff frequencies at ω̂co1 and ω̂co2 . Once again we
use a symmetrical definition of the passbands and stopbands which is required to make the
corresponding impulse response real. In this case, all complex exponential components
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with its passband from ω̂ = ω̂co1 to ω̂ = ω̂co2 rad.

of a signal that lie in the band ω̂co1 ≤ |ω̂| ≤ ω̂co2 are passed unchanged through the filter,
while those at other frequencies are completely removed.

EXERCISE 7.11 IfHbp(e
jω̂) is an ideal BPF with its cutoffs at ω̂co1 and ω̂co2 , show by plotting that the

filter defined byHbr(e
jω̂) = 1−Hbp(e

jω̂) could be called an ideal band-reject filter.
Determine the edges of the stopband of the band-reject filter.

7-4 Practical FIR Filters

Ideal filters are useful concepts, but not practical since they cannot be implemented with
a finite amount of computation. Therefore, we perform filter design to approximate an
ideal frequency response to get a practical filter. For FIR filters, a filter design method
must produce filter coefficients {bk} for the time-domain implementation of the FIR filter
as a difference equation

y[n] = b0x[n] + b1x[n− 1] + b2x[n− 2] + · · · + bMx[n−M]
The filter coefficients are the values of the impulse response, and the DTFT of the impulse
response determines the actual magnitude and phase of the designed frequency response,
which can then be assessed to determine how closely it matches the desired ideal response.
There are many ways to approximate the ideal frequency response, but we concentrate
on the method of windowing which can be analyzed via the DTFT.

7-4.1 Windowing

The concept of windowing is widely used in signal processing. The basic idea is to extract
a finite section of a very long signal x[n] via multiplicationw[n]x[n+n0]. This approach
works if the window function w[n] is zero outside of a finite-length interval. In filter
design the window truncates the infinitely long ideal impulse response hi[n],8 and then
modifies the truncated impulse response. The simplest window function is the L-point
rectangular window which is the same as the rectangular pulse studied in Section 7-1.5.

wr [n] = rL[n] =
{

1 0 ≤ n ≤ L− 1

0 elsewhere
(7.52)

8The subscript i denotes an ideal filter of the type discussed in Section 7-3.
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Multiplying by a rectangular window only truncates a signal.
The important idea of windowing is that the productwr [n]hi[n+n0] extractsL values

from the signal hi[n] starting at n = n0. For the rectangular window, we obtain

wr [n]hi[n+ n0] =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 n < 0

�
��

1

wr [n]hi[n+ n0] 0 ≤ n ≤ L− 1

0 n ≥ L
(7.53)

The name window comes from the idea that we can only “see” L values of the signal
hi[n+ n0] within the window interval when we “look” through the window. Multiplying
by w[n] is looking through the window. When we change n0, the signal shifts, and we
see a different length-L section of the signal.

The nonzero values of the window function do not have to be all ones, but they should
be positive. For example, the symmetric L-point Hamming window9 is defined as

wm[n] =
{

0.54− 0.46 cos(2πn/(L− 1)) 0 ≤ n ≤ L− 1

0 elsewhere
(7.54)

The MATLAB function hamming(L) computes a vector with values given by (7.54).
The stem plot of the Hamming window in Fig. 7-9 shows that the values are larger in
the middle and taper off near the ends. The window length can be even or odd, but an
odd-length Hamming window is easier to characterize. Its maximum value is 1.0 which
occurs at the midpoint index location n = (L−1)/2, and the window is symmetric about
the midpoint, with even symmetry because wm[n] = wm[L− 1− n].

7-4.2 Filter Design

Ideal Filters are defined by their frequency responses, consisting of perfect passbands
and stopbands. An ideal filter cannot be an FIR filter because there is no finite set of filter
coefficients whose DTFT is equal to the ideal frequency response. Recall from Fig. 7-1
that the impulse response of the ideal LPF is an infinitely long sinc function as shown by
the following DTFT pair:

hi[n] = sin(ω̂con)

πn

DTFT←→ Hi(e
jω̂) =

{

1 |ω̂| ≤ ω̂co

0 ω̂co < |ω̂| ≤ π
(7.55)

0 5 10 15 20 25
0

1

Time Index .n/

wmŒn�
1

2

Figure 7-9 Length-25 Hamming window is
nonzero only for n = 0, 1, . . . , 24.

9This window is named for Richard Hamming who found that improved frequency-domain characteristics
result from slight adjustments in the 0.5 coefficients of the Hann window (8.49) discussed in Chapter 8.
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where ω̂co is the cutoff frequency of the ideal LPF, which separates the passband from the
stopband. The sinc function is infinitely long.

7-4.2.1 Window the Ideal Impulse Response

In order to make a practical FIR filter, we can multiply the sinc function by a window to
produce a length-L impulse response. However, we must also shift the sinc function so
that its main lobe is in the center of the window, because intuitively we should use the
largest values from the ideal impulse response. From the shifting property of the DTFT,
the time shift of (L− 1)/2 introduces a linear phase in the DTFT. Thus, the impulse
response obtained from windowing is

h[n] =w[n]hi[n− (L− 1)/2]

=
⎧

⎨

⎩

w[n]sin(ω̂co(n− (L− 1)/2))
π(n− (L− 1)/2) n = 0, 1, . . . , L− 1

0 elsewhere
(7.56)

where w[n] is the window, either rectangular or Hamming.10 Since the nonzero domain
of the window starts at n = 0, the resulting FIR filter is causal. We usually say that the
practical FIR filter has an impulse response that is a windowed version of the ideal impulse
response.

The windowing operation is shown in Fig. 7-10(a) for the rectangular window
which truncates the ideal impulse response to length L = 25. In Fig. 7-10(b), the
Hamming-windowed impulse response hm[n] results from truncating the ideal impulse
response, and also weighting the values to reduce the ends more than the middle.
The midpoint value is preserved (i.e., hm[12] = ω̂co/π ) while the first and last points
are 8% of their original values (e.g., hm[0] = 0.08hi[0]). A continuous outline of
the Hamming window is drawn in (a) to show the weighting that is applied to the
truncated ideal impulse response. The benefit of using the Hamming window comes
from the fact that it smoothly tapers the ends of the truncated ideal lowpass impulse
response.

7-4.2.2 Frequency Response of Practical Filters

A practical filter is a causal length-L filter whose frequency response closely
approximates the desired frequency response of an ideal filter. Although it is
possible to take the DTFT of a windowed sinc, the resulting formula is quite
complicated and does not offer much insight into the quality of the frequency-
domain approximation. Instead, we can evaluate the frequency reponse directly using
MATLAB’s freqz function because we have a simple formula for the windowed filter
coefficients.

10We only consider rectangular and Hamming windows here, but there are many other window functions,
and each of them results in filters with different frequency response characteristics.
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Figure 7-10 Impulse responses for two LPFs.
(a) Length-25 LPF with rectangular window
(i.e., truncated sinc function). (b) Length-25
LPF using 25-point Hamming window
multiplying a sinc function. The shape of the
Hamming window is shown in (a) because it
truncates and multiplies the sinc function
shown in (a) to give the plot in (b).

Figure 7-11(a) shows the magnitude response for an FIR filter whose impulse response
is a length-25 truncated ideal impulse response with ω̂co = 0.4π . The passband of the
actual filter is not flat but it oscillates above and below the desired passband value of one;
the same behavior is exhibited in the stopband. These passband and stopband ripples
are usually observed for practical FIR filters that approximate ideal LPFs, and they are
particularly noticeable with the rectangular window.
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Figure 7-11 Frequency response magnitudes for
LPFs whose impulse responses are shown in
Fig. 7-10. (a) Length-25 LPF whose impulse
response is a truncated sinc function obtained
with a rectangular window. (b) Length-25 LPF
whose impulse response is the product of a
25-point Hamming window and a sinc function.
The ideal LPF with ω̂co = 0.4π is shown in gray.
The phase response of both of these filters is a
linear phase with slope −(L− 1)/2 = −12.
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Figure 7-11(b) shows the magnitude response for an FIR filter whose impulse response
is a length-25 Hamming-windowed sinc. In this case, the ripples are not visible on the
magnitude plot because the scale is linear and the ripples are tiny, less than 0.0033. In
terms of approximating the value of one in the passband and zero in the stopband, the
Hamming-windowed ideal LPF is much better. However, this improved approximation
comes at a cost—the edge of the passband near the cutoff frequency has a much lower
slope. In filter design, we usually say it “falls off more slowly” from the passband to the
stopband. Before we can answer the question of which filter is better, we must decide
whether ripples are more important than the fall off rate from passband to stopband, or
vice versa.

7-4.2.3 Passband Defined for the Frequency Response

Frequency-selective digital filters (e.g., LPFs, BPFs, and HPFs) have a magnitude
response that is close to one in some frequency regions, and close to zero in others. For
example, the plot in Fig. 7-12(a) is an LPF whose magnitude response is within
(approximately)±10% of one when 0 ≤ ω̂ < 0.364π . This region where the magnitude
is close to one is called the passband of the filter. It is useful to have a precise definition
of the passband edges, so that the passband width can be measured and we can compare
different filters.

From a plot of the magnitude response (e.g., via freqz in MATLAB) it is possible
to determine the set of frequencies where the magnitude is very close to one, as defined
by
∣

∣|H(ejω̂)| − 1
∣

∣ being less than δp, which is called the passband ripple. A common
design choice for the desired passband ripple is a value between 0.01 and 0.1 (i.e., 1%
to 10%). For a LPF, the passband region extends from ω̂ = 0 to ω̂p, where the parameter
ω̂p is called the passband edge.
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Figure 7-12 Magnitude response within an LPF
template showing passband and stopband ripple
tolerances along with the transition zone. (a)
Length-25 LPF Hr(ejω̂) with rectangular window
(i.e., truncated sinc). (b) Length-25 LPF Hm(ejω̂)
using 25-point Hamming window. Only the positive
half of the frequency axis is shown, because the
magnitude response is an even function whenever
the impulse response is real.
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For the two LPFs shown in Fig. 7-12, we can make an accurate measurement of
δp and ω̂p from the zoomed plots in Fig. 7-13. For the rectangular window case, a
careful measurement gives a maximum passband ripple size of δp = 0.104, with the
passband edge at ω̂p = 0.364π . For the Hamming window case, we need the zoomed
plot of the passband region to see the ripples, as in Fig. 7-13(b). Then we can measure
the passband ripple to be δp = 0.003 for the Hamming window case—more than
30 times smaller. Once we settle on the passband ripple height, we can measure the
passband edge—in Fig. 7-12(b) it is ω̂p = 0.2596π . Notice that the actual passband
edges are not equal to the design parameter ω̂co which is called the cutoff frequency.
There is sometimes a confusion when the terminology “passband cutoff frequency”
is used to mean passband edge, which then implies that ω̂co and ω̂p might be the
same, but after doing a few examples it should become clear that this is never the
case.

7-4.2.4 Stopband Defined for the Frequency Response

When the frequency response (magnitude) of the digital filter is close to zero, we have
the stopband region of the filter. The stopband is a region of the form ω̂s ≤ ω̂ ≤ π , if the
magnitude response of a LPF is plotted only for nonnegative frequencies. The parameter
ω̂s is called the stopband edge. In the rectangular window LPF example of Figs. 7-12(a)
and 7-13(a), the magnitude response is close to zero when 0.438π ≤ ω̂ ≤ π (i.e., high
frequencies). The stopband ripple for this region is expected to be less than 0.1, and is
measured to be δs = 0.077. For the rectangular windowed sinc, the stopband edge is
ω̂s = 0.4383π .
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Figure 7-13 Blowup of the error between the
actual magnitude response and the ideal,
E(ejω̂) = |H(ejω̂)|− |Hi(ejω̂)|, which shows the
passband and stopband ripples. (a) Length-25
LPF Hr(ejω̂) with rectangular window (i.e.,
truncated ideal lowpass impulse response).
(b) Length-25 LPF Hm(ejω̂) using 25-point
Hamming window. The ripples for the Hamming
case are more than 30 times smaller.
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We can repeat this process for the Hamming window LPF using Figs. 7-12(b) and
7-13(b) to determine the stopband ripple δs , and then the set of frequencies where the
magnitude is less than δs . The result is a stopband ripple measurement of 0.0033, and a
corresponding stopband edge of ω̂s = 0.5361π .

7-4.2.5 Transition Zone of the LPF

Unlike an ideal LPF where the stopband begins at the same frequency where the
passband ends, in a practical filter there is always a nonzero difference between
the passband edge and the stopband edge. This difference is called the transition
width of the filter: �ω̂ = ω̂s − ω̂p. The smaller the transition width, the better
the filter because it is closer to the ideal filter which has a transition width of
zero.

For the LPFs in Fig. 7-12, the measured transition width of the rectangular windowed
sinc is

�ω̂r = ω̂s − ω̂p = 0.4383π − 0.3646π = 0.0737π (7.57a)

while the Hamming windowed sinc has a much wider transition width—almost four times
wider

�ω̂m = ω̂s − ω̂p = 0.5361π − 0.2596π = 0.2765π (7.57b)

EXAMPLE 7-7 Transition Width versus Filter Order

One property of the transition width is that it can be controlled by changing the filter order.
There is an approximate inverse relationship, so doubling the order reduces the transition
width by roughly one half. We can test this idea on the length-25 rectangular window
LPF in Fig. 7-12(b) which has an order equal to 24. If we design a new LPF that has
the same cutoff frequency, ω̂co = 0.4π , but twice the order (i.e., M = 48), then we can
repeat the measurement of the bandedges ω̂p, ω̂s , and the transition width �ω̂.

Filter Order: M ω̂p ω̂s �ω̂

Rect 24 0.3646π 0.4383π 0.0737π
Rect 48 0.3824π 0.4192π 0.0368π
Rect 96 0.3909π 0.4100π 0.0191π
Hamming 24 0.2596π 0.5361π 0.2765π
Hamming 48 0.3308π 0.4687π 0.1379π
Hamming 96 0.3660π 0.4340π 0.0680π
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Comparing the values of �ω̂, the ratio is (0.0737π)/(0.0368π) = 2.003. Doubling
the order once more to M = 96 gives a transition width of 0.0191π , so the ratio
is (0.0737π)/(0.0191π) = 3.86 ≈ 4. For the Hamming window case, the measured
transition width for M = 48 is �ω̂ = 0.1379π , and for M = 96, �ω̂ = 0.0680π . The
ratios of 0.2765π to 0.1379π and 0.0680π are 2.005 and 4.066 which matches the
approximate inverse relationship expected.

When comparing the transition widths in (7.57a) and (7.57b), we see that �ω̂m =
3.75�ω̂r , so the transition width of the Hamming window LPF is almost four times
larger for L = 25. This empirical observation confirms the statement, “when comparing
equal-order FIR filters that approximate a LPF, the one with larger transition width has
smaller ripples.” However, this statement does not mean that the ripples can be reduced
merely by widening the transition width. Within one window type, such as Hamming
window filters, changing the transition width does not change the ripples by more than a
few percent.

LAB
FIR Filter Design

7-4.2.6 Summary of Filter Specifications

The foregoing discussion of ripples, bandedges, and transition width can be
summarized with the tolerance scheme shown in Fig. 7-12. The filter design
process is to approximate the ideal frequency response very closely. Once we
specify the desired ripples and bandedges, we can draw a template around the
ideal frequency response. The template should, in effect, give the trade-off between
ripple size and transition width. Then an acceptable filter design would be any FIR
filter whose magnitude response lies entirely within the template. The Hamming
window method is just one possible design method among many that have been
developed.

DEMO
Filter Design GUI

7-4.3 GUI for Filter Design

The DSP-First GUI called filterdesign illustrates several filter design methods
for LPF, BPF, and HPF filters. The interface is shown in Fig. 7-14. Both FIR
and IIR filters can be designed, but we are presently interested in the FIR case
which is selected with the FIR button in the upper right. The default design
method is the Window Method using a Hamming window. The window type can
be changed by selecting another window type from the drop-down list in the lower
right. To specify the design it is necessary to set the order of the FIR filter and
choose one or more cutoff frequencies; these parameters can be entered in the edit
boxes.

The plot initially shows the frequency response magnitude on a linear scale, with
a frequency axis in Hz. Clicking on the word Magnitude toggles the magnitude scale
to a log scale in dB. Clicking on the word Frequency toggles the frequency axis to
normalized frequency ω̂, and also lets you enter the cutoff frequency using ω̂co in rad.
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Figure 7-14 Interface for the filterdesign GUI. When the filter choice is set to FIR, many
different window types can be selected, including the Hamming window and the rectangular
window (i.e., only truncation to a finite length). The specification of one or more cutoff
frequencies (fco) must be entered using continuous-time frequency (in Hz), along with a
sampling rate (fs , also in Hz). In normalized frequency, the cutoff frequency is
ω̂co = 2π(fco/fs).

Recall that ω̂co = 2π(fco/fs). The plotting region can also show the phase response of
H(ejω̂), or the impulse response of the filter h[n]. Right click on the plot region to get
a menu. The Options menu provides zooming and a grid via Options->Zoom and
Options->Grid.

The filter coefficients can be “exported” from the GUI by using the menu
File->Export Coeffs. To make some filters for comparison, redo the designs
in Fig. 7-12 and export the filter coefficients to the workspace under unique
names. Then you can make your own plot of the frequency response in MATLAB
using the freekz function (or freqz) followed by a plot command. For
example, an interesting activity would be to zoom in on the magnitude response
plots as in Fig. 7-13 to check the measurements of ripples and transition
width.

7-5 Table of Fourier Transform Properties and Pairs

Table 7-1 on p. 293 includes all the Fourier transform pairs that we have derived in
this chapter as well as one pair (the left-sided exponential) that we did not derive. In
addition, the basic properties of the Fourier transform, which make the DTFT convenient
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to use in designing and analyzing systems, are given in Table 7-2 on p. 294 for easy
reference.

7-6 Summary and Links

In this chapter, we introduced the DTFT, and developed some of its basic properties
for understanding the behavior of linear systems. The DTFT provides a frequency-
domain representation for signals as well as systems, and like other Fourier transforms
it generalizes the idea of a spectrum for a discrete-time signal. We obtained the
DTFT by generalizing the concept of the frequency response, and showed how
the inverse transform could be used to obtain the impulse response of various
ideal filters. Therefore, it is not surprising that the DTFT plays an important
role in practical filter design for methods based on rectangular and Hamming
windowing.

DEMO
Visual DTFT Pairs

Table 7-1 Basic discrete-time Fourier transform pairs.

Table of DTFT Pairs

Time-Domain: x[n] Frequency-Domain: X(ejω̂)

δ[n] 1

δ[n− nd] e−jω̂nd

rL[n] = u[n] − u[n− L] sin( 1
2Lω̂)

sin( 1
2 ω̂)

e−jω̂(L−1)/2

rL[n] ejω̂0n
sin( 1

2L(ω̂ − ω̂o))
sin( 1

2 (ω̂ − ω̂o))
e−j (ω̂−ω̂o)(L−1)/2

sin(ω̂bn)

πn

{

1 |ω̂| ≤ ω̂b
0 ω̂b < |ω̂| ≤ π

anu[n] (|a| < 1)
1

1− ae−jω̂

−bnu[−n− 1] (|b| > 1)
1

1− be−jω̂
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Table 7-2 Basic discrete-time Fourier transform properties.

Table of DTFT Properties

Property Name Time-Domain: x[n] Frequency-Domain: X(ejω̂)

Periodic in ω̂ X(ej (ω̂+2π)) = X(ejω̂)

Linearity ax1[n] + bx2[n] aX1(e
jω̂)+ bX2(e

jω̂)

Conjugate Symmetry x[n] is real X(e−jω̂) = X∗(ejω̂)

Conjugation x∗[n] X∗(e−jω̂)

Time-Reversal x[−n] X(e−jω̂)

Delay x[n− nd] e−jω̂ndX(ejω̂)

Frequency Shift x[n]ejω̂0n X(ej (ω̂−ω̂0))

Modulation x[n] cos(ω̂0n)
1
2X(e

j(ω̂−ω̂0))+ 1
2X(e

j(ω̂+ω̂0))

Convolution x[n] ∗ h[n] X(ejω̂)H(ejω̂)

Autocorrelation x[−n] ∗ x[n] |X(ejω̂)|2

Parseval’s Theorem
∞
∑

n=−∞
|x[n]|2 = 1

2π

π
∫

−π
|X(ejω̂)|2dω̂

7-7 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used for review and
practice. Most of them have detailed solutions.

NOTE
Problems with Solutions P-7.1 Determine the DTFT of each of the following sequences:

(a) x1[n] = 3δ[n− 4]DTFT←−−→X1(e
jω̂) = 3e−jω̂4

(b) x2[n] = 5δ[n− 7] − δ[n− 2] + 5δ[n+ 7]DTFT←−−→X2(e
jω̂) = 5ejω̂7 − ejω̂2 + 5ejω̂7
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(c) x3[n] = 3u[n− 2] − 3u[n− 7] =
{

3 2 ≤ n ≤ 6
0 otherwise

.

(d) x4[n] = sin(0.6πn)
7πn

DTFT

←−−→X4(e
jω̂) =

{ 1
7 ω̂ < 0.6π
0 0.6π < ω̂ < π

P-7.2 Determine the inverse DTFT of each of the following transforms:

(a) Y1(e
jω̂) = π DTFT

←−−→y1[n] = πδ[n]
(b) Y2(e

jω̂) = 3e−j4ω̂ DTFT
←−−→y2[n] = 3δ[n− 4]

(c) Y3(e
jω̂) = 5j sin(4ω̂) = 5

2e
j4ω̂ − 5

2e
−j4ω̂ DTFT

←−−→y3[n] = 5
2δ[n+ 4] − 5

2δ[n− 4]
(d) Y4(e

jω̂) = 3 cos(5ω̂) = 3
2e
j5ω̂ + 3

2e
−j5ω̂ DTFT

←−−→
3
2δ[n+ 5] + 3

2δ[n− 5]
P-7.3 Determine the inverse or forward DTFT as appropriate:

(a) v1[n] =

⎧

⎪
⎨

⎪
⎩

0 n < 0

1 n = 0, 1, . . . , 5

0 n > 5

(b) V2(e
jω̂) =

{

1 |ω̂| ≤ 0.4π

0 0.4π < |ω̂| ≤ π

(c) v3[n] =

⎧

⎪
⎨

⎪
⎩

0 n < 0

(−1)n n = 0, 1, . . . , 5

0 n > 5

(d) V4

(

ejω̂
)

=
{

0 |ω̂| ≤ 0.4π
1 0.4π < |ω̂| ≤ π

P-7.4 Determine the DTFT of each of the following sequences:

(a) h1[n] = 4δ[n] − sin(0.16πn)

0.25πn

(b) h2[n] = sin(0.5πn)

0.1πn
− sin(0.2πn)

0.1πn

(c) h3[n] = sin(0.5π(n− 6))

π(n− 6)
− sin(0.2π(n− 6))

π(n− 6)

P-7.5 Consider a linear time-invariant system defined by the difference equation

y[n] = 5x[n− 1] + 5x[n− 2] + 5x[n− 3] + 5x[n− 4] + 5x[n− 5] =
5
∑

k=1

5x[n− k]
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The frequency response of this system can be expressed in the following “Dirichlet-like”
equation:

H(ejω̂) = α
(

sin(Lω̂/2)

sin(ω̂/2)

)

e−jβω̂

Determine the parameters L, α, β.

P-7.6 The DTFT must be periodic with a period equal to 2π , so it is sufficient to define
the DTFT for−π ≤ ω̂ < π . For each of the following ideal filters, determine the inverse
transform of the given DTFT:

(a) G1(e
jω̂) =

{

5e−j0.3ω̂ 0 ≤ |ω̂| ≤ 0.4π

0 0.4π < |ω̂| ≤ π

(b) G2(e
jω̂) =

{

0 0 ≤ |ω̂| ≤ 0.7π

4e−j0.1ω̂ 0.7π < |ω̂| ≤ π

(c) G3(e
jω̂) =

⎧

⎪
⎨

⎪
⎩

0 0 ≤ |ω̂| ≤ 0.4π

9e−j0.2ω̂ 0.4π < |ω̂| ≤ 0.7π

0 0.7π < |ω̂| ≤ π

P-7.7 The convolution property of the DTFT can simplify difficult operations that arise
in LTI filtering. Simplify the following:

(a) x1[n] = sin(0.25πn)

9πn
∗ sin(0.44πn)

4πn

(b) x2[n] = sin(0.25πn)

9πn
∗ sin(0.25πn)

8πn
∗ sin(0.25πn)

7πn

(c) x3[n] = (0.3)nu[n] ∗ (10δ[n− 2] − 3δ[n− 3])
P-7.8 The frequency response of an LTI system is H(ejω̂) = cos(3ω̂). Determine the
output of the system for each of the following input signals:

(a) x1[n] = δ[n− 3]
(b) x2[n] = 3 cos(0.25πn)

(c) x3[n] = u[n] − u[n− 9]
P-7.9 An example of the frequency-shifting property comes from modeling the response
of a physical system as an oscillating signal whose amplitude is dropping. The precise
form is an exponential times a sinusoid, x[n] = an cos(ω̂0n)u[n].
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(a) Use the inverse Euler formula to show that we can express x[n] as

x[n] = 1
2e
jω̂0nanu[n] + 1

2e
−jω̂0nanu[n]

(b) By using the DTFT pair in (7.6), applying the frequency-shift property (7.25) twice,
and finding a common denominator for the resulting two fractions, show that we
can write X(ejω̂) as

X(ejω̂) = 1− a cos(ω̂0)e
−jω̂

(1− aejω̂0e−jω̂)(1− ae−jω̂0e−jω̂)
= 1− a cos(ω̂0)e

−jω̂

1− 2a cos(ω̂0)e−jω̂ + a2e−jω̂2

P-7.10 For the signal v[n] = anu[n], the DTFT V (ejω̂) can be found in Table 7-1. For
the questions below, assume a = 0.95.

(a) Make a plot of |V (ejω̂)|2 for −π < ω̂ ≤ π .

(b) If V (ejω̂) were a frequency response, is the filter lowpass, highpass, or bandpass?

(c) Define w[n] = v[n] cos(0.3πn), and then make a plot of |W(ejω̂)|2 for −π <
ω̂ ≤ π .

(d) If W(ejω̂) were a frequency response, is the filter lowpass, highpass, or
bandpass?

P-7.11 Suppose that Hlp(e
jω̂) is an ideal LPF with its bandedge at ω̂co as in Fig. 7-5.

(a) Show that the frequency response of an ideal HPF with cutoff frequency ω̂co can
be represented by

Hhp(e
jω̂) = 1−Hlp(e

jω̂)

(b) Determine the cutoff frequency of the ideal HPF.

(c) Use the result of part (a) to determine an expression for the impulse response hhp[n]
of the HPF.

P-7.12 Suppose that Hbp(e
jω̂) is an ideal BPF with its bandedges at ω̂co1 and ω̂co2 as in

(7.51) and as plotted in Fig. 7-8.

(a) Show that the frequency response of an ideal BPF with cutoff frequencies ω̂co1 =
0.3π and ω̂co2 = 0.6π can be represented as the difference of two ideal LPFs
as in

Hbp(e
jω̂) = Hlp1(e

jω̂)−Hlp2(e
jω̂)

In particular, give the cutoff frequencies of the two LPFs,Hlp1(e
jω̂) andHlp2(e

jω̂).

(b) Use the result of part (a) to determine an expression for the impulse response hbp[n]
of the BPF.
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P-7.13 Consider the left-sided exponential sequence defined by

x[n] = −bnu[−n− 1]
(a) Sketch x[n] for the case b = 2.

(b) For what values of b does the DTFT of x[n] exist?

(c) Show that for the values of b found in part (b), the DTFT of x[n] is

X(ejω̂) = 1

1− be−jω̂

P-7.14 Use Parseval’s Theorem and the DTFT to evaluate:

(a)
∞
∑

n=−∞

∣

∣

∣

∣

sin(0.25πn)

3πn

∣

∣

∣

∣

2

(b) 4

π
∫

−π

∣

∣

∣

∣

sin(5ω̂)

sin(ω̂/2)
e−j (9/2)ω̂

∣

∣

∣

∣

2

dω̂

P-7.15 Use the DTFT or discrete-time convolution to determine the autocorrelation
function for each of the following signals:

(a) x1[n] = δ[n− 4]
(b) x2[n] = δ[n− 4] − δ[n− 6]
(c) x3[n] = u[n− 6] − u[n− 16]

(d) x4[n] = sin(0.25πn)

9πn

P-7.16 Consider the signal x[n] = u[n] − u[n− 5]
(a) Determine cxx[n], the autocorrelation function (acf) of this signal.

(b) Determine the DTFT of the acf; verify that it is purely real and nonnegative.

(c) Determine the acf of the signal y[n] = x[n− 2].
Hints: Since the peak value of an acf must always be at zero lag, consider the
possibility that cyy[n] might be the same as cxx[n]. Working with the DTFT of the
acf might be easier.

P-7.17 Use the filterdesignGUI to create the impulse response of an FIR HPF with
the following specifications: filter orderM = 32, cutoff frequency ω̂co = 0.6π , Hamming
window design method.

DEMO
Filter Design GUI
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(a) Make a plot of the frequency response magnitude; and also two “zoomed in” plots
to show details of the passband and stopband magnitudes as in Fig. 7-13.

(b) From the plots in the previous part measure the passband and stopband edges, as
well as the passband and stopband ripples (i.e., the parameters ω̂p, ω̂s , δp, and δs).

(c) If the filter order were changed to M = 80, estimate the change in the passband
and stopband edges. Note: the ripples should not change much.

(d) Design the order-80 filter and measure the new passband and stopband edges.
Comment on the accuracy of the estimate in the previous part.

P-7.18 Use the filterdesign GUI to create the impulse response of an FIR HPF
with the Hamming window method. Use the following specifications: filter orderM = 24,
cutoff frequency ω̂co = 0.6π .The questions below deal with filtering specific input signals
and determining the corresponding output signals.

(a) When the input x1[n] is DC with a DC level of 10, determine the output level.

(b) When the input is the sinusoid x2[n] = 10 cos(0.5πn) with zero phase, determine
the output in the standard form y2[n] = A2 cos(ω̂n+ ϕ2).

(c) When the input is the sinusoid x3[n] = 10 cos(0.75πn)with zero phase, determine
the output in the standard form y3[n] = A3 cos(ω̂n+ ϕ3).

P-7.19 Use the filterdesign GUI to create the impulse response of an FIR LPF with
the rectangular window method. Use the following specifications: filter order M = 37,
cutoff frequency ω̂co = 0.3π .The questions below deal with filtering specific input signals
and determining the corresponding output signals.

(a) When the input x1[n] is DC with a DC level of 10, determine the output level y1[n].
(b) When the input is the sinusoid x2[n] = 10 cos(0.5πn) with zero phase, determine

the output in the standard form y2[n] = A2 cos(ω̂n+ ϕ2).

(c) Use MATLAB to verify the outputs in the previous parts. Generate 100 values of
the signal s[n] = x1[n]+x2[n] = 10u[n] + 10 cos(0.5πn)u[n] in a vector sn and
filter the signal sn with MATLAB’s filter command to obtain snOutput. Plot
snOutput for n=0:99. For comparison plot y1[n] + y2[n] from parts (a) and (b)
over the same range.
Note: since the MATLAB-filtered signal starts at n = 0, there is a transient interval
at beginning of the output where the two plots differ, but after n = 37 the match
should be perfect. Thus, it might be helpful to subtract the two signals being
compared, and plot the difference in order to accentuate the transient region.

P-7.20 Use the filterdesignGUI to create the impulse response of an FIR HPF with
the Hamming window method. Use the following specifications: filter order M = 32,
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cutoff frequency ω̂co = 0.6π . The following questions deal with filtering specific input
signals and determining the corresponding output signals. You can solve the following
using the filterdesignGUI. Note that by placing the cursor on the frequency response
curve, you can read out the frequency and magnitude of the point on the curve.

(a) Suppose the input sinusoid has unknown frequency and zero phase x[n] =
9 cos(ω̂n). Use the filterdesign GUI to determine the lowest frequency ω̂
where the output has amplitude equal to 9 (i.e., y[n] = 9 cos(ω̂n+ ϕ)). For the
chosen frequency, use the filterdesign GUI to determine the phase ϕ.

(b) Determine all possible frequencies where the output is y[n] = 9 cos(ω̂n+ϕ)when
the input is x[n] = 9 cos(ω̂n).

(c) Determine all possible frequencies where the output is zero when the input is
x[n] = 9 cos(ω̂n). Hint: Look for jumps of π radians in the phase curve.

Note: recall that the filter coefficients can be exported to the MATLAB workspace from
the filterdesign GUI. Then freqz could be used to plot the frequency response in
a figure window where the zoom tool could be used to examine details of the magnitude
response.



C H A P T E R

8

Discrete Fourier
Transform

This chapter builds on the definition and discussion of the DTFT in Chapter 7. The
objective here is to define a numerical Fourier transform called the discrete Fourier
transform (or DFT) that results from taking frequency samples of the DTFT. We show
how the DFT can be used to compute a spectrum representation of any finite-length
sampled signal very efficiently with the fast Fourier transform (FFT) algorithm. The DFT
not only gives a spectrum representation of any finite-length sequence, but it can also
be used as a representation of a periodic sequence formed by infinite repetition of one
(finite-length) period. Finally, the DFT is the core computation needed in the spectrogram
which provides a time-frequency spectrum analysis of a very long signal by doing DFTs
of successive short sections extracted from the long signal.

It is safe to say that spectrum analysis is one of the most common operations used in
the practice of signal processing. Sooner or later, most scientists and engineers encounter
a situation where a “sampled data signal” has been obtained from an A-to-D converter
and must be analyzed to determine its spectral properties. Often, spectrum analysis is
used to discover whether or not the signal contains strong periodic components. A listing

301
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of natural phenomena that are cyclic, or nearly so, would contain hundreds of entries.
Common examples include speech and music signals, as well as other natural observations
such as tides and yearly sun spot cycles. In the case of sampled signals, the question of
interest is how to derive the spectrum by doing numerical operations on a signal that is
defined only by a finite set of numbers. This process of going from the sampled signal
to its spectrum is called discrete-time spectrum analysis and the DFT is its workhorse
operator.

8-1 Discrete Fourier Transform (DFT)

The DTFT of a discrete-time signal x[n] can be viewed as a generalization of the spectrum
concept introduced in Chapters 3 and 4, where discrete lines in the frequency domain
represented sums of complex exponentials in the time domain. The spectrum concept
obtained from the DTFT is a continuous function of frequency denoted X(ejω̂), and its
value as a Fourier transform is easiest to appreciate when x[n] and X(ejω̂) are defined
as mathematical expressions. Because the spectrum is so useful, however, it is natural to
want to be able to determine the spectrum of a signal even if x[n] is not described by
a simple mathematical formula. Indeed, it would be handy to have a computer program
that could calculate the spectrum from samples of a signal.

Two steps are needed to change the DTFT sum (7.2) into a computable form: the
continuous frequency variable ω̂ must be sampled, and the limits on the DTFT sum
must be finite. First, even though ω̂ is a continuous variable, it does have a finite range
−π ≤ ω̂ < π so we can evaluate (7.2) at a finite set of frequencies, denoted by ω̂k.
Second, the DTFT sum has a finite number of terms when the signal duration is finite. We
cannot compute the transform of an infinite-duration signal, but it is common to operate
on finite sections of a very long signal.

For a finite-duration signal, the DTFT sampled at frequencies ω̂k is

X(ejω̂k ) =
L−1
∑

n=0

x[n]e−jω̂kn k = 0, 1, . . . N − 1 (8.1)

whereL is the length of x[n]. We must choose a specific set of frequency samples {ω̂k}, but
which frequencies should be used to evaluate (8.1)? The usual domain for the spectrum is
−π ≤ ω̂ < π , but any interval of length 2π would suffice. For reasons that will become
apparent, it is common to choose that interval to be

0 ≤ ω̂k < 2π

and to evaluate (8.1) at the N equally spaced frequencies

ω̂k = 2πk

N
k = 0, 1, . . . , N − 1 (8.2)

Note that this set ofN frequencies covers the range 0 ≤ ω̂ < 2π since k = N would give
ω̂N = 2π , which is an alias frequency of ω̂0 = 0. Substituting (8.2) into (8.1) gives N
frequency samples of the DTFT
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X
(

ej
2πk
N

)

=
L−1
∑

n=0

x[n]e−j (2πk/N)n (8.3)

for k = 0, 1, . . . , N − 1. Equation (8.3) is a “finite Fourier sum” which is computable.
The sum in (8.3) must be computed forN different values of the discrete frequency index
k. The index n in the sum on the right is the counting index of the sum, and thus it
disappears when the sum is computed. Since the left-hand side of (8.3) depends only on

the frequency index k, we define X[k] = X
(

ej
2πk
N

)

.

When the number of frequency samples N is equal to the signal length L, the
summation in (8.3) with N = L becomes:

The Discrete Fourier Transform

X[k] =
N−1
∑

n=0

x[n]e−j (2π/N)kn

k = 0, 1, . . . , N − 1

(8.4)

Equation (8.4) is called the discrete Fourier transform or DFT in recognition of the fact
that it is a Fourier transformation, and it is discrete in both time and frequency.1 The
DFT takesN samples in the time-domain and transforms them intoN valuesX[k] in the
frequency domain. Typically, the values of X[k] are complex, while the values of x[n]
are often real, but x[n] in (8.4) could be complex.

EXAMPLE 8-1 Short-Length DFT

In order to compute the 4-point DFT of the sequence x[n] = {1, 1, 0, 0}, we carry out
the sum (8.4) four times, once for each value of k = 0, 1, 2, 3. When N = 4, all the
exponents in (8.4) are integer multiples of π/2 because 2π/N = π/2.

X[0] =�
���

1
x[0]e−j0 +�

���
1

x[1]e−j0 +�
���

0
x[2]e−j0 +�

���
0

x[3]e−j0

= 1+ 1+ 0+ 0 = 2

X[1] = 1e−j0 + 1e−jπ/2 + 0e−jπ + 0e−j3π/2

= 1+ (−j)+ 0+ 0 = 1− j = √2e−jπ/4

X[2] = 1e−j0 + 1e−jπ + 0e−j2π + 0e−j3π

= 1+ (−1)+ 0+ 0 = 0

X[3] = 1e−j0 + 1e−j3π/2 + 0e−j3π + 0e−j9π/2

= 1+ (j)+ 0+ 0 = 1+ j = √2ejπ/4

Thus, we obtain the four DFT coefficients2 X[k] = {2, √2e−jπ/4, 0,
√

2ejπ/4}.
1In contrast, the term discrete-time Fourier transform (DTFT) emphasizes that only time is discrete.
2The term “coefficient” is commonly applied to DFT values. This is appropriate because X[k] is the

(complex amplitude) coefficient of ej (2π/N)kn in the IDFT (8.5).
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Example 8-1 illustrates an interesting fact about the limits of summation in (8.4)
where we have chosen to sum over N samples of x[n] and to evaluate the DFT at N
frequencies. Sometimes, the sequence length of x[n] is shorter thanN (i.e., L < N ), and
x[n] is nonzero only in the interval 0 ≤ n ≤ L− 1. In Example 8-1,L = 2 andN = 4. In
such cases, we can simply appendN−L zero samples to the nonzero samples of x[n] and
then carry out the N -point DFT3 computation. These zero samples extend a finite-length
sequence, but do not change its nonzero portion.

8-1.1 The Inverse DFT

The DFT is a legitimate transform because it is possible to invert the transformation
defined in (8.4). In other words, there exists an inverse discrete Fourier transform (or
IDFT), which is a computation that converts X[k] for k = 0, 1, . . . , N − 1 back into the
sequence x[n] for n = 0, 1, . . . , N − 1. The inverse DFT is

Inverse Discrete Fourier Transform

x[n] = 1

N

N−1
∑

k=0

X[k]ej (2π/N)kn

n = 0, 1, . . . , N − 1

(8.5)

Equations (8.5) and (8.4) define the unique relationship between anN -point sequencex[n]
and itsN -point DFTX[k]. Following our earlier terminology for Fourier representations,
the DFT defined by (8.4) is the analysis equation and IDFT defined by (8.5) is the synthesis
equation. To prove that these equations are a consistent invertible Fourier representation,
we note that (8.5), because it is a finite, well-defined computation, would surely produce
some sequence when evaluated for n = 0, 1, . . . , N − 1. So let us call that sequence v[n]
until we prove otherwise. Part of the proof is given by the following steps:

v[n] = 1

N

N−1
∑

k=0

X[k]ej (2πk/N)n (8.6a)

= 1

N

N−1
∑

k=0

(

N−1
∑

m=0

x[m]e−j (2πk/N)m
)

︸ ︷︷ ︸

Forward DFT, X[k]

ej (2πk/N)n (8.6b)

= 1

N

N−1
∑

m=0

x[m]
(

N−1
∑

k=0

ej (2πk/N)(n−m)
)

︸ ︷︷ ︸

=0, except for m=n

(8.6c)

= x[n] (8.6d)

3The terminology “N -point DFT” means that the sequence x[n] is known for N time indices, and the
DFT is computed at N frequencies in (8.2).
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Several things happened in the manipulations leading up to the equality assertion of
(8.6d). On the second line (8.6b), we substituted the right-hand side of (8.4) for X[k]
after changing the index of summation from n tom. We are allowed to make this change
because m is a “dummy index,” and we need to reserve n for the index of the sequence
v[n] that is synthesized by the IDFT. On the third line (8.6c), the summations on k and
m were interchanged. This is permissible since these finite sums can be done in either
order.

Now we need to consider the term in parenthesis in (8.6c). Exercise 8.1 (below) states
the required orthogonality result, which can be easily verified. If we substitute (8.8) into
the third line (8.6c), we see that the only term in the sum onm that is nonzero is the term
corresponding to m = n. Thus, v[n] = x[n] for 0 ≤ n ≤ N − 1 as we wished to show.

EXERCISE 8.1 Orthogonality Property of Periodic Discrete-Time Complex Exponentials
Use the formula

N−1
∑

k=0

αk = 1− αN
1− α (8.7)

to show that

d[n−m] = 1

N

N−1
∑

k=0

ej (2π/N)nkej (2π/N)(−m)k (definition)

= 1

N

N−1
∑

k=0

ej (2π/N)(n−m)k (alternate form)

= 1

N

(

1− ej (2π)(n−m)
1− ej (2π/N)(n−m)

)

(use (8.7))

d[n−m] =
{

1 n−m = rN
0 otherwise

(8.8)

where r is any positive or negative integer including r = 0.

EXAMPLE 8-2 Short-Length IDFT

The 4-point DFT in Example 8-1 is the sequence X[k] = {2, √2e−jπ/4, 0,
√

2ejπ/4}. If
we compute the 4-point IDFT of this X[k], we should recover x[n] when we apply the
IDFT summation (8.5) for each value of n = 0, 1, 2, 3. As before, the exponents in (8.5)
are all integer multiples of π/2 when N = 4.

x[0] = 1
4

(

X[0]ej0 +X[1]ej0 +X[2]ej0 +X[3]ej0
)

= 1
4

(

2+√2e−jπ/4 + 0+√2ejπ/4
)

= 1
4(2+ (1− j)+ 0+ (1+ j)) = 1



306 CHAPTER 8 DISCRETE FOURIER TRANSFORM

x[1] = 1
4

(

X[0]ej0 +X[1]ejπ/2 +X[2]ejπ +X[3]ej3π/2
)

= 1
4

(

2+√2ej (−π/4+π/2) + 0+√2ej (π/4+3π/2)
)

= 1
4(2+ (1+ j)+ (1− j)) = 1

x[2] = 1
4

(

X[0]ej0 +X[1]ejπ +X[2]ej2π +X[3]ej3π
)

= 1
4

(

2+√2ej (−π/4+π) + 0+√2ej (π/4+3π)
)

= 1
4(2+ (−1+ j)+ (−1− j)) = 0

x[3] = 1
4

(

X[0]ej0 +X[1]ej3π/2 +X[2]ej3π +X[3]ej9π/2
)

= 1
4

(

2+√2ej (−π/4+3π/2)+ 0+√2ej (π/4+9π/2)
)

= 1
4(2+ (− 1− j)+(−1+j))=0

Thus, we have verified that the length-4 signal x[n] = {1, 1, 0, 0} can be recovered from

its 4-point DFT coefficients, X[k] =
{

2,
√

2e−jπ/4, 0,
√

2ejπ/4
}

.

8-1.2 DFT Pairs from the DTFT

Since the DFT is a frequency-sampled version of the DTFT for a finite-length signal, it
is possible to construct DFT pairs by making the substitution ω̂→ (2π/N)k in a DTFT
pair. In Table 7-1, there are only four finite-length signals, so each of these has a DFT
obtained by sampling X(ejω̂).

8-1.2.1 DFT of Shifted Impulse

The impulse signal δ[n] and the shifted impulse signal are the easiest cases because
they are very simple signals. If we take the DFT of x1[n] = δ[n], the DFT summation
simplifies to one term:

X1[k] =
N−1
∑

n=0

δ[n]e−j (2πk/N)n = δ[0]e−j0
︸ ︷︷ ︸

=1

+
N−1
∑

n=1
�

���
0

δ[n] e−j (2πk/N)n = 1

It is tempting to develop all DFT pairs by working directly with the DFT summation, but
it is much easier to get some pairs by frequency sampling known DTFTs. Recall that we
already know the DTFT of the shifted impulse δ[n− nd], so

x[n] = δ[n− nd] DTFT←→e−jω̂nd ⇒ X[k] = e−jω̂nd
∣

∣

∣

∣

ω̂=(2πk/N)
= e−j(2πk/N)nd (8.9)

When the shift (nd) is zero in (8.9), the DFT of δ[n] is X[k] = 1, as before. We want
to write (8.9) as the pair δ[n− nd] DFT←→ e−j(2πk/N)nd , but since frequency sampling the
DFT requires that the finite-length signal be defined over the interval 0 ≤ n ≤ N − 1,
for now it appears that we must require that nd lie in that interval. In fact, we can remove
this restriction, as will be discussed in Section 8-3.2.
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8-1.2.2 DFT of Complex Exponential

The third and fourth cases in Table 7-1 involve the finite-length (rectangular) pulse whose
DTFT involves a Dirichlet form4 which is (7.27) in Chapter 7. Sampling the known DTFT
avoids reworking a messy summation. The third case is the finite-length (rectangular)
pulse

rL[n] =
{

1 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1

whose DTFT is the third entry in Table 7-1, so its DFT has one term that is a sampled
Dirichlet form

R
L
[k] = RL(ejω̂)

∣

∣

∣

∣

ω̂=(2πk/N)
= sin( 1

2L(2πk/N))

sin( 1
2 (2πk/N))

︸ ︷︷ ︸

sampled Dirichlet form

e−j(2πk/N)(L−1)/2 (8.10)

The fourth case is a finite-length complex exponential which can be written as a product
of the rectangular pulse rL[n] and a complex exponential at frequency ω̂0

x4[n] = rL[n] ejω̂0n =
{

ejω̂0n 0 ≤ n ≤ L− 1

0 L ≤ n ≤ N − 1

The DTFT of x4[n] is the fourth entry in Table 7-1 which comes from the frequency-
shifting property of the DTFT, so after frequency sampling we get the following DFT for
the finite-length complex exponential:

X4[k] = RL(ej(ω̂−ω̂0))

∣

∣

∣

∣

ω̂=(2πk/N)
= sin( 1

2L(2πk/N − ω̂0))

sin( 1
2 (2πk/N − ω̂0))

︸ ︷︷ ︸

shifted and sampled Dirichlet

e−j(2πk/N−ω̂0)(L−1)/2 (8.11)

The expression on the right-hand side of (8.11) appears rather complicated but it has a
recognizable structure as long as it is written in terms of the Dirichlet form which comes
from the DTFT for a rectangular pulse.

X4[k] = DL(2πk/N − ω̂0) e
−j (2πk/N−ω̂0)(L−1)/2 (8.12)

Since the exponential term in (8.12) only contributes to the phase, this result says
that the magnitude depends only on the Dirichlet form |X4[k]| = |DL(2πk/N − ω̂0)|. A
typical magnitude plot of |X[k]| is shown in Fig. 8-1 for the case whenN = L = 20, and
ω̂0 = 5π/20 = 2π(2.5)/N . The continuous magnitude of the Dirichlet envelope (for the
DTFT) has been plotted in gray so that it is obvious where the frequency samples are being
taken. Notice that the peak of the Dirichlet envelope lies along the horizontal axis at the
non-integer value of 2.5, which corresponds to the DTFT frequency ω̂ = (2π/N)(2.5).

4The Dirichlet form was first defined in Section 6-7 on p. 235.
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Figure 8-1 Magnitude of DFT coefficients for
a 20-point DFT of a length-20 complex
exponential whose frequency is ω̂0 = 0.25π
which is not an integer multiple of 2π/N with
N = L = 20. Gray line is the Dirichlet form
magnitude being sampled.
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Figure 8-2 Magnitude of DFT coefficients for
a 20-point DFT of a length-20 complex
exponential whose frequency is ω̂0 = 0.2π
which is an integer multiple of 2π/N (i.e.,
N = L = 20 and k0 = 2).

The DFT is very simple when the frequency of the complex exponential signal is
an exact integer multiple of 2π/N and the DFT length equals the signal length (i.e.,
N = L). For this very special case, we define x0[n] = ej (2πk0/N)n with k0 < N , and then
use ω̂0 = 2πk0/N in (8.12) to obtain

X0[k] = DN(2π(k − k0)/N) e
−j (2π(k−k0)/N))(N−1)/2

The big simplification comes from the fact that the Dirichlet form DN(ω̂) evaluated at
integer multiples of 2π/N is zero, except for DN(0), so we get

X0[k] = Nδ[k − k0] (8.13)

The scaled discrete impulse at k = k0 means that X0[k0] = N and all other DFT
coefficients are zero. This result is confirmed in Fig. 8-2, where we can see that the
DFT X0[k] is obtained by sampling the gray Dirichlet magnitude exactly at its peak and
at its zero crossings. The peak value isN = L, and it is the only nonzero value in the DFT.

EXERCISE 8.2 Substitute (8.13) into the inverse N -point DFT relation (8.5) to show that the
corresponding time-domain sequence is

x2[n] = ej (2π/N)k0n n = 0, 1, . . . , N − 1

8-1.3 Computing the DFT

The DFT representation in (8.4) and (8.5) is important in digital signal processing for
two reasons: the expressions have finite limits, making it possible to compute numeric
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values of x[n] andX[k], and they are Fourier representations that have special properties
like the DTFT that are useful in the analysis and design of DSP systems. Both the
DFT and the IDFT summations can be regarded as computational methods for taking
N numbers in one domain and creating N numbers in the other domain. The values
in both domains might be complex. Equation (8.4), for example, is really N separate
summations, one for each value of k. To evaluate one of the X[k] terms, we need N − 1
complex additions andN − 1 complex multiplications when k �= 0. If we count up all the
arithmetic operations required to evaluate all of theX[k] coefficients, the total is (N − 1)2

complex multiplications andN2−N complex additions. For example, whenN = 4 as in
Example 8-2, the 9 complex multiplications and 12 complex additions are clearly shown.
Note that terms involving ej0 = 1 do not require an actual multiplication. For the inverse
transform, the multiplication by 1

4 would require an additional 4 multiplications if done
separately as shown in Example 8-2.

One of the most important discoveries5 in the field of digital signal processing is
the fast Fourier transform, or FFT, a set of algorithms that can evaluate (8.4) or
(8.5) with a number of operations proportional to N log2N rather than (N − 1)2. When
N is a power of two, the FFT algorithm computes the entire set of coefficients X[k]
with approximately (N/2) log2N complex operations. The N log2N behavior becomes
increasingly significant for large N . For example, if N = 1024, the FFT computes the
DFT coefficients X[k] with (N/2) log2N = 5120 complex multiplications, rather than
(N − 1)2 = 1,046,529 as required by direct evaluation of (8.4). The algorithm is most
often applied when the DFT length N is a power of two, but it also works efficiently if
N has many small-integer factors. On the other hand, when N is a prime number, the
standard FFT algorithm offers no savings over a direct evaluation of the DFT summation.
FFT algorithms of many different variations are available in most computer languages,
and for almost any computer hardware architecture. In MATLAB, the command is simply
fft, and most other spectral analysis functions in MATLAB call fft to do the bulk of
their work. The DFT of a vector x is computed using the statement X = fft( x, N ),
where X is the DFT of x. MATLAB uses a variety of FFT algorithms for this computation
depending on the value of N , with the best case being N equal to a power of 2. More
details on the FFT and its derivation can be found in Section 8-8.

8-1.4 Matrix Form of the DFT and IDFT

Another easy way to gain insight into the computation is to write the DFT summation as a
matrix-vector multiplication, where theN signal values andN DFT coefficients become
N -element column vectors:

5J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Computation of Complex Fourier Series,”
Mathematics of Computation, vol. 19, pp. 297–301, April 1965. The basic idea of the FFT has been traced
back as far as Gauss at the end of the 18th century.
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⎡

⎢

⎢

⎢

⎢

⎢

⎣

X[0]
X[1]
X[2]
...

X[N − 1]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 1 1 · · · 1
1 e−j2π/N e−j4π/N · · · e−j2(N−1)π/N

1 e−j4π/N e−j8π/N · · · e−j4(N−1)π/N

...
...

...
. . .

...

1 e−j2(N−1)π/N e−j4(N−1)π/N · · · e−j2(N−1)(N−1)π/N

⎤

⎥

⎥

⎥

⎥

⎥

⎦

×

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x[0]
x[1]
x[2]
...

x[N − 1]

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(8.14)

In MATLAB, the DFT matrix can be obtained with the function dftmtx(N) for
an N ×N matrix. Then computing the DFT would be a matrix-vector product: X =

dftmtx(N)*x, where x is the vector of signal samples and X the vector of DFT
coefficients. However, it is much more efficient to compute the DFT of a vector using the
statement X = fft( x, N ), where X is the DFT of x.

EXERCISE 8.3 The IDFT can also be expressed as a matrix-vector product. Write out the typical
entry of the N ×N IDFT matrix, and then use MATLAB to create a 6× 6 IDFT
matrix. Check your work by multiplying the IDFT matrix by the DFT matrix (in
MATLAB). Explain why the expected result should be an identity matrix.

8-2 Properties of the DFT

In this section and Section 8-3, we examine many properties of the DFT. Some are tied to
its interpretation as a frequency sampled version of the DTFT, some are inherited directly
from DTFT properties, and others are needed to interpret the results of the DFT. One
notable special property is the periodicity of X[k] with respect to k which is inherited
from the 2π -periodicity of the DTFT. This periodicity affects the placement of negative
frequency components in X[k], and also symmetries.

We show that both the IDFT and DFT summations define the signal x[n] and its
N -point DFT coefficients X[k] to be periodic with period N .

X[k] = X[k +N ] −∞ < k <∞ (8.15a)

x[n] = x[n+N ] −∞ < n <∞ (8.15b)

These periodicity properties might be surprising because the DFT was defined initially
for a finite-length N -point sequence, and the DFT yields N DFT coefficients. However,
many transform properties implicitly involve operations that evaluate the indices n or k
outside of the interval [0, N − 1], so periodicity is needed to explain properties such as
the delay property and convolution.
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8-2.1 DFT Periodicity for X[k]
We have shown that the DFT of a finite N -point sequence is a sampled version of the
DTFT of that sequence, that is,

X[k] =
N−1
∑

n=0

x[n]e−j (2π/N)kn = X(ejω̂)
∣

∣

∣

ω̂=(2πk/N)

=X(ej(2πk/N)) k = 0, 1, . . . , N − 1 (8.16)

Since the DTFT X(ejω̂) is always periodic with a period of 2π , the DFT X[k] must also
be periodic. The definition of the DFT implies that the index k always remains between
0 and N − 1, but there is nothing that prevents the DFT summation (8.4) from being
evaluated for k ≥ N , or k < 0. The frequency sampling relationship ω̂k = 2πk/N is still
true for all integers k, so ω̂k + 2π = 2πk/N + 2π(N/N) = 2π(k +N)/N = ω̂k+N. In
other words, the DFT coefficients X[k] have a period equal to N , because

X[k] = X(ej2π(k)/N) = X(ej(2π(k)/N+2π))
︸ ︷︷ ︸

DTFT period is 2π

= X(ej2π(k+N)/N) = X[k +N ]

When the DFT values X[k] are needed outside the interval 0 ≤ k < N , they can be
extended at no additional computational cost using the period ofN . Thus,X[N ] = X[0],
X[N+1] = X[1],X[N+2] = X[2], and so on; likewise,X[−1] = X[N − 1],X[−2] =
X[N − 2], . . . . This periodicity is illustrated in Fig. 8-3.

8-2.2 Negative Frequencies and the DFT

The DFT and IDFT formulas use nonnegative indices, which is convenient for
computation and mathematical expressions. As a result, the IDFT synthesis formula (8.5)
appears to have positive frequencies only. However, when we make the spectrum plot
of a discrete-time signal (as in Chapter 4, Figs. 4-8 through 4-11) we expect to see both
positive and negative frequency lines, along with conjugate symmetry when the signal is
real. Thus, we must reinterpret the DFT indexing to see a conjugate-symmetric spectrum
plot.

N 2 N NC2 NCM M 2 1 0 1 2 M N M N 2 N k

Principal Frequency Interval for O!
!M !2 !1 0 O!1 O!2 O!M !M !2 C O!2 O!

X0

X1
X2

XM XN M

XN 2

XN 1X 1

X 2

X M

DFT coefficients

Figure 8-3 Periodicity of the DFT coefficients X[k +N ] = X[k], and the relationship of the frequency index k to
samples of normalized frequency, ω̂k . The DFT coefficients are denoted with subscripts (i.e., Xk instead of X[k]), in
order to enhance the readability of the labels. The IDFT uses indexing that runs from k = 0 to k = N − 1, which is one
period. The DTFT, on the other hand, typically uses the principal frequency interval −π ≤ ω̂ < π .
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The signal defined by the IDFT in (8.5) hasN equally spaced normalized frequencies
ω̂k = (2π/N)k over the positive frequency range 0 ≤ ω̂ < 2π . These frequencies can be
separated into two subsets

0 ≤ (2π/N)k < π for 0 ≤ k < N/2 (8.17a)

π ≤ (2π/N)k < 2π for N/2 ≤ k ≤ N − 1 (8.17b)

Since the DTFT is periodic in ω̂ with a period of 2π , the frequency sampling index
k = N − 1 corresponding to the positive frequency ω̂N−1 = 2π(N − 1)/N aliases to
the index k = −1 which corresponds to ω̂−1 = −2π/N = ω̂N−1 − 2π . In general, the
sample of the DTFT at ω̂−k = (2π/N)(−k) has the same value as the sample at frequency
ω̂N−k = (2π/N)(−k +N). This is the replication of frequency components discussed
in Chapter 4. In fact, all the frequencies in the second subset above (8.17b) actually are
aliases of the negative frequencies in the spectrum.6 This reordering of the indices is
important when we want to plot the spectrum for −π ≤ ω̂ < π . When N is even, the
indices in the second subset {N2 , N2 + 1, N2 + 2, . . . , N − 2, N − 1} would be aliases of
{−N

2 , −N
2 + 1, −N

2 + 2, . . . ,−2,−1}.

EXERCISE 8.4 Prove that the IDFT can be rewritten as a sum where half the indices are negative.
Assume that the DFT length N is even.

x[n] = 1

N

N/2−1
∑

k=−N/2
X[k]ej (2π/N)kn

8-2.3 Conjugate Symmetry of the DFT

When we have a real signal x[n], there is conjugate symmetry in the DTFT,
so the DFT coefficients must also satisfy the following property: X[−1] = X∗[1],
X[−2] = X∗[2], . . . , X[−k] = X∗[k], . . .. If we put the periodicity of X[k] together
with conjugate symmetry, we can make the general statement that the DFT of a real
signal satisfies

X[N−k] = X∗[k] for k = 0, 1, . . . , N − 1

Figure 8-4 shows a DFT coefficient X[k0] at the normalized frequency ω̂k0 = 2πk0/N .
The corresponding negative-frequency component, which must be the conjugate, is shown
in gray at k = −k0. The spectrum component at k = N − k0 is an alias of the negative-
frequency component.

6The case where k = N/2 and N is even will be discussed further in Section 8-2.3.1. We follow the
MATLAB convention (when using fftshift) which assigns this index to the second set.
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Figure 8-4 Illustration of the conjugate symmetry of the DFT coefficients showing that
X[N − k0] = X∗[k0]. There are three “frequency scales.” The top scale shows the DFT index k.
The middle scale shows normalized frequency ω̂ for the discrete-time signal. The bottom scale
shows the continuous-time frequency scale (ω = ω̂/Ts) that would be appropriate if the
sequence x[n] had been obtained by sampling with a sampling frequency, ωs = 2π/Ts . Thus,
the DFT index k0 corresponds to the analog frequency ω0 = 2πk0/(NTs) rad/s.

EXAMPLE 8-3 DFT Symmetry

In Example 8-1, the frequency indices of the 4-point DFT correspond to the
four frequencies ω̂k = {0, π/2, π, 3π/2}. The frequency ω̂3 = 3π/2 is an alias of
ω̂ = −π/2. We can check that the DFT coefficients in Example 8-1 satisfy the conjugate-
symmetric property, e.g., X[1] = X∗[4− 1] = X∗[3] = √2e−jπ/4.

EXERCISE 8.5 It is easy to create a MATLAB example that demonstrates the conjugate-symmetry
property by executing Xk=fft(1:8), which computes the 8-point DFT of a real
signal. List the values of the signal x[n] for n = 0, 1, 2, . . . , 7. Then tabulate the
values of the MATLAB vector Xk in polar form from which you can verify that
X[N − k] = X∗[k] for k = 0, 1, . . . , 7 and N = 8. Finally, list the value of ω̂
corresponding to each index k.

8-2.3.1 Ambiguity at X [N / 2]

When the DFT length N is even, the transform X[k] has a value at k = N/2; when
N is odd, k = N/2 is not an integer so the following comments do not apply.
The index k = N/2 corresponds to a normalized frequency of ω̂ = 2π(N/2)/N = π .
However, the spectrum is periodic in ω̂ with a period of 2π , so the spectrum value
is the same at ω̂ = ±π . In other words, the frequency ω̂ = −π is an alias of
ω̂ = π .

When we plot a spectrum as in Chapter 3, the zero frequency point is placed in the
middle, and the frequency axis runs from−π to+π . Strictly speaking we need not include
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both end points because the values have to be equal,X[N/2] = X[−N/2]. Thus, we have
to make a choice, either placing X[N/2] on the positive frequency side, or X[−N/2] on
the negative frequency side of the spectrum. The following example forN = 6 shows the
two reorderings that are possible:

{X[0],
︸ ︷︷ ︸

ω̂=0

X[1], X[2], X[3]
︸︷︷︸

ω̂=π
,X[4], X[5]} −→ {X[−3]

︸ ︷︷ ︸

ω̂=−π
,X[−2], X[−1], X[0],

︸ ︷︷ ︸

ω̂=0

X[1], X[2]}

−→ {X[−2], X[−1], X[0],
︸ ︷︷ ︸

ω̂=0

X[1], X[2], X[3]
︸︷︷︸

ω̂=π
}

In this example, the periodicity of the DFT coefficients enabled the following
replacements X[5] = X[−1], X[4] = X[−2], and X[3] = X[−3]. The DFT component
X[3] at k = 3 corresponding to the frequency ω̂ = 2π(3)/6 = π must have the same
value asX[−3] at k = −3 corresponding to ω̂ = 2π(−3)/6 = −π . The choice of which
reordering to use is arbitrary, but the MATLAB function fftshift does the first, putting
X[N/2] at the beginning so that it becomes X[−N/2] and corresponds to ω̂ = −π .
Therefore, we adopt this convention in this chapter, keeping in mind this only applies
when N is even.

EXERCISE 8.6 Prove that the DFT coefficient X[N/2] must be real-valued when the vector x[n] is
real and the DFT length N is even.

8-2.4 Frequency-Domain Sampling and Interpolation

When we want to make a smooth plot of a DTFT such as the frequency response, we need
frequency samples at a very fine spacing. Implicitly, the DFT assumes that the transform
length is the same as the signal lengthL. Thus, theL-point DFT computes samples of the
DTFT for ω̂ = (2π/L)k, with k = 0, 1, . . . , L−1. TheL frequency samples are equally
spaced samples in the interval 0 ≤ ω̂ < 2π , so we have

H [k] = H(ej(2π/L)k) = H(ejω̂)

∣

∣

∣

ω̂=(2π/L)k
k = 0, 1, . . . , L− 1 (8.18)

If we want to have frequency samples at a finer spacing (2π/N) where N > L, then
a simple trick called zero-padding can be used so that we can compute an N -point DFT.
In zero-padding, we append zero-valued samples to the signal to make it longer prior to
computing the N -point DFT. In other words, define a length-N signal hzp[n] as

hzp[n] =
{

h[n] n = 0, 1, . . . , L− 1

0 n = L,L+ 1, . . . , N − 1
(8.19)
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Now take theN -point DFT of hzp[n] and then split the sum into two smaller summations:

Hzp[k] =
N−1
∑

n=0

hzp[n]e−j (2π/N)kn (8.20a)

=
L−1
∑

n=0

hzp[n]e−j (2π/N)kn +
N−1
∑

n=L
����� 0
hzp[n]e−j (2π/N)kn (8.20b)

=
L−1
∑

n=0

h[n]e−j (2π/N)kn (8.20c)

Hzp[k] = H(ej(2π/N)k) for k = 0, 1, 2, . . . , N − 1 (8.20d)

Thus (8.20d) says the N -point DFT of an L-point (impulse response) signal augmented
with zero padding gives frequency response samples at ω̂k = 2πk/N .

In the special case where N = 2L, we get twice as many frequency samples as with
N = L, but the even-indexed samples are identical to values from anL-point DFT, that is,

Hzp[2�] = H [�] for � = 0, 1, . . . , L− 1 (8.21)

To see that (8.21) is true when N = 2L, consider an even-indexed frequency such as
(2π/N)10. The frequency (2π/2L)10 = (2π/L)5, i.e., the 10th value of Hzp[k], is the
same as the fifth value of H [k] because these values come from sampling H(ejω̂) at
exactly the same frequency. On the other hand, consider an odd-indexed frequency such
as (2π/N)7 when N = 2L. Then the frequency (2π/2L)7 = (2π/L)(3.5) lies between
(2π/L)3 and (2π/L)4, so the odd-indexed frequencies correspond to evaluating the
frequency response “in between.” In effect, the 2L-point DFT is interpolating theL-point
DFTH [�]which has L sample values of the frequency response. Once we recognize this
interpolation behavior of the DFT, we can use even more zero-padding to produce very
dense frequency grids for evaluating the frequency response prior to plotting. In fact, in
the limit as N →∞, the DFT converges to the true frequency response function which
is a continuous function of ω̂.

EXAMPLE 8-4 Frequency Response Plotting with DFT

Suppose that we want to plot the frequency response of an 8-point running sum FIR filter.
Although MATLAB can do the job with its frequency response function called freqz,
we can also do the evaluation directly with the DFT by calling fft in MATLAB. This
provides insight into the internal structure of freqz which calls the FFT to do the actual
work. To evaluate the frequency response at many closely spaced frequencies we need to
use zero padding, so we pick N = 80 and do the following in MATLAB:

N = 80;
hpadded = [ ones(1,8), zeros(1,N-8) ];
Hk = fft(hpadded);
stem( 0:N-1, abs(Hk) ) % Plot H[k] vs. k
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Figure 8-5 Frequency response of 8-point
running sum filter. (a) Magnitude response
obtained from length-80 FFT plotted versus
DFT index (k). (b) Magnitude response plotted
versus ω̂ after moving the negative frequency
components shown in orange. The indices
0 ≤ k < 40 map to the frequencies
ω̂ = 2πk/N ; while the indices 40 ≤ k < 80
map to the negative frequencies
ω̂ = 2π(k −N)/N = 2πk/N − 2π.

Zero-padding is a very common operation, so the fft function has a second argument that
sets the FFT length and enables zero-padding. Thus, fft(hn,N) computes an N -point
DFT of hn, with zero-padding if N>length(hn). Figure 8-5(a) shows the resulting plot.
If we compare the plot from this code to the magnitude plot of other running sum filters
in Chapter 6, we see that the result is similar, but there is a big issue: the axis labels must
be converted from “frequency index” k to ω̂. In addition, the frequency axis needs to
have ω̂ running from −π to π , so the negative frequency components must be moved as
explained in Section 8-2.2. This is accomplished by treating the second half of the Hk

vector differently from the first half as in the following code (which assumes N is even):

HkCentered = [ Hk(N/2+1:N), Hk(1:N/2) ]; %- fftshift.m does this
kCentered = [-N+(N/2+1:N), (1:N/2) ] - 1;

%- make negative frequency indices
% kCentered is [-N/2,-N/2+1,...,-2,-1,0,1,2,3,...,N/2-1]

stem( (2*pi/N)*kCentered, abs(HkCentered) )

The flipping operation above occurs so often when using the FFT in MATLAB that
a special function called fftshift has been created to perform the reordering. The
frequencies have to be reordered separately. When the frequency response has conjugate
symmetry, it is customary to plot only the first half of Hkwhich corresponds to the positive
frequency region.

8-2.5 DFT of a Real Cosine Signal

A built-in property of the DFT is linearity, which is true because the DTFT is linear and
the DFT is obtained by frequency sampling the DTFT. Since a cosine signal is the sum
of two complex exponentials by virtue of the inverse Euler formula, we get the DFT of
a cosine by summing two terms obtained from (8.12).
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The examples of the DFT of a complex exponential shown in Figs. 8-1 and 8-2 assume
that the DFT length N is equal to L, the length of the complex exponential sequence.
However, the general result in (8.12) holds for L ≤ N , and it is useful to examine the
case where L < N . Consider a length-L cosine signal

x[n] = A cos(ω̂0n) for n = 0, 1, . . . , L− 1 (8.22a)

which we can write as the sum of complex exponentials at frequencies+ω̂0 and 2π − ω̂0

as follows:

x[n] = A

2
ejω̂0n + A

2
ej2πn
︸ ︷︷ ︸

=1

e−jω̂0n for n = 0, 1, . . . , L− 1 (8.22b)

Using the linearity of the DFT and (8.12) with ϕ = 0 for these two complex exponentials
leads to the expression

X[k] = A
2
DL((2πk/N)− ω̂0) e

−j ((2πk/N)−ω̂0)(L−1)/2

+A
2
DL((2πk/N)− (2π − ω̂0)) e

−j ((2πk/N)+ω̂0)(L−1)/2 (8.23)

where the function DL(ω̂) is given by (7.27).
Figure 8-6 shows |X[k]| as a function of k for the case ω̂0 = 0.4π with N = 50 and

L = 20. An equivalent horizontal axis would be the normalized frequency axis (ω̂)where
ω̂k = 2πk/N . Note the DFT magnitude exhibits its characteristic symmetry where the
maxima (peaks) of the DFT occur at k = k0 and k = N − k0, which correspond to the
frequencies (2πk0/N) = ω̂0 and (2π(N − k0)/N) = 2π − ω̂0. Furthermore, the heights
of the peaks are approximatelyAL/2. The latter can be shown by evaluating (8.23) under
the assumption that (2πk0/N) = ω̂0 and that the value of |X[k0]| is determined mainly
by the first term in (8.23).

In Section 8-7, we will revisit the fact that isolated spectral peaks are often indicative
of sinusoidal signal components. Knowledge of the fact that the peak height depends on
both the amplitudeA and the durationL is useful in interpreting spectrum analysis results
for signals involving multiple frequencies.

0 kN

1
2
AL1

2
AL

k0 .N k0/N
2

jXŒk�j

Figure 8-6 N -point DFT of a length-L real
cosine signal whose frequency is an integer
multiple of 2π/N , where N = 50 and L = 20.
Gray line is the magnitude of the DTFT being
sampled. The integer multiple is k0 = 10, so
there are DFT samples at the peaks of the
DTFT at ω̂0 = (2π/50)(10) = 0.4π and
2π − ω̂0 = (2π/50)(50− 10) = 1.6π .
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EXERCISE 8.7 Use MATLAB to compute samples of the signal x0[n] = 5 cos(0.211πn) for n =
0, 1, . . . , 499. Compute and plot the magnitude of the (N = 16384)-point DFT of
the length-500 sequence x0[n] using the MATLAB statements

x0=5*cos( 0.211*pi*(0:499) );
N=16384;
X0 = fft(x0,N); %- fft takes care of zero padding
plot( (0:N/2)*2*pi/N , abs(X0(1:N/2+1)) );

Check to see if the peak height satisfies the relation AL/2 mentioned above.
Repeat the above steps for the following length-5000 input signal:

x3[n] =
{

0.5 cos(0.4πn) for n = 5000, 5001, . . . , 9999
0 otherwise

Overlay the two plots by using MATLAB’s hold on command before plotting the
second DFT. Explain why the spectral peak height is the same for both signals even
though their amplitudes differ by a factor of ten.

EXERCISE 8.8 Use Euler’s relation to represent the signal x[n] = A cos(2πk0n/N) as a sum of two
complex exponentials. Assume k0 is an integer. Use the fact that the DFT is a linear
operation and the periodicity of the DFT coefficients to show that its DFT can be
written as

X[k] = AN

2
δ[k − k0] + AN

2
δ[k − (N − k0)] k = 0, 1, . . . N − 1

8-3 Inherent Time-Domain Periodicity of x [n] in the DFT

In this section, we will study more properties of the DFT/IDFT representation. In the
previous section, we examined properties of the DFT which are tied to its interpretation
as a frequency sampled version of the DTFT, and the fact that X[k] is periodic. This
periodicity affects the placement of negative frequency components in X[k], and also
symmetries. In this section, we want to show that the IDFT summation requires that the
time-domain signal x[n] must also be periodic with period N .

x[n] = x[n+N ] −∞ < n <∞
This property might be surprising because the DFT has been defined for a finite-length
N -point sequence, and the DFT yields N DFT coefficients. However, some transform
properties implicitly involve operations that evaluate the indices n or k outside of
[0, N − 1], so periodicity is needed to explain properties such as the delay property
and convolution.
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8-3.1 DFT Periodicity for x[n]
It is less obvious that the IDFT summation implies periodicity. However, we can ask
what happens when the IDFT sum (8.5) is evaluated for n < 0 or n ≥ N . In particular,
consider evaluating (8.5) at n+N where n is in the interval 0 ≤ n ≤ N − 1, that is,

x̃[n+N ] = 1

N

N−1
∑

k=0

X[k]ej (2π/N)k(n+N) (8.24)

We have denoted the result in (8.24) as x̃[n+N ] because we are testing to see what value
is computed at n+N .

x̃[(n+N)] = 1

N

N−1
∑

k=0

X[k]ej (2π/N)k(n+N) (8.25a)

= 1

N

N−1
∑

k=0

X[k]ej (2π/N)k(n)������� 1
ej (2π/N)k(N) (8.25b)

= 1

N

N−1
∑

k=0

X[k]ej (2π/N)k(n) = x[n] (8.25c)

In (8.25b) observe that ej (2π/N)kN = ej2πk = 1 for all k.
The result in (8.25c) says that the IDFT does not give a value of zero at n+N , as it

would if the IDFT returned the original finite-length sequence x[n] with values x[n] = 0
outside the interval 0 ≤ n ≤ N − 1. Instead, it repeats values of x[n] from within the
interval 0 ≤ n ≤ N − 1. By the same process, it can be shown that x̃[n+ rN ] = x[n]
when we evaluate at any point n+ rN where r is an integer. In other words, the result
from the IDFT sum is periodic in n with period N if (8.5) is evaluated outside the base
interval 0 ≤ n ≤ N − 1. We can express this succinctly as follows:

1

N

N−1
∑

k=0

X[k]ej (2π/N)kn = x̃[n] =
∞
∑

r=−∞
x[n+ rN ] for −∞ < n <∞ (8.26)

where x[n] is the original sequence whose DTFT was sampled as in (8.16). The infinite
sum on the right-hand side, which involves shifted copies of the same signal, is illustrated
in Fig. 8-7. Even though the discussion leading to (8.26) seems to assume that x[n] is
zero outside the interval 0 ≤ n ≤ N − 1, it turns out that the relationship in (8.26) is also
true for any signal that has a DTFT.

Equation (8.26) is an important observation about the IDFT because it provides the
answer to the question: “when can a sequence x[n] be reconstructed exactly from N

samples of its DTFT X(ejω̂)?” From (8.26) it is clear that if x[n] = 0 for n outside the
base interval 0 ≤ n ≤ N − 1, then x[n] = x̃[n] for 0 ≤ n ≤ N − 1. That is, the sequence
x[n] can be reconstructed exactly from N samples of its DTFT X(ejω̂) if it is a finite
length-N sequence. This could be termed the Sampling Theorem for the DTFT.
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Figure 8-7 Illustration of the sum in (8.26). (a) A
finite-length sequence x[n] of length 10. (b) Shifted
copies of x[n] that are summed to make up the
inherent periodic sequence x̃[n] with period
N = 10. The inherent periodic sequence x̃[n]
continues with period N outside the range
−10 ≤ n < 30.

The inherent periodicity of the DFT/IDFT representation in both n and k forces
us to interpret some of the familiar properties of Fourier representations in a special
way. Specifically, we must never lose sight of the periodic sequence x̃[n] that is
inherently represented by the DFT/IDFT representation. This is particularly important
when considering signal operations such as delay and convolution. A good example of
the time periodicity issue comes from reconsidering the DFT pair for a shifted impulse

(8.9) where we want to write the pair as δ[n− nd] DFT←→ e−j(2πk/N)nd . In this case, the
IDFT periodicity issue arises when nd ≥ N , as the following example illustrates.

EXAMPLE 8-5 DFT of Shifted Impulse

Consider the 10-point DFT of q[n] = δ[n− 14] which should be Q[k] = e−j0.2π(14)k by
virtue of the DFT pair given in (8.9). If we take the 10-point IDFT of Q[k] we get a
length-10 signal which is defined over the time index range n = 0, 1, 2, . . . 9. Here is one
way to determine the IDFT of Q[k].

Q[k] = e−j0.2π(10+4)k = e−j2πke−j0.2π(4)k = e−j0.2π(4)k DFT←→ δ[n− 4]
Thus, the result of the IDFT has a nonzero value at n = 4, and seems to be different from
q[n] which was nonzero at n = 14.

For the 10-point DFT of q[n] = δ[n− 14], we can only take the DFT if we extend
q[n] to a periodic signal q̃[n] that has impulses at n = . . . ,−16,−6, 4, 14, 24, 34, . . . .
That is, we would write q̃[n] as

q̃[n] = · · · + δ[n+ 6]
︸ ︷︷ ︸

q[n+20]
+ δ[n− 4]

︸ ︷︷ ︸

q[n+10]
+ δ[n− 14]

︸ ︷︷ ︸

q[n]
+ δ[n− 24]

︸ ︷︷ ︸

q[n−10]
+ · · ·

=
∞
∑

r=−∞
δ[n− 14+ 10r] =

∞
∑

r=−∞
q[n+ 10r]

which expresses the periodic signal q̃[n] in the form of (8.26).
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8-3.2 The Time Delay Property for the DFT

As we showed in Chapter 7, the DTFT delay property is

y[n] = x[n− nd] DTFT←→e−jω̂ndX(ejω̂)
when y[n] = x[n− nd] is a time-shifted version of x[n]. If we use frequency sampling,
then we expect the DFT delay property would be

Y [k] = e−jω̂ndX(ejω̂)
∣

∣

∣

∣

ω̂=(2πk/N)
= e−j(2πk/N)ndX[k] (8.27)

However, when the IDFT is applied to X[k] and Y [k] it is the inherent periodic signal
x̃[n] that is shifted by nd to give the inherent periodic signal ỹ[n]. If we take the point
of view that we only compute sequence values in the interval 0 ≤ n ≤ N − 1, then we
are led to an unexpected result. We can see that might be an issue by noting that if x[n]
is nonzero over the entire interval 0 ≤ n ≤ N − 1, then there would not be room in that
interval for x[n− nd]. This is similar to the behavior already seen in Example 8-5 for
a time-shifted impulse. For example, if nd = 4, then x[n− 4] is nonzero for 4 ≤ n ≤
N +3. This is illustrated in Fig. 8-8 for the caseN = 10. Figure 8-8(a) shows an original
10-point sequence x[n]. If we represent this sequence by its 10-point DFTX[k], then we

−10

−10

−10

−10

0 10
0

1

0 10 20 30
0

1

0 10 20 30
0

1

1

0 10
0

(a)

(b)

(c)

(d)

Time Index (n)

x[n]
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Figure 8-8 Illustration of the time-shift property of the
DFT. (a) A finite-length sequence x[n] of length 10.
(b) The inherent periodic sequence x̃[n] for a 10-point
DFT representation. (c) Time-shifted periodic sequence
ỹ[n] = x̃[n− 4] which is also equal to the IDFT of
Y [k] = e−j (2πk/10)(4)X[k]. (d) The sequence y[n]
obtained by evaluating the 10-point IDFT of Y [k] only in
the interval 0 ≤ n ≤ 9.
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are implicitly representing the periodic sequence x̃[n] shown in Fig. 8-8(b), and if we form
Y [k] = e−j (2πk/10)(4)X[k], then the corresponding periodic sequence is ỹ[n] = x̃[n− 4]
as shown in Fig. 8-8(c). The gray dots on gray lines depict the periodic extension of the
sequence in the base interval 0 ≤ n ≤ 9, which is shown with solid black dots and lines.
Finally, if we form Y [k] = e−j (2πk/10)(4)X[k] and then use the 10-point IDFT to compute
the sequence y[n] for 0 ≤ n ≤ 9, we obtain the result of Fig. 8-8(d).

Comparing Figs. 8-8(a) and (d), it is clear that y[n] �= x[n− 4], however, the four
samples on the left side of y[n]were originally the four samples on the right side of x[n].
Thus, y[n] is related to x[n] by a shift that is sometimes called “circular” since the shifted
samples appear to “rotate” or “wrap around” within the base interval. This effect is often
called time aliasing in recognition of the close analogy with the frequency aliasing that
occurs in sampling continuous-time signals. A convenient way to represent this circular
shift is through the use of modular arithmetic.

EXAMPLE 8-6 Modulo-N Arithmetic

In number theory, a consistent algebraic system can be defined using remainders with
respect to a fixed integer N , called the modulus. Recall that any integer n can be written
uniquely as n = qN + r , where the quotient q is an integer and the remainder r is
nonnegative and less than the modulusN . We write r = n mod N to denote the remainder
of n modulo-N . For example, (−2) mod 10 is equal to 8 because −2 = (−1)(10)+ 8.

For signal delay and convolution, we only need addition and subtraction of integer
indices. Suppose that N = 10, and we want to add 7 and 6. The result for modulo-10
arithmetic is 3 because we do normal addition (7+ 6) = 13, and then reduce modulo-
10, taking the positive remainder which is 3. For mod-10 arithmetic the remainder
must always be a positive integer in the range 0 to N − 1 = 9. If we subtract 4 from
2, the result (2− 4) mod 10 = −2 mod 10 = 8. When we count up modulo-10, the
sequence is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, . . .} because adding 1 to 9 gives 10, and
10 mod 10 = 0. Furthermore, if we evaluate (n− 4) mod 10 for n = 0, 1, . . . 9, we start
at (0− 4) mod 10 which is equal to 6 and get {6, 7, 8, 9, 0, 1, 2, 3, 4, 5}.

For a somewhat more compact general notation, we define index subtraction modulo-
N via

((n− nd))N = (n− nd) mod N (8.28)

The modulo-N operation guarantees that 0 ≤ ((n− nd))N ≤ N − 1. Thus, for n = 0,
1, . . . , N − 1, the index ((n− nd))N cycles through the base interval starting at n =
(0− nd) mod N = N − nd . In terms of this notation (8.28) then, the correct DFT shift
property is

y[n] = x[((n− nd))N ] DFT←→ Y [k] = e−j(2πk/N)ndX[k]

which emphasizes that the time shift is a circular shift with period N .
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8-3.2.1 Zero Padding

While the signal in Fig. 8-8(d) is the correct result for the 10-point DFT, it is not what
we would normally want for a time-shifted signal. Equation (8.26) and the example of
Fig. 8-8 suggest a solution, however. First note that the signal x[n− 4] is not a 10-point
sequence if we start counting at n = 0. With the delay, the first four values of y[n] are
zero and the shifted sequence goes from n = 0 to n = 13, so the length of the shifted
sequence is 14 samples. Thus, if we augment the sequence x[n] with 4 zero samples
at the right-hand end, it is possible to shift the sequence to the right by 4 samples and
still remain within the new base interval 0 ≤ n ≤ 13. This augmentation is known as
zero padding. Therefore, we must compute a 14-point (or larger) DFT if we wish to use
multiplication of the DFT X[k] by e−j (2πk/N)(4) to effect a time shift of 4 samples that
does not “wrap around.” This is illustrated in Fig. 8-9.

Figure 8-9(a) shows the sequence x[n] padded with 4 zero samples (which are,
in fact, correct values for the finite-length sequence x[n]). Figure 8-9(b) shows the
inherent periodic sequence x̃[n] when using the DFT representation with N = 14,
and Fig. 8-9(c) shows the shifted-by-4 periodic sequence ỹ[n] corresponding to
Y [k] = e−j (2πk/14)(4)X[k]. Finally, if we form Y [k] = e−j (2πk/14)(4)X[k] and then use
the 14-point IDFT to compute the sequence y[n] for 0 ≤ n ≤ 13, we obtain the result of
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Figure 8-9 Illustration of the time-shift property of the
DFT with zero padding. (a) A finite-length sequence x[n]
of length 10 padded with 4 zeros. (b) The inherent
periodic sequence x̃[n] for a 14-point DFT representation.
(c) Time-shifted periodic sequence ỹ[n] = x̃[n− 4]
corresponding to Y [k] = e−j (2πk/14)(4)X[k]. (d) The
sequence y[n] obtained by evaluating the 14-point IDFT
of Y [k] only in the interval 0 ≤ n ≤ 13.
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Fig. 8-9(d). Now, clearly, y[n] = x[n− 4] for 0 ≤ n ≤ 13. A longer DFT with N ≥ 14
would also get the correct shifted signal, but would have extra zeros for n > 13.

8-3.3 The Convolution Property for the DFT

One of the most important properties of the DTFT is that time-domain convolution
becomes frequency-domain multiplication in the DTFT, that is,

y[n] = h[n] ∗ x[n] DTFT←→Y (ejω̂) = H(ejω̂)X(ejω̂)
Continuing with our view that the DFT is a sampled version of the DTFT, we show that a
similar property holds for the DFT, but keeping in mind what we have just learned about
time delay and the DFT, it is not surprising to learn that the inherent periodicity of the
DFT/IDFT representation leads to special considerations.

Since the DFT/IDFT representation deals with finite-length sequences, we want to
study the convolution of two finite-length signals, each having a DFT representation.
Therefore, the convolution expression can be written as a finite sum

y[n] =
M−1
∑

m=0

h[m]x[n−m] (8.29)

where we assume that h[n] = 0 except in the interval n = 0, 1, . . . ,M − 1 and x[n] = 0
except in the interval n = 0, 1, . . . , L− 1; that is, h[n] is anM-point sequence and x[n]
is an L-point sequence. In Chapter 5, we learned that y[n] can be nonzero only in the
interval 0 ≤ n ≤ L+M − 2, so the length of the sequence y[n], counting the sample at
n = 0, is L+M − 1.

Now assume that we obtain a DFT Y [k] by sampling Y (ejω̂) at the DFT frequencies
ω̂k = (2πk/N), that is,

Y [k] = H(ejω̂)X(ejω̂)
∣

∣

∣

∣

ω̂=(2πk/N)
= H(ej(2πk/N))X(ej(2πk/N)) = H [k]X[k] (8.30)

where all three DFTs are N -point DFTs. If the sequences x[n] and h[n] are not of the
same length, then at least the shorter one is assumed to be zero-padded to length N . Not
surprisingly, convolution of two finite-length sequences is represented by the DFT as the
product of their DFTs. However, we should not jump to conclusions because what the
DFT Y [k] = H [k]X[k] represents is not the ordinary convolution as in Chapter 5 and in
(8.29), but rather, the periodic convolution of the inherent periodic sequences x̃[n] and
h̃[n] as in

ỹ[n] =
N−1
∑

m=0

h̃[m]x̃[n−m] = 1

N

N−1
∑

k=0

Y [k]ej (2π/N)kn (8.31)

where ỹ[n] is the IDFT of Y [k]. Note that in periodic (or circular) convolution, both
sequences have the same period (N) and the sum is over one period. The IDFT of Y [k]
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is inherently periodic with period N as we have already seen. Furthermore, (8.26) tells
us that the periodic sequence ỹ[n] is related to the sequence y[n] in (8.29) as

ỹ[n] =
∞
∑

r=−∞
y[n+ rN ] (8.32)

Now we can determine the length N that is needed to get y[n]. Since the desired
convolution output y[n] in (8.29) has length L+M − 1 samples, we would require
N ≥ L+M − 1 if we want ỹ[n] = y[n] over the base interval 0 ≤ n ≤ N − 1. This can
be achieved by computing the DFTs X[k] and H [k] with N satisfying this condition.
Zero-padding of both the sequences x[n] and h[n] to length N is needed.

This convolution property is illustrated by the time-delay property of Section 8-3.2,
which is a special case of the convolution property. First, recall that if we have a delay-
by-nd system then its impulse response is h[n] = δ[n− nd], and

y[n] = h[n] ∗ x[n] = δ[n− nd] ∗ x[n] = x[n− nd]
In this case, the length of the sequence h[n] is nd + 1 samples because we start counting
at n = 0. If x[n] is an L-point sequence, then the total length of y[n] is nd +L. We have
shown that the DFT of h[n] = δ[n−nd] isH [k] = e−j (2π/N)knd . Thus, the DFT product,
Y [k] = H [k]X[k] = e−j (2π/N)kndX[k], is identical to what we would obtain using the
time-delay property for the DFT if N ≥ L+ nd .

EXAMPLE 8-7 Convolution of Pulses

Suppose that x[n] is a length-10 rectangular pulse, andh[n] is a length-6 rectangular pulse.
From Chapter 5, we know that the convolution result has a trapezoidal shape. If we use
10-point DFTs, it is possible to work out the answer analytically. The 10-point DFT of
x[n] is X[k] = 10δ[k], because x[n] is all ones and we can use the DFT pair in (8.13)
with k0 = 0. Then we can carry out the multiplication of DFTs without knowing H [k].
Since δ[k] is nonzero only when k = 0, we obtain

Y [k] = X[k]H [k] = 10δ[k]H [k] = 10H [0]δ[k]
The value of H [0] is the DFT coefficient at k0 = 0, which is

H [0] =
9

∑

n=0

h[n]������ 1
e−j0.2π(0)n = 6

Thus, we have Y [k] = 60δ[k] and we can take the length-10 IDFT to get y[n]

y[n] = 1

10

9
∑

k=0

60δ[k]ej0.2πkn = 6δ[0]ej0
︸ ︷︷ ︸

k=0 term

= 6 for n = 0, 1, . . . 9

The only nonzero term in the sum is the one for k = 0. The convolution result y[n] is a
constant which is not what we want.
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Figure 8-10 Illustration of convolving two rectangular
pulses with length-16 DFTs. (a) The inherent periodic
signal h̃[n] corresponding to the 16-point DFT H [k] of
a length-6 pulse. (b) The inherent periodic signal x̃[n]
corresponding to the 16-point DFT X[k] of a length-10
pulse. (c) The inherent periodic signal ỹ[n]
corresponding to Y [k] = H [k]X[k]; ỹ[n] is also equal
to the circular convolution defined in (8.31). (d) The
16-point sequence y[n] obtained by evaluating the
16-point IDFT of Y [k] only in the interval 0 ≤ n ≤ 15.

If we change the length of the DFTs toN = 16, we can get the correct convolution of
the two rectangular pulses where the length is 10+6−1 = 15. This case cannot be done
algebraically without a lot of tedious manipulations, so we would prefer to use MATLAB.

x = ones(1,10); h=[1,1,1,1,1,1];
y16 = ifft( fft( h, 16 ) .* fft( x, 16 ), 16);
y10 = ifft( fft( h, 10 ) .* fft( x, 10 ), 10);

The results for the N = 16 case are plotted in Fig. 8-10, but we omit the plots for
N = 10 because the signal ỹ[n] is constant.

This example demonstrates the general result that periodic convolution as computed
using the DFT and IDFT can be identical to the ordinary convolution of two finite-length
sequences if the value of N in the DFT/IDFT representation is greater than or equal to
the sum of the lengths of the two sequences minus one (i.e., N ≥ M + L− 1).

8-4 Table of Discrete Fourier Transform Properties and Pairs

In this chapter, we have derived a number of useful transform pairs, and we have also
derived several important properties of DFTs. Table 8-1 on p. 327 includes the DFT pairs
that we have derived previously.
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Table 8-1 Basic discrete Fourier transform pairs.

Table of DFT Pairs

Time-Domain: x[n] Frequency-Domain: X[k]

δ[n] 1

δ[n− nd] e−j (2πk/N)nd

rL[n] = u[n] − u[n− L] sin( 1
2L(2πk/N))

sin( 1
2 (2πk/N))

︸ ︷︷ ︸

=DL(2πk/N)

e−j (2πk/N)(L−1)/2

rL[n] ej (2πk0/N)n DL(2π(k − k0)/N) e
−j (2π(k−k0)/N)(L−1)/2

The basic properties of the DFT are what make it convenient to use in designing
and analyzing systems, so they are given in Table 8-2 on p. 328 for easy reference. It is
important to emphasize that these properties must all be interpreted in terms of the inherent
periodicity of the DFT/IDFT representation. For example, the time-delay property applies
to the inherent periodic sequence that we have denoted x̃[n] and the convolution property
likewise concerns periodic convolution of the inherent periodic representations of x[n]
and h[n]. Some of the properties in Table 8-2 have not been derived or discussed in this
chapter. They are nevertheless true and are included for completeness.

DEMO
Time-Frequency
Visualization

8-5 Spectrum Analysis of Discrete Periodic Signals

In Chapter 3, Section 3-6, the Fourier Series integral was presented as the operator
that “Fourier analyzes” a continuous-time periodic signal to extract its spectrum. The
resulting Fourier Series sum represents the periodic signal as a weighted sum of complex
exponentials, and the frequencies of the complex exponentials are all integer multiples of
a fundamental frequency. In this section, we consider the Fourier analyzer for a discrete-
time periodic signal by developing the Discrete Fourier Series (DFS) representation. The
key to the DFS is the IDFT sum which synthesizes a periodic signal when evaluated
outside of the 0 ≤ n ≤ N − 1 interval, and which is also a weighted sum of complex
exponentials whose frequencies are all integer multiples of 2π/N . As a result, we can
interpret the DFT as a method of Fourier analysis that extracts the spectrum of a discrete-
time (sampled) periodic signal x̃[n] by computing the DFT of one period of its samples.
Once we have established the DFS, we are able to connect the spectrum analysis of a
periodic discrete-time signal to the spectrum of a periodic continuous-time signal.7

7A similar relationship to the one that we will derive holds between the continuous-time Fourier transform
and the discrete-time Fourier transform.
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Table 8-2 Basic discrete Fourier transform properties.

Table of DFT Properties

Property Name Time-Domain: x[n] Frequency-Domain: X[k]

Periodic x[n] = x[n+N ] X[k] = X[k +N ]

Linearity ax1[n] + bx2[n] aX1[k] + bX2[k]

Conjugate Symmetry x[n] is real X[N − k] = X∗[k]

Conjugation x∗[n] X∗[N − k]

Time-Reversal x[((N − n))N ] X[N − k]

Delay x[((n− nd))N ] e−j (2πk/N)ndX[k]

Frequency Shift x[n]ej (2πk0/N)n X[k − k0]

Modulation x[n] cos((2πk0/N)n)
1
2X[k − k0] + 1

2X[k + k0]

Convolution
N−1
∑

m=0

h[m]x[((n−m))N ] H [k]X[k]

Parseval’s Theorem
N−1
∑

n=0

|x[n]|2 =
1

N

N−1
∑

k=0

|X[k]|2

8-5.1 Periodic Discrete-Time Signal: Discrete Fourier Series

As we showed in Section 8-3.1, the IDFT representation of a finite-length sequence x[n]
is inherently periodic with period N . When we use the IDFT to represent a finite-length
sequence we usually restrict the evaluation of the IDFT to the range 0 ≤ n ≤ N − 1.
However, if we evaluate the IDFT outside that range we obtain the periodic sequence
x̃[n] = x̃[n+N ],

x̃[n] = 1

N

N−1
∑

k=0

X[k]ej (2πk/N)n =
∞
∑

r=−∞
x[n+ rN ] (8.33)

which in (8.33) is the infinite repetition of the finite-length sequence x[n]whoseN -point
DFT is X[k].



8-5 SPECTRUM ANALYSIS OF DISCRETE PERIODIC SIGNALS 329

Another notable fact about the IDFT summation (8.33) is that it is the sum of N
complex exponentials with uniformly spaced frequencies, ω̂k = (2π/N)k. In other words,
all the frequencies are integer multiples of ω̂1 = (2π/N). If we alter our point of view
away from the representation of a finite-length sequence and focus on the fact that the
N -point IDFT gives a periodic result when evaluated outside the base interval, then it
is reasonable also to call the representation in (8.33) the Discrete Fourier Series (DFS)
for the periodic signal x̃[n]. Just as in the case of the Fourier series for continuous-time
signals discussed in Section 3-5, we now have a representation of a discrete-time periodic
signal as a sum of harmonic complex exponentials.8

We want to use the IDFT to synthesize a periodic signal but the usual Fourier Series
synthesis involves negative frequencies, so we need to reassign some indices to be negative
frequencies as in Section 8-2.2. When the periodic signal is real-valued (e.g., a sinusoid),
then we would expect a synthesis formula with negative frequencies, as well as positive
frequencies, that is,

x̃[n] =
M
∑

m=−M
ame

j(2πm/N)n for −∞ < n <∞ (8.34)

In addition, the coefficients {am} have complex conjugate symmetry, a−m = a∗m when
x̃[n] is real. In the discrete-time case, the summation limit (M)must be finite because the
sum in (8.34) is equivalent to the IDFT (8.33) which has only N terms, and is a general
representation for any periodic discrete-time signal whose period is N . The number of
terms in (8.34) is 2M + 1, so we must have 2M ≤ N − 1.

EXAMPLE 8-8 Synthesize a Periodic Signal from DFS

Suppose that a signal x̃[n] is defined with a DFS summation like (8.34) with specific values
for the coefficients am = (m2 − 1). If M = 2, then

x̃[n] =
2

∑

m=−2

(m2 − 1)ej (2πm/N)n for −∞ < n <∞

For the caseN = 5, make a list of the values of x̃[n] for n = 0, 1, 2, . . . , 10 to show that
x̃[n] has a period equal to 5.
Solution: The summation formula for x̃[n] can be written out

x̃[n] = ((−2)2 − 1)ej (2π/5)(−2)n + ((−1)2 − 1)ej (2π/5)(−1)n + ((0)2 − 1)ej (2π/5)(0)n

+ ((1)2 − 1)ej (2π/5)(1)n + ((2)2 − 1)ej (2π/5)(2)n

= (4− 1)ej (2π/5)(−2)n + (−1)ej (2π/5)(0)n + (4− 1)ej (2π/5)(2)n

= 3ej (2π/5)(−2)n − ej (2π/5)(0)n + 3ej (2π/5)(2)n

= 6 cos(4πn/5)− 1

8Recall that the Fourier Series synthesis formula for continuous-time signals (given in Chapter 3)
represents a periodic signal as a (possibly infinite) sum of harmonic complex exponentials.
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This expression can be evaluated by substituting integer values for n to obtain the
following list of values for 0 ≤ n ≤ 10:

x̃[n] = {5, −5.045, 0.545, 0.545, −5.045, 5, −5.045, 0.545, 0.545, −5.045, 5}
Thus, we see that x̃[n] repeats with a period of 5.

The coefficients of the complex exponential terms (1/N)X[k] in (8.33) become the
Fourier Series coefficients. We already know that the DFT coefficients are periodic, that
is,X[k±N ] = X[k] as shown in Fig. 8-3. Thus, we can identify the Fourier coefficients
{am} in (8.34) with respect to those in (8.33) to obtain

am =
⎧

⎨

⎩

1
N
X[m] m = 0, 1, 2, . . . ,M

1
N
X[m+N ] m = −1,−2, . . . ,−M

(8.35)

The end result is that we can write a DFS for a periodic discrete-time signal by using the
(scaled) DFT as an analysis summation to obtain the {am} coefficients from one period
of the signal.

ak = X[k]
N
= 1

N

N−1
∑

n=0

x̃[n]e−j (2πk/N)n (8.36a)

x̃[n] =
N−1
∑

k=0

ake
j (2πk/N)n =

M
∑

m=−M
ame

j(2πm/N)n (for 2M + 1 ≤ N) (8.36b)

In the DFS, the factor of (1/N) is associated with the analysis summation (8.36a).

EXAMPLE 8-9 Conjugate Symmetry of DFS Coefficients

When determining the DFS coefficients {am} from the DFT X[k], there are two cases to
consider:N even andN odd. The notation is much easier whenN is odd because we can
write N = 2M + 1 where M is an integer. For example, when N = 5 we have M = 2,
so the Fourier Series would be

x̃[n] = a0 + a1e
j0.4πn + a2e

j0.8πn + a−1e
−j0.4πn + a−2e

−j0.8πn

The 5-point DFT of one period of x̃[n] is {Na0, Na1, Na2, Na−2, Na−1}. On the other
hand, when N is even there is a complication. For example, when N = 4 the summation
in (8.34) implies that 2M ≤ 3, or M = 1, but using the 4-point IDFT we can write

x̃[n] = 1
N
X[0] + 1

N
X[1]ej0.5πn + 1

N
X[2]ejπn + 1

N
X[3]ej1.5πn

so the DFS representation of x̃[n] would be

x̃[n] = a0 + a1e
j0.5πn + a2e

jπn + a−1e
−j0.5πn
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The case where a2 �= 0 is a special case that is similar to the ambiguity with X[N/2]
treated in Section 8-2.3.1. The value of a2 (or X[N/2]) is real when the signal is real, so
it does not require a complex conjugate term in negative frequency.

EXAMPLE 8-10 Period of a Discrete-Time Sinusoid

We might expect the fundamental period of a periodic signal to be the inverse of its
fundamental frequency because this is true for continuous-time signals. However, for
discrete-time signals this fact is often not true. The reason for this uncertainty is that the
period of the discrete-time signal must be an integer.

Consider the signal x̃1[n] = cos(0.125πn), whose frequency is π/8 rad. The period
of this signal is N = 16; it is also the shortest period so we want to call 16 the
fundamental period. If we take the 16-point DFT of one period of x̃1[n], we get
X1[k] = 8δ[k − 1] + 8δ[k − 15]. Then we can convert these DFT coefficients into a
DFS representation with a1 = 8/16 = 1

2 and a−1 = 8/16 = 1
2

x̃1[n] = 1
2e
j (2π/16)n + 1

2e
j (2π(−1)/16)n

Now, consider the signal x̃2[n] = cos(0.625πn), whose frequency is 5π/8 rad;
its period is not 2π/(5π/8) = 16/5. Its period is also N = 16, and this is the
shortest integer period. If we take the 16-point DFT of one period of x̃2[n], we get
X2[k] = 8δ[k− 5]+ 8δ[k− 11]. Then we can convert these DFT coefficients into a DFS
representation with a5 = 8/16 = 1

2 and a−5 = 8/16 = 1
2

x̃2[n] = 1
2e
j (2π(5)/16)n + 1

2e
j (2π(−5)/16)n

Our problem is that the period of x̃2[n] being 16 implies that the fundamental frequency
is 2π/16 so a5 should be the fifth harmonic, but the definition of the cosine x̃2[n] has
only one frequency 10π/16 which has to be the fundamental frequency. In fact, this
inconsistency happens whenever we take the DFT of a sinusoid with frequency 2πk0/N ,
and the integer k0 is not a factor of N .

Therefore, this example illustrates that it is impossible to define a simple consistent
relationship between the fundamental period and fundamental frequency of a periodic
discrete-time signal.

8-5.2 Sampling Bandlimited Periodic Signals

The next task is to relate the DFS to the continuous-time Fourier Series. The connection is
frequency scaling when sampling above the Nyquist rate (as done in Chapter 4). Consider
a periodic bandlimited continuous-time signal represented by the following finite Fourier
series

x(t) =
M
∑

m=−M
ame

j2πf0mt −∞ < t <∞, (8.37)
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where f0 is the fundamental frequency (in Hz) and m denotes the integer index of
summation.9 This continuous-time signal is bandlimited because there is a maximum
frequency, 2πMf0 rad/s, in the expression (8.37) for x(t). When sampling x(t), we must
have fs > 2Mf0 Hz to satisfy the Nyquist rate criterion.

When x(t) is sampled at a rate fs = 1/Ts , the sampled signal x̃[n] is a sum of
discrete-time complex exponentials obtained from (8.37)

x̃[n] = x(nTs) =
M
∑

m=−M
ame

j2πf0mnTs for −∞ < n <∞. (8.38)

The discrete-time signal defined in (8.38) might not be periodic, but if we restrict our
attention to the special case where fs = Nf0, then x̃[n] is guaranteed to be periodic with
a period of N . The number of samples in each period (N) is equal to the duration of the
fundamental period (T0) times the sampling rate fs , that is, N = fs/f0 = (fs)(T0) is an
integer. We can invert N to write (1/N) = (1/fs)(1/T0) = (Ts)(f0). When we make the
substitution f0Ts = 1/N in (8.38), the expression for x̃[n] becomes

x̃[n] =
M
∑

m=−M
ame

j(2π/N)mn for −∞ < n <∞. (8.39)

We recognize (8.39) as the Discrete Fourier Series of a periodic signal whose period isN .
Comparing (8.37) and (8.39), we see that the Fourier Series coefficients am are identical
for x(t) and x̃[n].

If we want to compute the DFS coefficients from the samples x(nTs) over one period,
the number of samples in one period (N) must be large enough so that we can use the
DFT of x̃[n] over one period to extract am. Thus, we need to have at least 2M + 1 DFT
coefficients which can be used to get the 2M + 1 DFS coefficients am from X[k] using
(8.35). The condition given in (8.36b) requires N ≥ 2M + 1. In addition, the fact that
f0Ts = 1/N can be rewritten as fs = Nf0 means that the sampling rate is N times the
fundamental frequency of x(t). The Sampling Theorem requirement for no aliasing is
fs > 2Mf0, that is, the sampling rate must be greater than the Nyquist rate, which is
twice the highest frequency in the bandlimited signal x(t). Since fs = Nf0, the Nyquist
rate condition implies that N > 2M which is the same requirement. Therefore, in the
fs=Nf0 case, the number of samples per period must be greater than twice the number
of (positive) frequency components in the continuous-time Fourier series representation
of x(t).

EXAMPLE 8-11 Fourier Series of a Sampled Signal

Suppose that we are given the following continuous-time signal

x(t) = 2 cos(42πt + 0.5π)+ 4 cos(18πt)

9In this chapter, we use the indexm for the Fourier Series to distinguish it from the IDFT where we want
to use the index k. Previously, in Chapter 3, we used k for the continuous-time Fourier Series summation.
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and we want to determine the Fourier Series representation of the resulting discrete-time
signal. In particular, we would like to determine which Fourier Series coefficients are
nonzero. We need a sampling rate that is an integer multiple of the fundamental frequency
and is also greater than the Nyquist rate, which is 42 Hz. The two frequency components
in x(t) are at 9 Hz and 21 Hz, so the fundamental frequency is the least common divisor,
which is f0 = 3 Hz. We must pick N > 14 to satisfy the Nyquist rate condition, so for
this example we use fs = 16× 3 = 48 Hz.

The sum of sinusoids can be converted to a sum of complex exponentials,

x(t) = ej (42πt+0.5π) + e−j (42πt+0.5π) + 2ej (18πt) + 2e−j (18πt)

and then (8.38) can be employed to represent the sampled signal x̃[n] = x(n/fs) as

x̃[n] = ej (42π(n/48)+0.5π) + e−j (42π(n/48)+0.5π) + 2ej (18π(n/48)) + 2e−j (18π(n/48)) (8.40)

The four discrete-time frequencies are ω̂ = ±(42/48)π and±(18/48)π . In order to write
(8.40) in the summation form of (8.39), we useN = 16. In (8.40), we want to emphasize
the term (2π/N) = (2π/16) in the exponents, so we write

x̃[n] = ej ((2π/16)7n+0.5π) + e−j ((2π/16)7n+0.5π) + 2ej ((2π/16)3n) + 2e−j ((2π/16)3n) (8.41)

Now we can recognize this sum of four terms as a special case of (8.39) withN = 16 and
M = 7 (i.e., the range of the sum is−7 ≤ m ≤ 7). The only nonzero Fourier coefficients
in (8.39) are at those for m = ±7,±3, and their values are a3 = 2, a7 = ej0.5π = j ,
a−3 = 2, and a−7 = e−j0.5π = −j .

These relationships between the DFS (8.39) and the continuous-time Fourier Series
(8.37), and also between the DFS and the DFT, are illustrated in Fig. 8-11 where
Fig. 8-11(a) shows a “typical” spectrum for a bandlimited continuous-time periodic signal
(as a function of f ), and Fig. 8-11(b) shows the spectrum for the corresponding periodic
sampled signal (as a function of ω̂ and also k). Notice the alias images of the original
spectrum on either side of the base band where all the frequencies lie in the interval
−π < ω̂m ≤ π . When fs > 2Mf0, the sampling rate fs is greater than the Nyquist rate
and the entire continuous-time spectrum is found in the base band because no aliasing
distortion occurs.

We know from Chapter 4 that the spectrum of a sampled signal is periodic in ω̂ with
a period of 2π . This attribute is shown in Fig. 8-11(b). Since the spectrum is periodic in
ω̂ with a period of 2π with the spectral lines located at frequencies ω̂k = (2π/N)k,
an equivalent statement is that the spectrum is periodic in k with a period equal to
N . To emphasize this point, Fig. 8-11(b) shows two horizontal plotting axes: one for
normalized frequency ω̂ and the other for the indices k that appear in ω̂k. The DFT
shown in Fig. 8-11(c) is also subject to the same periodicity in k, so the DFT coefficients
for 0 ≤ k ≤ N − 1 can be related to the DFS coefficients via am = (1/N)X[m], for
−M ≤ m ≤ M .
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Figure 8-11 Frequency-domain view of sampling a periodic signal. (a) Line spectrum of a bandlimited continuous-time
periodic signal whose fundamental frequency is f0. (b) Line spectrum of the discrete-time periodic signal x̃[n] obtained
by sampling the signal in (a) above the Nyquist rate at fs = Nf0 where N > 2M , giving lines at ω̂k = (2π/N)k.
(c) DFT coefficients shown as a line spectrum, where the DFT is taken over one period of the periodic signal x̃[n]. The
DFT coefficients are denoted with subscripts (i.e., Xk instead of X[k]), to enhance the readability of the labels.

8-5.3 Spectrum Analysis of Periodic Signals

In this section, we show how the DFT can be used to analyze continuous-time periodic
signals that have been sampled. As a specific example, consider the periodic continuous-
time signal

xc(t) = 0.1223 cos(2π(200)t + 1.5077)

+ 0.2942 cos(2π(400)t + 1.8769)

+ 0.4884 cos(2π(500)t − 0.1852)

+ 0.1362 cos(2π(1600)t − 1.4488)

+ 0.0472 cos(2π(1700)t) (8.42)

The fundamental frequency of this signal is ω0 = 2π(100) rad/s, and the signal
consists of five harmonics at 2, 4, 5, 16, and 17 times the fundamental. This signal is
the same as the synthetic vowel studied in Section 3-4.1. If we sample xc(t) at the rate
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Figure 8-12 Periodic sequence x[n] in
(8.43) and the corresponding 40-point DFT
spectrum X[k]. (a) Dark region indicates the
40-point interval (starting at n = 0) taken for
analysis. (b) DFT magnitude spectrum. (c)
DFT phase spectrum.

fs = 4000 Hz, we obtain exactly 40 samples per period since fs = 4000 Hz is exactly
40 times f0 = 100 Hz. The sampled discrete-time signal x[n] = xc(n/4000) is

x̃[n] = 0.1223 cos(0.1πn+ 1.5077)

+ 0.2942 cos(0.2πn+ 1.8769)

+ 0.4884 cos(0.25πn− 0.1852)

+ 0.1362 cos(0.8πn− 1.4488)

+ 0.0472 cos(0.85πn) (8.43)

The plot of x̃[n] in Fig. 8-12(a) shows that it is periodic with a period of 40 (i.e.,
x̃[n] = x̃[n+ 40]). Another way to arrive at the same conclusion is to note that x̃[n]
has frequencies that are all multiples of ω̂0 = 0.05π = 2π/40 which is therefore the
fundamental frequency. Like the continuous-time case, x̃[n] in (8.43) has harmonics at
multiples of the normalized fundamental frequency numbered 2, 4, 5, 16, and 17.

Now we consider taking the DFT of x̃[n] with a DFT length equal to the period.
First, one length-40 period of x̃[n] from Fig. 8-12(a) is extracted and used in a 40-point
DFT (8.4). The 40 DFT coefficients X[k] obtained are shown as magnitude and phase in
Figs. 8-12(b) and (c), respectively. These 40 DFT coefficients represent one period of the
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sequence x̃[n] exactly through the synthesis formula of the IDFT (8.5). The DFS is also
a representation of x̃[n] as a sum of complex exponentials at the harmonic frequencies,
so the DFT coefficients X[k] are related to the DFS coefficients as shown in (8.35).

EXERCISE 8.9 Use the results of Section 8-5.2, Exercise 8.8 to determine a formula forX[k], the 40-
point DFT of x[n] in (8.43). Use 40 points of x[n] taken over the period 0 ≤ n ≤ 39.
Verify that some of the nonzero DFT values are

X[k] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

0.06115(40)ej1.5077 k = 2

0.1471(40)ej1.8769 k = 4

0.2442(40)e−j0.1852 k = 5

0.0681(40)e−j1.4488 k = 16

0.0236(40) k = 17

(8.44)

Determine the other nonzero values of X[k], and also how many DFT coefficients
X[k] are equal to zero.

EXERCISE 8.10 Show that the IDFT ofX[k] defined in Exercise 8.9 gives x[n] in (8.43). Furthermore,
show that the signal x[n] obtained via the IDFT is periodic with period N .

The plots of Figs. 8-12(b) and (c) are the spectrum for the sum of five sinusoids, or
ten complex exponentials, so Fig. 8-12(b) consists of ten spectral lines, each one being
just like the plot in Fig. 8-2 which shows the magnitude of the DFT for a single complex
exponential signal of the form

x[n] = ej ((2π/N)k0n+ϕ) n = 0, 1, . . . , N − 1

where k0 is an integer.
We have seen that the DFT can be used to obtain the DFS when the DFT length

exactly matches the period of x[n]. Without an exact match, the DFT result might be
a reasonable approximation, but it is not exact. To illustrate this point, consider a case
where the sampling frequency is not an integer multiple of the fundamental frequency,
that is, fs/f0 is not an integer and, therefore, cannot be equal to the DFT length. An
example is sampling the signal in (8.42) at fs = 3950 Hz (i.e., fs/f0 = 39.5), so the plot
in Fig. 8-13(a) seems to have a period close to 40, but it is not exactly equal to 40.

If we proceed as though the period were 40, and compute the 40-point DFT of
N = 40 samples of the sampled signal, we obtain the plot in Fig. 8-13(b). This DFT
plot is somewhat similar to the DFT in Fig. 8-12(b), but none of the DFT coefficients
are exactly zero. Instead, each cosine produces a contribution to the DFT that has many
small values spread out over the entire range 0 ≤ k ≤ N − 1, as was seen in Fig. 8-1.
The amplitude of the DFT values tend to peak around the DFT indices closest to the
same peak frequencies as before, (2πf0/fs)k where k = 2, 4, 5, 16, 17. However, the
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Figure 8-13 Discrete-time sequence x[n]
whose period is approximately equal to 40
obtained by sampling x(t) in (8.42) at
fs = 3950 Hz, and the corresponding 40-point
DFT spectrum X[k]. (a) Dark region indicates
40-point interval (starting at n = 0) taken for
analysis. (b) DFT magnitude spectrum. (c)
DFT phase spectrum.

presence of many additional spectral components gives a “blurred” (or imprecise) spectral
representation of the original continuous-time signal.

EXERCISE 8.11 Use MATLAB to synthesize N = 40 samples of xc(t) in (8.42) with fs = 4100 Hz
instead of 4000 Hz; call the result x4100. Next, use the MATLAB statement
X41=fft(x4100,40) to compute the 40-point DFT. Finally, make a plot of the
DFT magnitude stem(0:39,abs(X41)), and compare the resulting magnitude
spectrum to that of Fig. 8-12(b). Comment on expected zero regions of the DFT.

8-6 Windows

Since the DFT is a finite sum, it can only be used to analyze finite-length signals. Even
infinite-length periodic signals that have a DFS are analyzed by taking the DFT of one
period. We have examined the case where the finite-length signal is the impulse response
of an FIR system, and have shown that samples of the frequency response, or equivalently
the DTFT, can be computed by zero-padding and taking a long DFT. Remember from
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Section 8-2.4 that the N -point DFT of a finite-length sequence is identical to the DTFT
of the sequence evaluated at frequencies ω̂k = 2πk/N with k = 0, 1, . . . , N − 1, that is,

X[k] = X(ej(2πk/N)) =
L−1
∑

n=0

x[n]e−j (2πk/N)n (8.45)

We recognized that X[k] = X(ej(2πk/N)) even if L < N since N−L zero samples
are effectively appended to the end of the sequence x[n]. This operation was called
zero-padding in Section 8-2.4. In MATLAB, the DFT is computed by the function
fft(x,N), which automatically zero-pads the sequence if the sequence length is smaller
than the DFT length.

In this section, we will study another aspect of finite-length signals, which is their
use as windows for local spectrum analysis of short sections of very long signals. The
concept of windowing is widely used in signal processing. In fact, it has already been
discussed in Section 7-4 for FIR filter design. The basic idea is to extract a finite section of
a longer signal x[n] via multiplicationw[n]x[n+n0], wherew[n] is the window function
and n0 is the starting index of the extracted section. The product signal w[n]x[n+ n0] is
a finite-length sequence if the window function w[n] is zero outside of an interval. The
simplest window function is the L-point rectangular window defined as

wr [n] =
{

1 0 ≤ n ≤ L− 1

0 elsewhere
(8.46)

The essential idea of windowing is that the product wr [n]x[n+ n0] extracts L values
from the signal x[n] starting at n = n0. Thus, the following expressions are equivalent

wr [n]x[n+ n0] =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

0 n < 0

�
�	

1

wr [n]x[n+ n0] 0 ≤ n ≤ L− 1

0 n ≥ L
(8.47)

The name window comes from the idea that we can only “see” the L values of the signal
x[n+ n0] within the window interval when we “look” through the window. Multiplying
by w[n] is looking through the window. When we change n0, the signal shifts, and we
see a different length-L section of the signal.

The nonzero values of the window function do not have to be all ones, but they
should be positive. For example, the symmetric L-point Hann, or von Hann, window10 is
defined as

wh[n] =
{

0.5− 0.5 cos(2π(n+1)/(L+1)) 0 ≤ n ≤ L− 1

0 elsewhere
(8.48)

10The Hann window is named for the Austrian scientist Julius von Hann. This window is often called the
“hanning” window. Sometimes, the Hann window formula is given such that wh[0] = 0, but our definition
produces all positive values for wh[n].
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Figure 8-15 DTFT of two Hann windows; length
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The stem plot of wh[n] for L = 20 in Fig. 8-14 shows that the window values are close
to one in the middle (at n = 9, 10) and taper off near the ends. In MATLAB the function
hanning(L) computes the window values as in (8.48).11

8-6.1 DTFT of Windows

Windows are used often in spectrum analysis because they have desirable properties in
the frequency domain. Thus it is worth studying the DTFT of a few common windows.
We already know the DTFT of the rectangular window—it involves the Dirichlet form.

Wr(e
jω̂) = DL(ω̂)e

−j (L−1)ω̂/2 = sin( 1
2Lω̂)

sin( 1
2 ω̂)

e−jω̂(L−1)/2

For the Hamming and von Hann windows, the analytic formulas for the DTFT do not
provide much insight, so we prefer to obtain the DTFT numerically and make plots after
computing a zero-padded DFT.

Figure 8-15 shows plots of the magnitude of the DTFT for two Hann windows with
lengthsL = 20 andL = 40. The DTFTs were obtained using a 1024-point DFT with zero
padding. The 1024 frequency samples enable MATLAB’splot function to draw a smooth
curve even though the sample values are connected by straight lines. Figure 8-15(b) shows

11A related window is the symmetric L-point Hamming window which was defined and discussed in
Section 7-4; its values are generated by the MATLAB function hamming(L).
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that the DTFT of the Hann window is concentrated near ω̂ = 0. The main lobe around
ω̂ = 0 covers the range−4π/(L+1) < ω̂ < 4π/(L+1); outside of this main lobe region
the DTFT is very close to zero.

When we compare the DTFTs |Wh(e
jω̂)| in Fig. 8-15(b) for the two different window

lengths, we see that the DTFT magnitude becomes more concentrated around ω̂ = 0 as
we increase L. It can be shown that the first zero of |Wh(e

jω̂)| occurs at ω̂ = 4π/(L+1)
for the Hann window. Thus, increasing L from 20 to 40 cuts the width of the main lobe in
half (approximately). The peak amplitude at ω̂ = 0 is also approximately doubled, going
from 10.5 to 20.5, which is consistent with the fact that, the general formula for the peak
is 1

2 (L+1). Plotting |Wh(e
jω̂)| allows us to verify these results.

EXERCISE 8.12 A property of the DTFT is that the DC value (ω̂ = 0) of the DTFT is equal to the sum
of all the signal values in the time domain. Use the definition of the forward DTFT
to prove this fact, which could then be used to determine Wh(e

j0).

Windows are used to extract sections of longer signals.An illustrative case is extracting
a section of a sinusoid for spectrum analysis, which involves multiplying the sinusoid by
the window and taking the DFT with zero padding to obtain samples of the DTFT. Within
this context there are two questions that should be answered: first, how to choose a good
window function, and second, how to choose the window length.

For the first question, consider an example that compares the rectangular window
to the Hann window. Suppose that each window is applied to a sinusoid as xw[n] =
w[n] cos(0.4πn), with a window length of 40. Since the window is multiplied by a
cosine, the frequency-shifting property of the DTFT predicts that the result will be the
sum of two frequency-shifted copies of the DTFT of the window, that is,

Xw(e
jω̂) = 1

2W(e
j(ω̂−0.4π))+ 1

2W(e
j(ω̂+0.4π)) (8.49)

where W(ejω̂) is the DTFT of the window. Figure 8-16 shows the results, and it is easy
to see the frequency shifting because the main lobes are centered at ±0.4π . For the
rectangular window shown in Fig. 8-16(a), the main lobe is narrow, extending over the
range−2π/L ≤ ω̂ ≤ 2π/L if measured between the first zero crossings on either side of
the peak. However, the DTFT magnitude in Fig. 8-16(a) also exhibits many smaller lobes
across the entire frequency range. These are called sidelobes. For the rectangular window
these sidelobes are rather high and are the main reason that this window is considered
inferior to most others. On the other hand, the Hann window DTFT shown in Fig. 8-16(b)
has a wider main lobe, but much smaller sidelobes. The main lobe of the Hann window
DTFT extends over the range−4π/(L+1) ≤ ω̂ ≤ 4π/(L+1)when measured between
the first zero crossings. Thus, the Hann window of length L has a frequency-domain
width that is approximately twice that of a rectangular window of the same length. The
sidelobes of the Hann DTFT magnitude in Fig. 8-16(b) are less than 1% of the peak
heights.

If we pause to ask ourselves what the ideal DTFT should be for a windowed sinusoid
of frequency ω̂0, the answer is likely to be that we want to see only two spectrum lines
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Figure 8-16 DTFT magnitudes of a
windowed sinusoid via 1000-point DFT. (a)
L = 40 rectangular window (peak heights
are 20). (b) L = 40 Hann window (peak
heights are 10.25). The sinusoid frequency is
0.4π rad.

at ±ω̂0. In other words, the ideal main lobe should be very narrow (concentrated at the
correct frequencies±ω̂0), and the ideal sidelobes should be zero (or nearly zero). It turns
out that these two expectations are in conflict when using finite-length windows, because
it is known that reducing the sidelobes can only be done at the expense of broadening the
main lobe.

In addition, a comparison of the two windowed DTFTs in Fig. 8-16 shows that the
peak heights are different. For the Hann window, we have already observed that the
peak height is 1

2 (L+1); for the rectangular window it is L. In either case, the window
is contributing a known scale factor to the result. If the objective is spectrum analysis of
a sinusoid, as in this example, we know that the result should be a spectrum line whose
height is half the amplitude of the sinusoid, or 1

2 in the unit-amplitude case. In Fig. 8-16(a)
dividing by L = 40 gives 1

2 , and also in Fig. 8-16(b) dividing by 1
2 (L+1) = 20.5

gives 1
2 .

For the second question about length of the window, Fig. 8-15 demonstrates that
the width of the main lobe in the DTFT is inversely proportional to the window length.
We continue with the same example of spectrum analysis of a windowed unit-amplitude
sinusoid, but this time use two different Hann windows with lengths 20 and 40. Figure
8-17 shows the resulting scaled DTFTs, where the known window scale factors have been
divided out, so the peak values are 1

2 . If the main lobe width is measured between first
zero crossings, then for Fig. 8-17(a) the main lobe extends from 0.2π to 0.6π , and in
Fig. 8-17(b) from 0.3π to 0.5π . Thus forL = 20, the main lobe width�ω̂ is�ω̂ ≈ 0.4π ,
and forL = 40,�ω̂ ≈ 0.2π . The dependence of�ω̂ onL is an inverse relationship which
can be approximated12 as �ω̂ ≈ 8π/L.

12A precise analysis would show that the first zero crossings are at±4π/(L+1), so the exact relationship
is 8π/(L+1). For L > 30, the difference in the two formulas is less than 0.1%, and it is easier to remember
inversely proportional to L.
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Figure 8-17 Scaled DTFT of windowed
unit-amplitude sinusoid via 1000-point DFT.
(a) L = 20 Hann window scaled by 1/5.25.
(b) L = 40 Hann window scaled by 1/10.25.
Sinusoid frequency is 0.4π rad.

EXAMPLE 8-12 Sum of Two Sinusoids

The importance of analyzing the frequency-domain window characteristics becomes clear
when we consider signals that are composed of sums of sinusoids. If we have a signal
with two frequencies

x[n] = A1 cos ω̂1n+ A2 cos ω̂2n

where ω̂1 < ω̂2, then the windowed signal would be

xw[n] = w[n]x[n] = A1w[n] cos ω̂1n+ A2w[n] cos ω̂2n

and the corresponding DTFT would be

Xw(e
jω̂)= A1

2
W(ej(ω̂−ω̂1))+A1

2
W(ej(ω̂+ω̂1))+A2

2
W(ej(ω̂−ω̂2))+A2

2
W(ej(ω̂+ω̂2)) (8.50)

If we want to compute samples ofXw(ejω̂) in order to estimate ω̂1 and ω̂2, the main lobes
of the terms in (8.50) should not overlap. If the window is a Hann window of main lobe
width 8π/L, the main lobes do not overlap if ω̂2 − ω̂1 > 8π/L. In this case, we would
obtain distinct peaks at ±ω̂1 and ±ω̂2 and the peak heights are nearly equal to 1

2A1 and
1
2A2. When there are two distinct peaks in the DTFT, we say that the two frequencies
are resolved. The effect of window length on spectrum resolution is discussed further in
Section 8-7.4.1.

8-7 The Spectrogram

We have seen that the DFT can compute exact frequency-domain representations of
both periodic and finite-length discrete-time signals. An equally important case occurs
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when the sampled signal is indefinitely long, but not necessarily periodic. Then there
are two different viewpoints to consider: the long signal has the same global spectral
content for its entire duration, or the long signal is actually the concatenation of many
short signals with changing local spectral content. In the first case, we might be able to
analyze the signal mathematically with the DTFT, but we cannot numerically calculate its
frequency domain representation unless the long signal is actually a finite-length signal.
Then we could compute its DFT but we might have to wait an inordinately long time
just to acquire all the samples, and even having done so, we would then be faced with a
huge DFT computation. This would be unacceptable in a real-time system that needs to
process signals on line. When the long signal is the concatenation of many short signals,
the appropriate frequency-domain representation would be the collection of many short-
length DFTs. Then the temporal variations of the local frequency content would stand
out. The spectrogram arises from this viewpoint where a short-length DFT is used to
repeatedly analyze different short sections of a longer signal.

Good examples of indefinitely long signals are audio signals such as speech or music.
In both of these cases, it is the temporal variation of the frequency content that is of interest.
The changing pitch and timbre of speech is how information is encoded in human speech.
Likewise, we have already seen that music can be synthesized as a succession of tone
combinations held nearly constant for short time intervals. For audio signals we may have
digital recordings that give very long sequences obtained by sampling for many minutes
or even hours. For example, one hour of stereophonic music sampled at 44.1 kHz would
be represented by 44,100× 60× 60 = 158,760,000 samples per channel. If we want
to compute the (global) DFT of the entire one hour of audio, the closest power-of-two
FFT needed would beN = 228 = 268,435,456 per channel. On the other hand, the local
spectrum approach above would use short-length FFTs to analyze short time segments
within the long signal. This is reasonable (and generally preferable) because a long
recording probably contains a succession of short passages where the spectral content
does not vary. It might even be true that there is a natural segment length for the audio
signal that will dictate the FFT length.

8-7.1 An Illustrative Example

To examine the points made above, we shall study a signal whose spectral properties
vary with time. We begin by synthesizing a continuous-time signal that consists of
four contiguous time intervals of cosine waves of different amplitudes and constant
frequencies. Such a signal could be described by the equation

x(t) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

5 cos(2πf0t) 0 ≤ t < T1

2 cos(2πf1t) T1 ≤ t < T2

2 cos(2πf2t) T2 ≤ t < T3

0.5 cos(2πf3t) T3 ≤ t < T4

· · · T4 ≤ t

(8.51)

The signal x(t) begins with a T1-second interval of a cosine signal of amplitude 5 and
frequency f0 Hz. At t = T1 the waveform switches to a cosine of amplitude 2 and
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frequency f1, and retains these parameters throughout the interval T1 ≤ t < T2. The
last two intervals switch to different amplitude and frequency parameters at T2 and T3

as described by (8.51). The signal might continue indefinitely with changing parameters
after t = T4, but it is sufficient to limit attention to the first four time intervals.

For a particular sampling frequency fs , the resulting sampled signal would be

x[m] = x(m/fs) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

5 cos(ω̂0m) 0 ≤ m ≤ 499
2 cos(ω̂1m) 500 ≤ m ≤ 2999
2 cos(ω̂2m) 3000 ≤ m ≤ 4999
0.5 cos(ω̂3m) 5000 ≤ m ≤ 9999

(8.52)

where ω̂0 = 2πf0/fs , ω̂1 = 2πf1/fs , ω̂2 = 2πf2/fs , and ω̂3 = 2πf3/fs are dimension-
less frequency quantities, and the frequencies change at T1fs = 500, T2fs = 3000,
T3fs = 5000, and T4fs = 10,000 samples. The normalized frequencies ω̂0 = 0.211π ,
ω̂1 = 0.111π , ω̂2 = 0.8π , and ω̂3 = 0.4π are obtained when fs = 2000 Hz and
f0 = 211 Hz, f1 = 111, f2 = 800, and f3 = 400 Hz. However, other values of f0, f1, f2,
f3, and fs could give the same normalized frequencies and, therefore, the same sequence
of samples.

EXERCISE 8.13 Suppose that the sampling frequency is fs = 1000 Hz. What values of f0, f1 f2, and
f3 in (8.51) normalize to the values ω̂0 = 0.211π , ω̂1 = 0.111π , ω̂2 = 0.8π , and
ω̂3 = 0.4π in (8.52)?

EXERCISE 8.14 Use MATLAB to synthesize the sampled signal x[m] in (8.52) with frequencies
ω̂0 = 0.211π , ω̂1 = 0.111π , ω̂2 = 0.8π , and ω̂3 = 0.4π , and then use the D-to-A
converter on your computer (soundsc in MATLAB) with fs = 2000 Hz to listen to
x(t) in (8.51). During the listening observe the differences among the four segments of
the signal. Is what you hear completely consistent with the specified signal parameters
(duration, frequency, intensity) given above for (8.51)?

Now suppose that we compute the DFT of the entire 10,000-point sequence x[m]
in (8.52) using zero padding with N = 16,384. The resulting magnitude of the length-
16,384 DFT is plotted in Fig. 8-18. The obvious features in this figure are four narrow
peaks and these give some clues as to the nature of the signal x[n], but the interpretation
is far from complete and is not straightforward. The four strong peaks might suggest a
signal comprised of a sum of four cosine waves of different frequencies and comparable
amplitudes. With some assurance, we can state the following about the signal whose DFT
is plotted in Fig. 8-18:

1. The four peaks in the DFT spectrum occur at frequencies corresponding to
approximately ω̂ = 0.111π , 0.211π , 0.4π , and 0.8π , so they probably represent
sine or cosine wave components in x[n] at those frequencies.
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Figure 8-18 DFT of the entire sequence x[n]
in (8.52) with DFT length N = 16,384. Only
the magnitude |X[k]| is shown for
0 ≤ k ≤ 8192. Horizontal axis is labeled with
normalized frequency using ω̂k = 2πk/N .

2. The peak heights of the DFT tell us something about the amplitudes of the sinusoidal
components but, as demonstrated in Section 8-2.5, the peak height of the DFT of a
cosine signal depends on both the amplitude of the cosine signal and its duration.
The peak heights in Fig. 8-18 differ at most by a factor of two, but we know in
this example that the actual amplitudes for frequencies 0.111π , 0.211π , 0.4π , and
0.8π are 2, 5, 0.5, and 2, respectively. Although the height of the 0.211π peak is
equal to the height of the peak at 0.4π , in fact, there is a 10:1 ratio between the
amplitudes of those cosine components. Similarly, the DFT peak heights at 0.211π
and 0.111π are in the ratio 1:2, while we know that the ratio of amplitudes of those
two cosines is 5:2. The reason for this is that the DFT of a cosine of amplitude A
and durationL achieves a maximum of approximatelyAL/2, as was demonstrated
in Section 8-2.5. The amplitude and duration of the ω̂0 = 0.211π segment are
A0 = 5 and L0 = 500, while the corresponding values for the ω̂3 = 0.4π segment
areA3 = 0.5 andL3 = 5000; therefore, the peak heights are the same: 5×500/2 =
0.5×5000/2 = 1250. Note that the different peak widths convey information about
the duration of the sinusoids, as we saw during the discussion of windowing in
Section 8-6.

3. Figure 8-18 tells us nothing about the time location or time variation of the signal
properties. For example, we cannot tell whether the different components occur
simultaneously (overlapping in time throughout the whole analysis interval) or
sequentially (as they do in this example). This is because in either case, the signals
are additively combined, and by the linearity of the DFT, the result is the sum of
all the DFTs of the individual components. The change in starting time is a time
shift of a signal which changes the phase of the DFT, but not the magnitude of the
DFT.

8-7.2 Time-Dependent DFT

A long DFT gives useful information about the frequency content of a signal such as x[n]
in (8.52), but it would be much more useful if the DFT could be used also to track the
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time-varying properties of the signal. To formalize this concept for a signal x[m] that is
an indefinitely long sequence, we define the time-dependent discrete Fourier transform
of this signal as

X[k, ns] =
L−1
∑

m=0

w[m]x[ns +m]e−j (2πk/N)m k = 0, 1, . . . , N − 1 (8.53)

where ns is the analysis time index that specifies the starting index in x[n], where a short-
length DFT is taken. This equation involves two steps: windowing and short-length DFTs.
First of all,w[m] is called the analysis window. It is a sequence such as the Hann window
in (8.48) that is nonzero only in the interval m = 0, 1, . . . , L− 1, where L is assumed
to be much smaller than the total length of the sequence x[n]. Therefore, the product
w[m]x[ns +m] is also nonzero only for m = 0, 1, . . . , L− 1. In this way, the window
selects a finite-length segment from the sequence x[n] starting at the analysis time index
ns . Second, a short-length DFT of the finite-length windowed segment is computed to
extract the spectrum for that local interval of the signal. By adjusting the analysis time
index ns , we can move any desired segment of x[n] into the domain of the window, and
thereby select any length-L segment of x[n] for analysis. The length-L segments are
often called frames. Because the window imposes time localization,X[k, ns] in (8.53) is
also known as the short-time discrete Fourier transform or STDFT.

The right-hand side of (8.53) is easily recognized as the N -point DFT of the finite-
length sequencew[m]x[ns +m], so (8.53) can be evaluated efficiently for each choice of
ns by an FFT computation. The selection of analysis segments is illustrated by Fig. 8-19
for two values of the analysis starting time index, ns = 0 and ns = 400. Figure 8-19(a)
shows the first 801 samples of the discrete-time signal x[m] in (8.52) plotted versus m
with dots for sample values. Also shown in Fig. 8-19(a) are two shaded regions of length
301 samples. One region starts at m = 0 and is shaded orange, and the other starts at
m = 400 and is shaded in gray.13 These are potential 301-sample analysis frames. Also
shown in Fig. 8-19(a) is the outline of the (bell-shaped) Hann windoww[m]whose origin
is fixed at m = 0.14 The orange samples in Fig. 8-19(a) are the samples that are going to
be multiplied by the window w[m] when ns = 0 and are thus selected for analysis with
the DFT to obtain X[k, 0], the DFT of w[m]x[0+m].

Figure 8-19(b) shows the fixed window sequence (in orange) along with the sequence
x[400+m], which is the sequence x[m] shifted to the left by 400 samples. The gray samples
in Fig. 8-19(a) have become the orange samples in Fig. 8-19(b) where these samples are
multiplied by the window and are thus selected for DFT analysis to compute X[k, 400].
To computeX[k, ns] for any other value of ns , we simply form the “windowed” sequence
w[m]x[ns +m] in the manner illustrated in Fig. 8-19, and then compute the DFT of the
resulting finite-length sequence as in (8.53). The shift ns is typically moved in jumps of
R samples, where 1 ≤ R < L. As long as R < L the windowed segments overlap and

13The shading of the samples is intended to emphasize two typical analysis intervals, with the implication
that in general, all the samples would be plotted with the same color.

14The discrete-time window sequences are shown as continuous outlines to distinguish them from the
samples of x[m].
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Figure 8-19 Time-dependent Hann
windowing of a signal using a length-301
window. (a) The signal x[0+m] = x[m] and
fixed window w[m]. (b) Fixed window w[m]
with signal shifted by 400 samples (i.e.,
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(a) STDFT at ns D 250 (b) at ns D 2000
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Figure 8-20 Short-time spectra for the signal
defined in (8.52) with L = 301 and N = 1024.
(a) STDFT at analysis time index ns = 250.
(b) STDFT at ns = 2000. (c) STDFT at
ns = 4000. (d) STDFT at ns = 6000. The
frequency axis ω̂ is derived from k via
ω̂ = 2πk/N , and the DFT magnitudes for
0 ≤ k ≤ 512 are connected as if plotting the
corresponding DTFT at frequencies
0 ≤ ω̂ ≤ π .

all samples of the signal are included in at least one analysis window. A common default
choice is R = L/2, but making R smaller provides a smoother spectrogram (discussed
below) at the cost of more computation. The best value of R is often dictated by the need
to track fast temporal changes in the signal being analyzed.

To illustrate the nature of the short-time DFT, Fig. 8-20 shows plots of |X[k, 250]|,
|X[k, 2000]|, |X[k, 4000]|, and |X[k, 6000]| for the signal of (8.52) with STDFT
parametersL = 301 andN = 1024. Figure 8-20 confirms that |X[k, 250]|, |X[k, 2000]|,
|X[k, 4000]|, and |X[k, 6000]| each display a single peak centered at the frequency of the
sinusoidal component at the corresponding analysis times. Furthermore, the amplitudes
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of the peaks are in correct proportion since for the analysis times chosen, there is only
one frequency within the window and the window lengths are the same (L = 301).15

While plots like those in Fig. 8-20 are useful for displaying the frequency-domain
properties in the neighborhood of a specific analysis time ns , they do not give a complete
overview of how the signal parameters vary with time. In this example, we selected
the analysis time indices ns = 250, 2000, 4000, and 6000, because we knew that these
positions would show the different frequencies. In a practical setting, where we do not
know the details of the signal in advance, the spectrogram display is much more effective
and widely used.

8-7.3 The Spectrogram Display

The STDFT computation results in a two-dimensional function X[k, ns], where the k
dimension represents frequency because ω̂k = (2πk/N) is the kth analysis frequency, and
the ns dimension represents time since the analysis window-position times are ts = nsTs .
Since the STDFT is a function of both frequency and time, there might be a different local
spectrum for each analysis time. Although X[k, ns] is complex valued with a magnitude
and phase, we usually plot only the magnitude versus (k, ns)with a 3-D graphical display.
A variety of display methods can be used to plot the magnitude |X[k, ns]| as a function of
both k and ns , including waterfall plots (a sequence of plots like those in Fig. 8-20 stacked
vertically), perspective plots, contour plots, or grayscale images. In addition, plotting the
log magnitude, log |X[k, ns]| versus (k, ns), is often used to show a wider amplitude
range. The preferred form is the spectrogram, which is a grayscale (or pseudocolor)
image where the gray level at point (k, ns) is proportional to the magnitude |X[k, ns]| or
the log magnitude, log |X[k, ns]|. Usually, large magnitudes are rendered as black, and
small ones white, but pseudo-color images are also common.

DEMO
Spectrogram Practice

Spectrograms of the signal in (8.52) are shown in Fig. 8-21. The horizontal axis is
analysis time and the vertical axis is frequency. Analysis time can be given as a sample
index (ns) as in Fig. 8-21, or converted to continuous-time ts = ns/fs via the sampling
rate. Likewise, frequency can be converted from the index k to hertz, or to normalized
frequency ω̂ as in Fig. 8-21. In the spectrogram image for a real signal, usually only the
frequency range for 0 ≤ k ≤ N/2, or 0 ≤ ω̂ ≤ π is shown because the negative frequency
region is conjugate symmetric. For the complex signal case, the frequency range is either
0 ≤ ω̂ < 2π , or−π < ω̂ ≤ π , depending on whether or not the FFT values are reordered
prior to being displayed.16

8-7.4 Interpretation of the Spectrogram

A glance at Fig. 8-21 confirms that the spectrogram provides a much clearer time-
frequency picture of the characteristics of the signal defined in (8.52) than does either

15The absolute height of the peaks depends on the amplitude A of the sinusoid and the window—
specifically, the peak height equals 0.5A

∑

w[m].
16The DSP-First Toolbox functions plotspec and spectgr, which are similar to MATLAB’s function

spectrogram, use the ordering−π < ω̂ ≤ π for complex signals; MATLAB’s spectrogram function
uses 0 ≤ ω̂ < 2π .
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(a) Spectrogram for Window Length L D 301

(b) Spectrogram for Window Length L D 75

0
0

0
0

Analysis Time Index .ns/

Analysis Time Index .ns/

Fr
eq

ue
nc

y
.

O!/
Fr

eq
ue

nc
y

.
O!/

2000

2000

4000

4000

6000

6000

8000

8000

10,000

10,000

Figure 8-21 Spectrograms of test signal
(8.52) calculated with spectgr (linear
magnitude) for two different window
lengths. (a) L = 301. (b) L = 75. For both
cases, N = 1024 and the spacing between
analysis times is R ≈ 0.1L.

the single plot of a long DFT as in Fig. 8-18, or the four snapshots in Fig. 8-20. The
four sinusoidal components and their starting/ending times are evident in Fig. 8-21(a).
On the other hand, the dark horizontal bars in Fig. 8-21(b) are wider and less clearly
defined, so it is hard to determine the exact frequency—however, it is clear in both
spectrograms where the sinusoidal components are located in time. The dashed lines at
ns = 250, ns = 2000, ns = 4000, and ns = 6000 show the locations of four individual
DFTs that comprise Fig. 8-20; that is, the DFT plots in Figs. 8-20(a), (b), (c), and (d) are
columns of the gray-scale spectrogram image shown in Fig. 8-21(a). The magnitude of the
DFT is mapped to a gray-scale shading which is visible along the orange, black, and gray
vertical marker lines, respectively. Figures 8-20(a–d) are, therefore, “vertical slices” of the
spectrogram.

LAB
Spectrograms of AM and
FM Signals

A comparison of the two spectrograms in Fig. 8-21 yields valuable insight into the
effect of the window length in short-time Fourier analysis. The window length isL = 301
in Fig. 8-21(a) and L = 75 in Fig. 8-21(b). Along the time axis (n) at points where the
frequency changes abruptly, there are “blurry” regions; these occur at ns = 500, 3000,
and 5000. The blurred regions occur whenever the analysis window straddles a region
of rapid change since we have signal samples within the window from both sides of the
change point. For example, when ns = 350, the signal interval [350, 650] is shifted under
the L = 301 point window prior to the DFT, so the first half of x[350+m] has frequency
0.211π and the second half has frequency 0.111π . Thus, the STDFT X[k, 350] should
have lower peaks at both frequencies. The longer the window, the wider is this fuzzy
region of ambiguity. This effect is seen in a comparison of Figs. 8-21(a) and (b) because
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the regions of fuzziness are much wider for theL = 301 window. This example illustrates
the general principle that precise location of temporal changes in the signal requires a
short window.

8-7.4.1 Frequency Resolution

Another important point is that the vertical width of the horizontal bars (for the sinusoids)
is different in the two spectrograms. In fact, the width of the bars in Fig. 8-21(b) is
approximately four times the width of the bars in Fig. 8-21(a), because the window
lengths are 75 and 301, respectively. This suggests that for a signal having multiple
frequency components overlapping in time, the spectrogram may not show two distinct
peaks if the frequencies are too close together. In other words, the spectrogram may need
a longer window to “resolve” two closely spaced frequency components into separate
peaks in the frequency domain.

This resolution issue is illustrated by a test example where the signal is composed of
multi-frequency sinusoids with closely spaced frequencies. The two spectrograms shown
in Fig. 8-22 were computed for two different window lengths for the signal

x[m] =
⎧

⎨

⎩

cos(0.2πm)+ 1.5 cos(0.227πm) 0 ≤ m < 5000
cos(0.2πm) 5000 ≤ m < 7000
3 cos(0.6πm)+ cos(0.7πm) 7000 ≤ m < 10,000

(8.54)

By comparing the spectrograms we can see the effect of the window length on frequency
resolution. During the first interval the two frequencies are very close together at 0.2π

2000 4000 6000 8000

2000 4000 6000 8000

(a) Spectrogram for Window Length L D 301

(b) Spectrogram for Window Length L D 75
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10,000 Figure 8-22 Spectrograms of test signal (8.54)
for two different window lengths. (a) L = 301.
(b) L = 75. FFT length is N = 1024 with zero
padding.
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and 0.227π (a spacing of 0.027π rad), while in the third interval, the two frequencies are
farther apart at 0.6π and 0.7π (a spacing of 0.1π rad). The two frequencies in the first
interval are both evident in Fig. 8-22(a), but not in Fig. 8-22(b) where they are merged
into a single broad horizontal bar. On the other hand, during the third time interval, two
clearly separated bars are evident in both spectrograms at the frequencies 0.6π and 0.7π ,
so, the two frequency components are resolved. This resolution is possible because,
although the bars in Fig. 8-22(b) are 3–4 times wider than the corresponding features
in Fig. 8-22(a), the spacing between the frequencies 0.7π and 0.6π is approximately
four times the spacing between 0.227π and 0.2π . This example illustrates the general
principle that frequency resolution can be improved by lengthening the analysis window.

LAB
Spectrogram: Harmonic
Lines and Chirp Aliasing

To see the frequency resolution more clearly, Fig. 8-23 shows “vertical slices” taken
along the dashed lines in Figs. 8-22(a) and (b) corresponding to analysis times ns = 2000
and 8000, which are in the middle of the segments having two sinusoids with closely
spaced frequencies. Figure 8-23(a) corresponds to the slice at ns = 2000 with the window
lengthL = 301, and it shows two distinct peaks around the frequencies 0.2π and 0.227π .
However, Fig. 8-23(c) shows the slice at ns = 2000 with the window length L = 75. In
this case there is only a single broad peak, and we conclude that the two frequencies are
“not resolved.” On the other hand, for the slices at ns = 8000 shown in Figs. 8-23(b)
and (d), the two frequencies are more widely separated, and we see two distinct peaks in
both of the spectrogram slices. However, for the slice at ns = 8000, if the window length
were reduced below 75, the two peaks in Fig. 8-23(d) would broaden and eventually as
the window length decreases we would see only a single broad peak spanning the two
frequencies at 0.6π and 0.7π . Finally, note that the vertical slice DFTs show clearly
that the amplitude of the two sinusoids is different, but the amplitude difference is much
harder to discern in the gray-scale spectrogram image.
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(a) ns D 2000, L D301 (b) ns D 8000, L D301

(c) ns D 2000, L D75 (d) ns D 8000, L D75
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Figure 8-23 Short-time spectra for signal in
(8.54) at two different time indices. These are
the vertical slices shown in Fig. 8-22. (a) Hann
window length L = 301, time index
ns = 2000. (b) L = 301, ns = 8000.
(c) L = 75, ns = 2000. (d) L = 75, ns = 8000.
FFT length was 1024 with zero padding.
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EXERCISE 8.15 Use MATLAB to generate the signal in the third time interval of (8.54)

x[m] = 3 cos(0.6πm)+ cos(0.7πm) 7000 ≤ m < 10,000

Then using a Hann window, compute the spectrogram slice atns = 8000. Use window
lengths ofL = 91 andL = 31 and compute the DFTs to produce plots like Fig. 8-23.
Determine whether or not the two sinusoidal components are “resolved.”

As suggested by Fig. 8-23, the width of the peaks for the DFTs of the sinusoidal
components depends inversely on the window length L. In the previous Section 8-6, we
learned that what we are seeing in Fig. 8-23(a) is the DTFT of the window w[n] shifted
in frequency to the frequency of the sinusoid. Furthermore, it is a general principle of
Fourier transforms that there is an inverse relation between window length and frequency
width. Therefore, the frequency width of the DTFT of a window sequence such as the
Hann window can be written as an inverse relationship

�ω̂ ≈ C

L

where the constant C is a small number, usually 4π < C < 8π for “good” windows. For
the Hann window, the zero-crossing width is �ω̂ = 8π/L, so �ω̂ = 8π/75 = 0.107π
for the length-75 Hann window, which is small enough to resolve the 0.6π and 0.7π
frequency peaks at ns = 8000. If two frequencies differ by less than �ω̂, their STDFT
peaks blend together. Thus, the ability to resolve two sinusoids (i.e., see two distinct
peaks), depends inversely on the window length L. This makes sense intuitively because
the longer the window, the longer the time to observe the periodicity (or non-periodicity)
of a signal. On the other hand, if the window is very short, e.g., less than one period of
the signal, then we have virtually no information about any periodicity of the signal, and
it is reasonable to expect this to be reflected in the STDFT.

There is still one more point to make about the window length, and this is the
issue of “time resolution.” We observed in Fig. 8-21 that the window length is also
important in tracking the temporal changes in a signal. The “fuzzy” transition regions are
approximately four times as wide in Fig. 8-21(a) as in Fig. 8-21(b) because the window
length goes from L = 301 to L = 75. Therefore, it is generally true that in order to track
rapid spectrum changes, we need to keep the window length as short as possible.

We are forced, therefore, into a trade-off situation: the window should be short to
track temporal changes, but long to resolve closely spaced frequency components. For
this reason, when studying the properties of an unknown signal, it is common to compute
spectrograms with differing window lengths. Features that are obvious in one case may
be obscured in another, but with multiple spectrograms and a good understanding of
how window length (and shape) affect the spectrogram image, it is often possible to
determine much useful information about the signal. This time-frequency information can
be combined with physical models for signal generation and/or detection to obtain very
accurate models of the signal that can be useful in a variety of applications. A notable and
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ubiquitous application is audio coding for digital storage and transmission. Audio coders
like MP3 are based upon the same type of frequency analysis computations employed
to generate the spectrogram image. Because the human auditory system incorporates a
type of frequency analysis, short-time frequency-domain analysis is a very natural way to
incorporate auditory perception effects such as masking into the process of compressing
the digital representation of an audio signal. By a careful frequency analysis “frame by
frame,” it is possible to mask coding errors by literally “hiding” them beneath prominent
spectral components.

8-7.5 Spectrograms in MATLAB

Since the spectrogram can be computed by doing many FFTs of windowed signal
segments, MATLAB is an ideal environment for doing the DFT calculation and displaying
the image. Specifically, the MATLAB spectrogram computation evaluates (8.53) for
length-L signal segments that are separated by R (i.e., ns = 0, R, 2R, 3R, . . .).

X[(2πk/N)fs, rRTs] =
L−1
∑

m=0

w[m]x[rR +m]e−j (2πk/N)m k = 0, 1, . . . , N/2 (8.55)

The frequencies are scaled by (2π/N)fs and the times by Ts , because the default
MATLAB display presents the spectrogram versus frequency in hertz and time in seconds.
Quite often the default is R = L/2, so there is a 50% overlap of the signal segments
analyzed by the DFT after windowing. The value ofN is the DFT length, so zero padding
would be done when N > L. Picking a large value for N gives many frequency samples
along the k dimension because the frequency index k ranges from 0 to N/2. When the
sampling rate fs = 1/Ts associated with x[n] is available, the frequency locations for the
DFT output can be scaled to hertz and the time axis can be converted from sample index
to analysis time in seconds which is convenient for labeling the axes of the spectrogram
display.17

The computation of the spectrogram can be expressed in a simple MATLAB program
that involves one for loop. The core of the program is shown below for the special case
of an even-length window with 50% overlap of signal segments.

% L = signal segment length, also window length (even integer)
% N = FFT (DFT) lengths
% win = window signal, L-point column vector

such as the Hann window, or hanning.m
% xn = input signal (column vector)
% assume the overlap is 50%
Lx = length(xn);
NwinPos = 2*ceil(Lx/L);
X = zeros(N,NwinPos);
for ii=0:NwinPos-1

X(:,ii+1) = fft(win.*xn(ii*L/2 + (1:L)),N);
end

17In other words, MATLAB’s spectrogram function calibrates the frequency and time axes in continuous-
time units assuming a given sampling rate fs .



354 CHAPTER 8 DISCRETE FOURIER TRANSFORM

In recent versions of MATLAB the command that invokes the computation of
(8.55) is

[S,F,T] = spectrogram(X,WINDOW,NOVERLAP,NFFT,Fs,’yaxis’)

The final string’yaxis’ is needed to override the default behavior that puts the frequency
axis on the horizontal and the time axis vertical. The outputs from spectrogram are S,
a two-dimensional array containing the complex-valued spectrogram values, F, a vector
of all the analysis frequencies, and T, a vector containing the starting times of the signal
segments being windowed. The inputs are the signal X, the window coefficients WINDOW,
the overlap of signal segments NOVERLAP, the FFT length NFFT, and the sampling
frequency Fs. In addition, the default spectrogram window is Hamming, so it should
be replaced with a call to the Hann function, (e.g., hanning(L)). Note that the window
skip parameter R in (8.55) is the window length minus the overlap, so the overlap should
be less than the window length, but choosing Noverlap equal to length(window)-1

would generate a lot of needless computation (and possibly a very large image!), because
the window skip would be R = 1. It is common to pick the overlap to be somewhere
between 50% and 90% of the window length (i.e., 0.1L ≤ R ≤ 0.5L), depending on how
smooth the final spectrogram image needs to be. See help spectrogram in MATLAB
for more details.

The spectrogram image can be displayed by using any one of MATLAB’s 3-D
display functions. To get the inverted gray-scale images shown in this chapter, use the
following:

imagesc( T, F, abs(S) )
axis xy, colormap(1-gray)

The color map of (1-gray) gives a negative gray scale that is useful for printing, but
on a computer screen it might preferable to use color (e.g., colormap(jet)). Finally,
it may be advantageous to use a logarithmic amplitude scale in imagesc in order to see
tiny amplitude components, as well as big ones.

8-8 The Fast Fourier Transform (FFT)

In Section 8-1.3, we discussed the FFT as an efficient algorithm for computing the DFT.
The FFT is without a doubt the most famous algorithm in signal processing, and many
of the systems that we use everyday rely on the FFT for an efficient implementation in
hardware or software.

8-8.1 Derivation of the FFT

In this section, we give the basic divide-and-conquer method that leads to the FFT. From
this derivation, it should be possible to write an FFT program that runs in time proportional
to (N/2) log2N , whereN is the transform length. We need to assume thatN is a power of
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two, so that the decomposition can be carried out recursively. Such algorithms are called
radix-2 algorithms.

The DFT summation (8.4) and the IDFT summation (8.5) are essentially the same,
except for a minus sign in the exponent of the DFT and a factor of 1/N in the inverse DFT.
Therefore, we concentrate on the DFT calculation, knowing that a program written for the
DFT could be modified to do the IDFT by changing the sign of the complex exponentials
and multiplying the final values by 1/N . The DFT summation can be broken into two
sets, one sum over the even-indexed points of x[n] and another sum over the odd-indexed
points.

X[k] = DFTN {x[n]} (8.56a)

=
N−1
∑

n=0

x[n]e−j (2π/N)kn (8.56b)

= (

x[0]e−j0 + x[2]e−j (2π/N)2k + · · · + x[N − 2]e−j (2π/N)k(N−2)
)

+ (

x[1]e−j (2π/N)k + x[3]e−j (2π/N)3k + · · · + x[N − 1]e−j (2π/N)k(N−1)
)

(8.56c)

X[k] =
N/2−1
∑

�=0

x[2�]e−j (2π/N)k(2�) +
N/2−1
∑

�=0

x[2�+ 1]e−j (2π/N)k(2�+1) (8.56d)

At this point, two clever steps are needed: First, the exponent in the second sum must
be broken into the product of two exponents, so we can factor out the one that does not
depend on �. Second, the factor of two in the exponents (2�) can be associated with the
N in the denominator of 2π/N .

X[k] =
N/2−1
∑

�=0

x[2�]e−j (2πk/N)(2�) + e−j (2πk/N)
N/2−1
∑

�=0

x[2�+ 1]e−j (2πk/N)(2�) (8.56e)

X[k] =
N/2−1
∑

�=0

x[2�]e−j (2πk/(N/2))� + e−j (2πk/N)
N/2−1
∑

�=0

x[2�+ 1]e−j (2πk/(N/2))� (8.56f)

Now we have the correct form. Each of the summations in (8.56f) is a DFT of length
N/2, so we can write

X[k] = DFTN/2{x[2�]} + e−j (2π/N)k DFTN/2{x[2�+ 1]} (8.57)

The formula (8.57) for reconstructing X[k] from the two smaller DFTs has one hidden
feature: It must be evaluated for k = 0, 1, 2, . . . , N − 1. The N/2-point DFTs produce
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output vectors that containN/2 elements; for example, the DFT of the odd-indexed points
would be

Xo
N/2[k] = DFTN/2{x[2�+ 1]}

for k = 0, 1, 2, . . . , N/2−1. Thus, we need to recall that an N/2-point DFT is periodic
with a period of N/2 in order to calculate X[k], for k ≥ N/2. It is easy to verify that

Xo
N/2[k +N/2] = Xo

N/2[k]
and likewise for the DFT of the even-indexed points, so we need merely to periodically
extend the results of the N/2-point DFTs before doing the sum in (8.57). This requires
no additional computation.

The decomposition in (8.57) is enough to specify the entire FFT algorithm: Compute
two smaller DFTs and then multiply the outputs of the DFT over the odd indices by the
exponential factor e−j (2π/N)k. Refer to Fig. 8-24, where three levels of the recursive
decomposition can be seen. If a recursive structure is adopted, the two N/2 DFTs
can be decomposed into four N/4-point DFTs, and those into eight N/8-point DFTs,
etc. If N is a power of two, this decomposition continues (log2N − 1) times and then
eventually reaches the point where the DFT lengths are equal to two. For 2-point DFTs,

x[n] X[k]

e−j2πk/N

e−j4πk/N

e−j4πk/N

N/2-Point DFT

N/2-Point DFT

N/4-point DFT

N/4-point DFT

N/4-point DFT

N/4-point DFT

N/8

N/8

N/8

N/8

N/8

N/8

N/8

N/8

Figure 8-24 Block diagram of a radix-2 FFT algorithm for N = 2ν . The width of the lines is proportional to the
amount of data being processed. For example, each N/4-point DFT must transform a data vector containing N/4
elements.
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the computation is trivial:

X2[0] = x2[0] + x2[1]
X2[1] = x2[0] + e−j2π/2 x2[1] = x2[0] − x2[1]

The two outputs of the 2-point DFT are the sum and the difference of the inputs. Thus,
the last stage of computation would require N/2 2-point DFTs.

8-8.1.1 FFT Operation Count

The foregoing derivation is a brief sketch of the algorithm, but the basic idea for writing
an FFT program using the two-point DFT and the complex exponential as basic operators
has been presented. An important point about the FFT is not only writing the program,
but also assessing the number of operations needed to complete the calculation. When it
was first published, the FFT made a huge impact on how people thought about problems,
because it made the frequency-domain accessible numerically. Spectrum analysis became
a routine calculation, even for very long signals. Operations such as filtering, which seem
to be natural for the time-domain, could be done more efficiently in the frequency-domain
for very long FIR filters.

The number of operations needed to compute the FFT can be expressed in a simple
formula. The structure of the algorithm given in (8.57) is sufficient to count the number
of operations. The count goes as follows: the N point DFT can be done with two N/2
point DFTs followed byN complex multiplications andN complex additions, as we can
see in (8.57).18 Thus, we have

μc(N) = 2μc(N/2)+N
αc(N) = 2αc(N/2)+N

where μc(N) is the number of complex multiplications for a length-N DFT, and αc(N)
is the number of complex additions. This equation can be evaluated successively for
N = 2, 4, 8, . . . , because we know that μc(2) = 0 and αc(2) = 2. Table 8-3 lists the
number of operations for some transform lengths that are powers of two. The formula for
each can be derived by matching the table:

μc(N) = N(log2N − 1)

αc(N) = N log2N

Since complex number operations ultimately must be done as multiplies and adds
between real numbers, it is useful to convert the number of operations to real adds and
real multiplies. Each complex addition requires two real additions, but each complex
multiplication is equivalent to four real multiplies and two real adds. Therefore, we can
put two more columns in Table 8-3 with these counts. The last column in the table 4N2

is the number of real multiplications needed to compute an N -point DFT directly from
its definition (8.4).

18Actually, the number of complex multiplications can be reduced toN/2, because e−j2π(N/2)/N = −1.
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Table 8-3 Number of operations for radix-2 FFT when N is a power of two.
Notice how much smaller μr(N) is than 4N2.

N μc(N) αc(N) μr(N) αr(N) 4N2

2 0 2 0 4 16
4 4 8 16 16 64
8 16 24 64 48 256

16 48 64 192 128 1024
32 128 160 512 320 4096
64 320 384 1280 768 16,384

128 768 896 3072 1792 65,536
256 1792 2048 7168 4096 262,144
...

...
...

...
...

...

In summary, the total operation count is proportional toN log2N . The exact formulas
from Table 8-3 are

μr(N) = 4N(log2N − 1)

αr(N) = 2N(log2N − 1)+ 2N = 2N log2N

for the number of real multiplications and additions, respectively. Even these counts are
a bit high because certain symmetries in the complex exponentials can be exploited to
further reduce the computations.

8-9 Summary and Links

In this chapter, we introduced the DFT which is the finite form of the DTFT, and we have
shown how the resulting concepts can be useful in computing spectrum representations
of signals and for understanding the behavior of linear systems. We showed how the
DFT can be derived from the DTFT by frequency sampling, which enables us to use
the DTFT for analysis when explaining the result of a DFT/FFT computation. Finally,
the spectrogram was introduced as an application of the DFT where a time-dependent
spectrum is computed by taking the DFT of short windowed sections of a long signal.

DEMO
Spectrogram Practice

8-10 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used for review and
practice. Most of them have detailed solutions.

NOTE
Problems with Solutions P-8.1 For each of the following length-8 signals, use frequency sampling of the DTFT to

determine a formula for the 8-point DFT. Use MATLAB to check your work numerically.
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(a) xa[n] =
{

1 n = 0

0 n = 1, 2, . . . , 7

(b) xb[n] = (−1)n for n = 0, 1, 2, . . . , 7

(c) xc[n] =
{

1 n = 3

0 n �= 3

(d) xd[n] = 0.5ejπn/2 for n = 0, 1, 2, . . . , 7

P-8.2 For each of the following 8-point DFTs, determine a formula for the 8-point
IDFT. Use MATLAB to check your work numerically.

(a) Xa[k] = 1 for k = 0, 1, 2, . . . , 7

(b) Xb[k] =
{

1 k = 3, 5

0 k = 0, 1, 2, 4, 6, 7

(c) Xc[k] =
[

0 −√2j − 2j −√2j 0
√

2j 2j
√

2j
]

(d) Xd = 0.5 cos(πk/2) for k = 0, 1, 2, . . . , 7

P-8.3 For each of the following length-12 signals, determine a formula for the 12-point
DFT. Use MATLAB to check your work numerically.

(a) y0[n] = 3(−1)n for n = 0, 1, . . . , 11.

(b) y1[n] =
{

1 n = 0, 1, 2, 3

0 n = 4, 5, . . . , 11

(c) y2[n] =
{

1 n = 0, 2, 4, 6, 8, 10

0 n = 1, 3, 5, 7, 9, 11

P-8.4 For an unknown 4-point sequence w[n], the corresponding 4-point DFT is

W [k] = {0, j, 0, −j}

(a) Define a new 4-point sequence y[n] = 4− 3w[n] and then determine the 4-point
DFT Y [k].
Hint: it is not necessary to find w[n].

(b) Define a new 4-point sequence v[n] = y[n]+2(−1)nw[n], and then determine the
4-point DFT V [k].
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P-8.5 An experienced engineer, who has taken many FFTs of real-valued sequences
x[n], has noticed that although many of the DFT coefficients are often complex-valued,
X[0] is always real-valued for any length N and X[N/2] is real when N is even, but
X[N/2] is not available when N is odd.

(a) For the case N = 255 and N = 256, express X[0] and X[N/2] in such a way so
as to prove this observation.

(b) Given the 6-point sequence x[n] = [4, −1, 4, −1, 4, −1], determine its 6-point
DFT sequence X[k].

(c) If the 4-point DFT an unknown length-4 sequence v[n] is V [k] =
{1, 4+ j, −1, 4− j}, determine v[1].

(d) Given an 8-point sequence z[n] =
7

∑

m=0

8(−1)mδ[n−m], the corresponding 8-point

DFT is Z[k]. Determine Z[0] and Z[4].

P-8.6 Consider the real finite-length sequence x[n] defined as

x[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2]

(a) Sketch x[n] as a function of n.

(b) Sketch the finite-length sequence y[n] whose 8-point DFT is Y [k] = e−j0.5πkZ[k]
where Z[k] is the 8-point DFT of z[n] = 2x[n− 1].

P-8.7 Consider two finite-length sequences,

x[n] =
⎧

⎨

⎩

0 n < 0
1 0 ≤ n ≤ 3
0 n > 3

and h[n] = 4δ[n] − 2δ[n− 1] − 2δ[n− 2].

(a) Determine and plot the discrete convolution y[n] = x[n] ∗ h[n] for these two
sequences.

(b) Note that the length of x[n] is 4 and the length of h[n] is 3 samples. Therefore,
each sequence can be represented by an N -point DFT with N ≥ 4. Zero padding
would be used to extend the lengths when N > 4. Determine expressions for the
N -point DFTsX[k] andH [k]. Do not obtain numerical answers—instead express
your answers in terms of e−j2π(n)k/N .
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(c) Now form the product Y [k] = X[k]H [k] again expressed in terms of e−j2π(n)k/N .

(d) From the result in part (c), determine the IDFT of Y [k] when N = 6. Compare
your answer to the result of part (a).

(e) Repeat when N = 4. In this case, the complex exponentials must be changed so
that the exponents are less than 2π , i.e., e−j (2π/N)(N+k) = e−j (2π/N)k if 0 ≤ k ≤
N − 1.

(f) In general, consider x[n] to have lengthL andh[n] to have lengthM . How shouldN
be chosen so that the MATLAB statementy = ifft( fft(x,N).*fft(h,N) )

produces the same result as the MATLAB statement y = conv(x,h)?

P-8.8 The inverse DTFT ofX(ejω̂) = 8e−j10ω̂ sin(7.5ω̂)

sin(0.5ω̂)
is a length-15 sequence x[n].

If we evaluate a 60-point DFT of x[n] (with zero padding), determine the DFT coefficient
X[8] and express it in polar form Aejϕ with A ≥ 0 and −π < ϕ < π .

P-8.9 The DTFT of a length-32 real sinusoid signal sequenceq[n] = A cos(ω̂0n) forn =
0, 1, . . . , 31 consists of two “Dirichlet-form” peaks and can be written as (see Tables 8-2
and 8-3):

Q(ejω̂) = 1
2A

sin( 1
2 (32)(ω̂ − ω̂0))

sin( 1
2 (ω̂ − ω̂0))

e−j
31
2 (ω̂−ω̂0) + 1

2A
sin( 1

2 (32)(ω̂ + ω̂0))

sin( 1
2 (ω̂ + ω̂0))

e−j
31
2 (ω̂+ω̂0)

where ω̂0 is the frequency of the sinusoid.

(a) Suppose that we define a length-32 signal as s[n] = 0.1+ A cos(ω̂0n), and take
its length-32 DFT. Call the result S[k], for k = 0, 1, 2, . . . , 31. If the values of the
DFT S[k] are zero for 29 of the 32 DFT coefficients, and a maximum value of
|S[k]| is found at the index k1 = 10, determine the frequency of the sinusoid, ω̂0.

(b) For the 32-point DFT in part (a), determine the indices where the other two nonzero
values of S[k] are found (i.e., k2 and k3, where S[k2] �= 0 and S[k3] �= 0).

(c) If one of the two maximum values of |S[k]| is found at the index k1 = 10 and
|S[k1]| = 50, determine the amplitude A of the signal, s[n], defined in (a).

P-8.10 Define a length-32 signal to be r[n] = 1+ 7 cos(0.2πn) for n = 0, 1, . . . , 31.
Then form a length-N signal by zero-padding with 48 zeros, and take the N -point DFT
of the zero-padded signal to obtain R[k], for k = 0, 1, 2, . . . , N − 1.

(a) Determine the value of N for the N -point DFT taken after the zero padding.

(b) Determine the indices, kpeaks, where the two maximum values of |R[k]| are found,
and, give both indices where |R[k]| = max

k
{|R[k]|}.

(c) Determine the maximum value of |R[k]| at the two indices found in part (b).
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P-8.11 Suppose that a periodic signal x[n] has a DFS given by

x[n] =
10
∑

k=−10

(1+ k2)ej (0.09πk)n

Use the frequency response (or DTFT) to evaluate the convolution

y[n] = sin(0.16πn)

6πn
∗ x[n] = h[n] ∗ x[n]

Express your answer in the simplest possible form.

P-8.12 Suppose that a discrete-time signal x[n] is a sum of complex-exponential
signals

x[n] = 2+ 2ej0.3πn + 2e−j0.3πn − 6jej0.8πn + 6je−j0.8πn

(a) Plot the spectrum of the DFS for x[n] using only positive frequencies in the interval
0 ≤ ω̂ ≤ 2π .

(b) Suppose that x1[n] = (−1)nx[n]. Make a spectrum plot of the DFS for x1[n] using
only positive frequencies.

(c) Suppose that x2[n] = x[n]ej0.5πn − 6jej1.7πn. Make a spectrum plot of the DFS
for x2[n] using only positive frequencies.

P-8.13 Suppose that the following continuous-time signal

x(t) = 4 cos(35πt)+ 6 cos(15πt − 0.5π)

is sampled with rate fs = 50 Hz to obtain the discrete-time signal x[n] which is periodic
with period N , and we want to determine the DFS representation of x[n].

(a) Determine the period of x[n] (in samples) and express x[n] as a sum of exponential
signals.

(b) Determine the values and indices k of the nonzero Fourier Series coefficients
{ak} for the DFS summation. Recall that the range of the DFS summation
is from −M to M , where M ≤ 1

2N . Express each nonzero ak value in polar
form.

(c) Make a spectrum plot of the DFS with the horizontal axis being −π ≤ ω̂ ≤ 3π to
show the two periods of the spectrum as in Fig. 8-11(b).

(d) If ak = sin πk
10 − cos πk5 , determine the new x[n].
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P-8.14 Consider a 10-point running-sum FIR filter.

(a) Use the FFT to evaluate and plot its frequency response H(ejω̂). Write MATLAB
code and show the plots of magnitude and phase versus frequency. Determine an
appropriate value for the FFT length N to make a dense frequency grid for ω̂ so
that the plots appear continuous.

(b) Suppose that the input signal to the 10-point running-sum filter is x[n] whose
discrete-time Fourier series has nonzero components only at ω̂1 = 0.2π , ω̂2 =
0.4π , and ω̂3 = 0.6π , and a DC value of X0 = 4.5. Explain why the output of the
10-point running-sum filter is then y[n] = 45 for all n. Use values from the plot
of |H(ejω̂)| versus ω̂ to support your explanation.

P-8.15 A continuous-time signal xc(t) is bandlimited such that it has no spectral
components for |ω| ≥ 2π(1000). This signal is sampled with sampling rate fs = 1/Ts
producing the sequence x[n] = xc(nTs). Then length-L sections of the sampled signal
are extracted via time windowing as in Fig. 8-19 and analyzed with anN -point FFT. The
resulting N DFT coefficients are samples of the spectrum of the continuous-time signal
xc(t) with a spacing of �f Hz.

(a) For efficiency in computation, assume thatN is a power of two. Both fs andN can
be chosen at will subject to the constraints that aliasing be avoided and N = 2ν .
Determine the minimum value ofN , and also fs , so that the frequency spacing�f
between DFT coefficients is less than or equal to 5 Hz.

(b) Assume that the window is a Hann window whose length L is half the FFT length,
N . For the value of N determined in (a), determine the spectral peak width (as
measured between zero crossings). Give the answer in hertz. The result should be
larger than 5 Hz, indicating that frequency resolution of narrow peaks is different
from frequency sampling of the spectrum.

P-8.16 Suppose that a continuous-time signal x(t) consists of several overlapping
sinusoidal sections

x(t) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

cos(2π(600)t) 0 ≤ t < 0.5

sin(2π(1100)t) 0.3 ≤ t < 0.7

cos(2π(500)t) 0.4 ≤ t < 1.2

cos(2π(700)t − π/4) 0.4 ≤ t < 0.45

sin(2π(800)t) 0.35 ≤ t < 1.0

(a) If the signal is sampled with a sampling frequency of fs = 8000 Hz, make a sketch
of the ideal spectrogram that corresponds to the signal definition.

(b) Make a sketch of the actual spectrogram that would be obtained with an FFT length
of N = 500 and a Hann window length of L = 200 with an overlap of 160 points.
Make approximations to determine the frequency width in order to do the sketch
without actually calculating the spectrogram in MATLAB.
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P-8.17 In the spectrogram of the C-major scale in Fig. P-8.17, the analysis window was
a Hann window of length L = 256, overlap was 200, and sampling rate fs = 4000 Hz.
Estimate the time duration of the notes, which is the same for all eight.
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L D 500; fs D 4 kHzSpectrogram of C-Major scale,

Figure P-8.17

P-8.18 Figure P-8.17 shows the spectrogram of a synthetic musical scale composed
of sine waves. The analysis window was a Hann window of length L = 256, overlap
was 200, and sampling rate fs = 4000 Hz. Make a sketch of the spectrogram that would
be obtained if the window length was L = 100. Explain how your sketch differs from
Fig. P-8.17.

P-8.19 Assume that a speech signal has been sampled at 8000 Hz and then analyzed
with MATLAB’s spectrogram function using the following parameters: Hamming
window with length L = 100, FFT length of N = 256, and overlap of 80 points.
Determine the resolution of the resulting spectrogram image.

(a) Determine the frequency resolution (in Hz).

(b) Determine the time resolution (in sec).

P-8.20 The frequency resolution of a spectrum analysis system is determined by the
discrete-time Fourier transform of the time window. Suppose that we sample a continuous-
time signal at fs = 10,000 Hz and we want to have frequency resolution of 250 Hz.
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(a) If we use a Hann window for w[n], what window length L would be needed?
Estimate a minimum value for L.

(b) Use the specific value forLdetermined in part (a), and demonstrate that the resulting
Hann window has sufficient frequency resolution by generating a signal with the
sum of two equal-amplitude sinusoids whose frequencies are 3000 Hz and 3250
Hz and computing samples of the DTFT with a zero-padded FFT. The plot of
the DTFT magnitude should exhibit two distinct peaks at the correct (known)
frequencies.

P-8.21 The spectrogram of Fig. P-8.21 shows the period of time corresponding to the
first nine notes of Beethoven’s Für Elise in the treble clef of Fig. 3-22 on p. 101.

(a) Compute the theoretical frequencies (based on A440) from the sheet music for
these nine notes.

(b) Measure the frequencies of the nine notes from the spectrogram of Fig. P-8.21, and
compare your result to true frequencies from part (a).

(c) Measure the durations of each of the nine 16th notes.
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Spectrogram of Für Elise (9 notes), L D 1000; fs D 8 kHz

Figure P-8.21
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P-8.22 In this problem, we consider a signal of the form

x[n] =
{

cos(ω̂0n)+ cos(αn2) 0 ≤ n ≤ 2000

cos(ω̂0n)+ cos(ω̂1n) 2000 < n ≤ 4000
(8.58)

Figure P-8.22 shows a spectrogram of this signal obtained with a DFT length of
N = 500, a Hann window length of L = 100, and a window overlap of 90 (to obtain a
very smooth image).
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0

Analysis Time Index .ns/
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ue
nc

y
.

O!/

Figure P-8.22

(a) Using Fig. P-8.22, estimate the frequencies ω̂0 and ω̂1 and the parameter α.

(b) Describe how the spectrogram would change if the spectrum analysis window
length is changed to L = 400.



C H A P T E R

9

z-Transforms

In this chapter we introduce the z-transform, which brings polynomials and rational
functions into the analysis of linear discrete-time systems. The key result is that FIR
convolution is equivalent to polynomial multiplication. In fact, common algebraic
operations, such as multiplying, dividing, and factoring polynomials, can be interpreted
as combining or decomposing LTI systems. The most common z-transforms are rational
functions (i.e., a numerator polynomial divided by a denominator polynomial). The roots
of these polynomials are significant, because most properties of digital filters can be
restated in terms of the locations of these roots.

The z-transform method is introduced in this chapter for FIR filters and finite-length
sequences in general. We will use the FIR case to introduce the important concept of
“domains of representation” for discrete-time signals and systems. Throughout this text,
we consider three domains of representation of signals and systems: the n-domain or
time domain (the domain of sequences, impulse responses, and difference equations),
the ω̂-domain or frequency domain (the domain of frequency responses and spectrum
representations), and the z-domain (the domain of z-transforms, operators, and poles

367
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and zeros).1 The value of having three different domains of representation is that a
difficult analysis in one domain is often much easier in one of the other domains.
Therefore, increased understanding will result from developing skills for moving from
one representation to another. For example, the cascade combination of LTI systems,
which in the n-domain seems to require the new (less familiar) technique of convolution,
is converted in the z-domain into the more familiar algebraic operation of polynomial
multiplication.

All three domains can be used to analyze signals and systems. The z-domain exists
primarily for its algebraic nature, which is convenient for mathematical analysis and
synthesis. The frequency domain provides analysis techniques that also have physical
significance when analyzing sound, and other tangible signals. It is important, however, to
note that the n-domain is the primary implementation domain where signals are generated
and processed, and where the implementation of filters often takes place. The frequency
domain is sometimes used for processing because FFT algorithms make frequency-
domain implementations practical and efficient.

9-1 Definition of the z-Transform

A finite-length signal x[n] consists of a set of signal values {x[0], x[1], . . . , x[L− 1]}
that can be represented by the relation

x[n] =
L−1
∑

k=0

x[k]δ[n− k] (9.1)

Each term in the summation, x[k]δ[n−k], is the value x[k] at the time index n = k which
is the only index where δ[n− k] is nonzero. The z-transform of the signal x[n] in (9.1)
is defined by the formula

X(z) =
L−1
∑

k=0

x[k]z−k (9.2)

where z, the independent variable of the z-transformX(z), is a complex number. In (9.2)
the signal values {x[0], x[1], . . . , x[L− 1]} are used as coefficients of a polynomial
in z−1, and the exponent of z−k denotes the fact that the polynomial coefficient x[k]
is the kth value of the signal. Although (9.2) is the conventional definition of the
z-transform,2 it is instructive to write X(z) in the form

1Traditionally, signals and systems texts have identified just two domains: the time domain and the
frequency domain. Many authors consider our ω̂-domain and z-domain together as the “frequency domain.”
This is mainly because, as we will see, the ω̂-domain can be viewed as a special case of the more general
z-domain. However, we feel that because of the different character of the mathematical functions involved in
the two domains, there is a distinct advantage in considering the ω̂- and z-domains as separate, but related,
points of view.

2Some authors use positive powers of z in the definition of the z-transform, but this convention is not
common in signal processing.
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X(z) =
L−1
∑

k=0

x[k](z−1)k

which emphasizes that X(z) is simply a polynomial of degree L− 1 in the variable z−1.
The z-transform in (9.2) applies only to finite-length sequences because the upper limit
of the sum is L− 1 which implies that the z-transform polynomial has finite degree. In
Section 9-2.3, we introduce the full-fledged definition of the z-transform, which has
infinite limits.

When we use (9.2) to determine the z-transform of the signal x[n], we say that we
transform x[n] into a new representation X(z). Indeed, it is often said that we “take the
z-transform of x[n].” This operation of taking the z-transform amounts to constructing a
polynomialX(z)whose coefficients are the values of the sequence x[n]. Specifically, the
kth sequence value is the coefficient of the kth power of z−1 in the polynomial X(z). It is
just as easy to go from (9.2) back to (9.1), which is called taking the inverse z-transform,
because we can recover x[n] from X(z) simply by extracting the coefficient value of the
kth power of z−1 and placing that value in the kth position of the sequence x[n].

A z-transform pair is a sequence and its corresponding z-transform, which we
denote as

x[n] z←→ X(z) (9.3)

We can emphasize the unique correspondence between a sequencex[n] and its z-transform
by writing

n-Domain
z←→ z-Domain

x[n] =
L−1
∑

k=0

x[k]δ[n− k] z←→ X(z) =
L−1
∑

k=0

x[k]z−k

Notice that n is the independent variable of the sequence x[n]. Thus, we say that (9.1)
represents the signal in the n-domain. Since n is often an index that counts time in a
sampled time waveform, we also refer to (9.1) as the time-domain representation of the
signal. Similarly, observe that z is the independent variable of the z-transform X(z). In
other words, X(z) in (9.2) represents the signal in the z-domain, and when taking the
z-transform of a signal, we move from the time domain to the z-domain.

As a simple, but very important, example of a z-transform pair, suppose that the signal
is a shifted impulse (i.e., x[n] = δ[n−n0]). Then, applying the definition (9.2), it follows
that X(z) = z−n0 , so we can write

n-Domain
z←→ z-Domain

x[n] = δ[n− n0] z←→ X(z) = z−n0
(9.4)

When the sequence is defined with a list of numerical values, we take the z-transform
and get a general polynomial, as illustrated by the following example.
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EXAMPLE 9-1 z-Transform of a Signal

Consider the sequence x[n] given in the following table:

n n < −1 −1 0 1 2 3 4 5 n > 5

x[n] 0 0 2 4 6 4 2 0 0

The z-transform of this sequence is

X(z) = 2+ 4z−1 + 6z−2 + 4z−3 + 2z−4

The nonzero values of the sequence {2, 4, 6, 4, 2} become the coefficients of the
polynomial X(z).

Example 9-1 shows how to determine the z-transform given the sequence values.
The next example illustrates the inverse z-transform operation, that is, determining the
sequence values when we are given its z-transform polynomial.

EXAMPLE 9-2 Inverse z-Transform

Consider the z-transform X(z) given by the equation

X(z) = 1− 2z−1 + 3z−3 − z−5

In the z-transform definition (9.2), the signal values are the polynomial coefficients. Thus
we can list x[n] in tabular form as in Example 9-1, or we can give a case-by-case equation
for the sequence values as a function of n in the form

x[n] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 n < 0

1 n = 0

−2 n = 1

0 n = 2

3 n = 3

0 n = 4

−1 n = 5

0 n > 5

Alternatively, we can go from the z-transform in (9.2) to the time-domain representation
(9.1) in terms of impulse sequences, and then write the corresponding sequence x[n] as

x[n] = δ[n] − 2δ[n− 1] + 3δ[n− 3] − δ[n− 5]
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9-2 Basic z-Transform Properties

In Section 9-1, we defined the z-transform, and showed for finite-length sequences that
it is simple to go back and forth between the sequence x[n] and its z-transform X(z). In
this section, we explore two universal transform properties that hold for the z-transform,
and also show that when the z-transform is extended to the infinite-length case, these
properties still hold.

9-2.1 Linearity Property of the z-Transform

The z-transform is a linear transformation because it satisfies the superposition property.
To show this, we use superposition (addition and scaling) to form a new sequence x[n] =
ax1[n] + bx2[n] as the linear combination of x1[n] and x2[n], which are both assumed
to have finite length less than or equal to L. Then we take the z-transform of the linear
combination:

X(z) =
L−1
∑

n=0

(ax1[n] + bx2[n]) z−n

= a
L−1
∑

n=0

x1[n]z−n + b
L−1
∑

n=0

x2[n]z−n

= aX1(z)+ bX2(z)

These steps are true because multiplication distributes over addition for real and complex
numbers. Thus, the z-transform X(z) has the same linear combination (addition and
scaling) as used in the time domain.

Linearity of the z-Transform

ax1[n] + bx2[n] z←→ aX1(z)+ bX2(z)
(9.5)

9-2.2 Time-Delay Property of the z-Transform

The second important property of the z-transform is that multiplication by the quantity
z−1 in the z-domain corresponds to a time shift by one index in the n-domain. First,
we illustrate this property with a numerical example. Consider the length-6 signal x[n]
defined by the following table of values:

n n < 0 0 1 2 3 4 5 n > 5

x[n] 0 3 1 4 1 5 9 0
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The z-transform of x[n] is the following fifth-degree polynomial (in z−1)

X(z) = 3+ z−1 + 4z−2 + z−3 + 5z−4 + 9z−5

Recall that the signal values x[n] are the coefficients of the polynomial X(z) and that
the exponents correspond to the time locations of the values. For example, the term 4z−2

indicates that the signal value at n = 2 is 4 (i.e., x[2] = 4).
Now consider the effect of multiplying the polynomial X(z) by z−1:

Y (z) = z−1X(z)

= z−1(3+ z−1 + 4z−2 + z−3 + 5z−4 + 9z−5)

= 0z0 + 3z−1 + z−2 + 4z−3 + z−4 + 5z−5 + 9z−6

The resulting polynomial Y (z) is the z-transform representation of a new signal y[n],
which is found by using the polynomial coefficients and exponents in Y (z) to take the
inverse z-transform and obtain the values of y[n] at all time positions. Notice that there
is now a term 4z−3 which indicates that the signal value at n = 3 is y[3] = 4. The result
is the following table of values for y[n]:

n n < 0 0 1 2 3 4 5 6 n > 6

y[n] 0 0 3 1 4 1 5 9 0

Each of the signal samples has moved over one position in the table, so y[n] =
x[n− 1]. In general, for any finite-length sequence, multiplication of the z-transform
polynomial by z−1 simply subtracts one from each exponent in the polynomial, thereby
changing all the time indices by one. Thus, we have the following fundamental relation:

Delay of One Sample

x[n− 1] z←→ z−1X(z)

(9.6)

which we refer to as the unit-delay property of the z-transform.
The unit-delay property can be generalized for the case of shifting by more than one

sample by simply applying (9.6) multiple times. The general result is

Delay of n0 Samples

x[n− n0] z←→ z−n0X(z)

(9.7)

9-2.3 A General z-Transform Formula

So far, we have defined the z-transform only for finite-length signals using (9.2). Our
definition assumes that the sequence is nonzero only in the interval 0 ≤ n ≤ N , so the
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limits on the sum in (9.2) are finite. It is straightforward to extend the definition to
signals of infinite length by simply extending the upper and lower limits to+∞ and−∞,
respectively, that is,

X(z) =
∞
∑

n=−∞
x[n]z−n (9.8)

It is not difficult to see that properties such as linearity and the delay property hold for
any polynomial, even infinite-length polynomials, because the operations are performed
on individual signal values which are individual polynomial coefficients.

However, infinite sums may cause subtle mathematical difficulties with convergence
and thus require special attention. Summing an infinite number of complex terms as in
(9.8) could result in an infinite result (i.e., the sum might not converge). A convenient
example of the infinite-length case comes from taking the z-transform of the right-sided
exponential:3

x[n] = ( 1
2 )
nu[n] z←→ X(z) =

∞
∑

n=0

( 1
2 )
nz−n (9.9)

The value of 1
2 is chosen arbitrarily, but it affects the convergence of the sum. If we

combine the ( 1
2 )
n and z−n terms as ( 1

2z
−1)n, then we can simplify the sum by recognizing

that it is like the sum of a geometric sequence
∑

rn = 1/(1− r). The result is

X(z) =
∞
∑

n=0

( 1
2z
−1)n = 1

1− 1
2z
−1

if | 12z−1| < 1 (9.10)

which is very interesting because the sum with an infinite number of terms is reduced to a
rational function with a first-degree polynomial in the denominator, and the only number
that appears in the rational function is 1

2 . However, there is a condition on z that must be
satisfied for the infinite sum to converge to the closed-form expression (9.10): namely,
|z| > 1

2 . In other words, the z-transform X(z) is defined for only part of the complex
z-plane, called the region of convergence.

The infinite-length case is considered in depth in Chapter 10 when we study recursive
digital filters. Even then, a rigorous mathematical development of a complete z-transform
theory for signal and system analysis (with regions of convergence) is better left to another,
more advanced, course.

9-3 The z-Transform and Linear Systems

At this point, we have learned how to take the z-transform, and its inverse, but an obvious
question to ask is what are the advantages of transforming from the n-domain to the
z-domain? The key part of the answer is that the input–output (difference) equation of
the FIR filter is equivalent to polynomial multiplication of z-transforms. As a result, the

3The right-sided exponential and its z-transform are given a detailed treatment in Chapter 10.
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power of algebra for polynomials and rational functions can be employed to simplify
much of the analysis of LTI systems. The remainder of this chapter develops this answer
along with many other properties of the z-transform that are indispensable in the design
and analysis of LTI systems.

9-3.1 Unit-Delay System

The unit-delay operator is one of the basic building blocks for the FIR difference equation,
as shown in the block diagrams of Chapter 5, Section 5-5.2. In fact, the unit-delay
operation can be interpreted as an FIR filter defined by

y[n] = x[n− 1] (9.11)

This is a first-order FIR filter whose two filter coefficients are b0 = 0 and b1 = 1. On the
other hand, we have just learned the delay property of the z-transform in Section 9-2.2
which tells us that

Y (z)
︸︷︷︸

output

= (z−1)
︸ ︷︷ ︸

delay

X(z)
︸︷︷︸

input

(9.12)

Thus the output z-transform Y (z) is the product of two z-transforms, (z−1) andX(z), and
it seems reasonable to claim that the unit delay is represented by z−1. This fact allows us
to treat the block diagrams in Figs. 9-1(a) and (b) as equivalent.

9-3.2 z−1 Notation in Block Diagrams

The delay system representation in (9.12) and Fig. 9-1(b) can be used in block diagrams
of general LTI systems as follows: All the unit delay operators become z−1 operators in
the transform domain, and, owing to the linearity property of the z-transform, the scalar
multipliers and adders remain the same as in the time-domain representation. Figure 9-2
shows a block diagram for a general length 2 FIR filter, y[n] = b0x[n] + b1x[n− 1],
but uses the z-domain notation z−1 to represent the unit-delay operator. Since the block
diagram uses z−1, it is easy to write the z-transform of the output Y (z) in terms of X(z)
and then simplify the algebraic expression to obtain

Y (z) = b0X(z)+ b1z
−1X(z) = (b0 + b1z

−1)
︸ ︷︷ ︸

H(z)

X(z) (9.13)

Once again, the output is the product of two z-transform functions: X(z) and H(z) =
b0+b1z

−1 which depends on the filter coefficients. We use the notationH(z) because we

(b)(a)

Unit
Delay ´�1

xŒn� yŒn�D xŒn�1� X.´/ Y.´/D ´�1X.´/

yŒn�D xŒn�1�xŒn� Figure 9-1 Representations of the unit delay
system. (a) Explicit representation.
(b) Representation using z−1.
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Equivalent

Unit
Delay

´ 1

b0

b1

xŒ

xŒn

X.´/

´ 1X.´/

yŒ

Figure 9-2 Computational structure for a first-order
FIR filter y[n] = b0x[n] + b1x[n− 1]. The block
diagram uses z−1 to denote the unit delay, exploiting
the equivalence shown in Figs. 9-1(a) and (b).

show in Section 9-3.4 that this H(z) is actually the z-transform of the impulse response
of the FIR filter.

EXERCISE 9.1 Draw a block diagram similar to Fig. 9-2 for the first difference system: y[n] =
x[n] − x[n− 1]

9-3.3 The z-Transform of an FIR Filter

There are two ways to obtain a z-domain representation of a general FIR filter. The first
is to take the z-transform of the FIR difference equation, the second is to take the z-
transform of the impulse response. The example in Fig. 9-2 suggests how to work with
the FIR difference equation. Recall that the general difference equation of an FIR filter
involves the sum of delayed copies of the input signal multiplied by scalars.

y[n] =
M
∑

k=0

bk x[n− k] (9.14)

These operations are exactly the ones covered by the linearity property and delay property
of the z-transform. The delay-by-n0 property (9.4) tells us that the z-transform of a term
like x[n− k] is z−kX(z). The linearity property tells us that the same scaling coefficients
bk and sum will be used in the z-domain. As a result, we can take the z-transform of both
sides of the difference equation (9.14) to obtain

Y (z) =
M
∑

k=0

bk
(

z−kX(z)
) =

(

M
∑

k=0

bk z
−k
)

︸ ︷︷ ︸

H(z)

X(z) (9.15)

Thus the output is again the product of X(z) and a z-domain functionH(z) that depends
solely on the filter coefficients. The z-transform function H(z) is called the system
function of the FIR filter.

9-3.4 z-Transform of the Impulse Response

The second way to obtain a z-domain representation of an FIR filter is to take the
z-transform of the impulse response. In this approach, we recall that the FIR system
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is completely characterized by its impulse response h[n], which is a finite-length signal.
Therefore, when we take the z-transform of the impulse response h[n]

H(z) =
M
∑

k=0

h[k] z−k (9.16)

we obtain a z-domain representation that must also be a complete description of the FIR
system. The z-transform in (9.16) is called H(z), but we need to recall one fact from
Section 5-4.2 on p. 179 to claim that it is identical to the system function obtained in
(9.15). That fact is

h[n] =
M
∑

k=0

bk δ[n− k] (9.17)

which says that the impulse response values for an FIR filter are equal to the filter
coefficients.

To summarize, we have added the following important result for FIR systems:

System Function of FIR System

h[n] =
M
∑

k=0

bkδ[n− k] z←→ H(z) =
M
∑

k=0

h[k]z−k (9.18)

Comparing (9.15) and (9.18), we see that the system functionH(z) can be written in two
equivalent forms

H(z) =
M
∑

k=0

bkz
−k =

M
∑

k=0

h[k]z−k (9.19)

because h[k] = bk for the FIR filter.

EXERCISE 9.2 Determine the system function H(z) of an FIR filter whose impulse response is

h[n] = δ[n] − 7δ[n− 2] − 3δ[n− 3]

9-3.5 Roots of a z-Transform Polynomial

To illustrate the power of algebra that comes with representing the FIR filter with a system
function polynomialH(z), we give two examples that rely on factoring polynomials. The
z-transform of a finite-length signal, such as H(z) for an FIR filter, is a function of the
complex variable z, and it is also an M th-degree polynomial (9.19) in the variable z−1.
Therefore, H(z) has exactly M roots according to the fundamental theorem of algebra.
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WhenH(z) is expressed in terms of its roots, it can be written as the product of first-order
factors that completely define the polynomial to within a multiplicative constant, that is,

H(z) = G
M
∏

k=1

(1− zkz−1) = G
M
∏

k=1

(z− zk)
z

(9.20)

where G is a constant. The first-degree term (z− zk) in the right-hand product makes
it clear that these roots are also zeros of H(z) (i.e., M values zk, k = 1, 2, . . . ,M such
that H(zk) = 0).

EXAMPLE 9-3 Zeros of System Function

Consider an FIR filter defined by the difference equation

y[n] = 6x[n] − 5x[n− 1] + x[n− 2]
The z-transform system function is H(z) = 6− 5z−1 + z−2 which factors as

H(z) = (3− z−1)(2− z−1) = 6
(z− 1

3)(z− 1
2 )

z2

Thus, the roots of H(z) are 1
3 and 1

2 . Note that a different filter

w[n] = x[n] − 5
6x[n− 1] + 1

6x[n− 2]
has a system function with the same roots, but each filter coefficient is 1/6 as big. This
simply means thatw[n] = y[n]/6, and the system function of the second system is 1

6H(z).

EXAMPLE 9-4 Difference Equation from Roots of H(z)

Suppose the system function H(z) has two roots at {−1, 1
2 }. Then we can use (9.20) to

form the H(z) polynomial from the roots as

H(z) = G (z− (−1))

z

(z− 1
2 )

z
= G(1+ z−1)(1− 1

2z
−1)

where G is a scaling value. In order to find H(z) we need to find G, which requires that
we know an additional fact. In this example, we assume that the value of H(z) at z = 3
is given as 4. Then z−1 = 1

3 , and

4 = H(z)
∣

∣

∣

∣

z=3

= G(1+ ( 1
3))(1− 1

2 (
1
3)) = ( 4

3)(
5
6)G

ThusG = 3.6, and we can multiply the two factors to obtainH(z) = 3.6+1.8z−1−1.8z−2.
Finally, we can write the difference equation for this FIR filter as

y[n] = 3.6x[n] + 1.8x[n− 1] − 1.8x[n− 2]
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EXERCISE 9.3 Determine the impulse response h[n] of an FIR filter whose system function is

H(z) = 4(1− ejπ/2z−1)(1− e−jπ/2z−1)(1+ 0.8z−1)

Multiply the factors to get a polynomial and then determine the impulse response by
“inverse z-transformation.”
Note: The terms with complex conjugate roots can be simplified as follows:

(1− rejθz−1)(1− re−jθ z−1) = 1− 2r cos(θ)z−1 + r2z−2

9-4 Convolution and the z-Transform

The power of the z-transform lies in the convolution property which states that polynomial
multiplication of z-transforms is equivalent to time-domain convolution. In this section,
we derive this important transform property by generalizing the result in (9.15). To show
that the convolution of two signals can be “transformed” into a product of z-transforms,
recall that discrete convolution of two sequences x[n] and h[n] is given by

y[n] = x[n] ∗ h[n] =
M
∑

k=0

h[k]x[n− k] (9.21)

where M+1 is the length of the sequence h[n]. For the time being we assume that x[n]
also has finite length, which implies that the length of the result y[n] is finite. To prove
the desired general result, we take the z-transform of both sides of (9.21). On the right-
hand side of (9.21), only the terms x[n− k] depend on n, and their z-transforms are
z−kX(z) which is obtained with the general delay property (9.7). The convolution sum is
a superposition of these delayed signals (scaled by h[k]), so the linearity property (9.5)
leads to

Y (z) =
M
∑

k=0

(

h[k] (z−kX(z))
︸ ︷︷ ︸

z-transform

)

(9.22a)

=
( M
∑

k=0

h[k]z−k
)

X(z) = H(z)X(z). (9.22b)

In (9.22a) X(z) is common to all the terms in the sum so it can be factored out to obtain
(9.22b). If x[n] is a finite-length sequence, its z-transform X(z) is a polynomial, so
we have proven that the z-transform operator transforms convolution into polynomial
multiplication.4 The details of polynomial multiplication are illustrated in the following
example.

4This derivation of the convolution property can be extended to infinite-length signals because only the
linearity and delay properties are needed. However, with infinite-length signals there is always a question of
convergence of the infinite sums, so we must say that the convolution property is true if the two z-transforms
being multiplied have overlapping regions of convergence in the z-plane.
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EXAMPLE 9-5 Convolution via H(z)X(z)

The z-transform method can be used to convolve the following signals:

x[n] = δ[n− 1] − δ[n− 2] + δ[n− 3] − δ[n− 4]
h[n] = δ[n] + 2δ[n− 1] + 3δ[n− 2] + 4δ[n− 3]

The z-transforms of the sequences x[n] and h[n] are

X(z) = 0+ 1z−1 − 1z−2 + 1z−3 − 1z−4

and H(z) = 1+ 2z−1 + 3z−2 + 4z−3

Both X(z) and H(z) are polynomials in z−1, so we can compute the z-transform of the
convolution by multiplying these two polynomials, that is,

Y (z) = H(z)X(z)
= (1+ 2z−1 + 3z−2 + 4z−3)(z−1 − z−2 + z−3 − z−4)

= z−1 + (−1+ 2)z−2 + (1− 2+ 3)z−3

+ (−1+ 2− 3+ 4)z−4

+ (−2+ 3− 4)z−5 + (−3+ 4)z−6 + (−4)z−7

= z−1 + z−2 + 2z−3 + 2z−4 − 3z−5 + z−6 − 4z−7

Since the coefficients of any z-polynomial are the sequence values, with their position in
time being indicated by the power of (z−1), we can “inverse transform” Y (z) to obtain

y[n] = δ[n− 1] + δ[n− 2] + 2δ[n− 3] + 2δ[n− 4]
− 3δ[n− 5] + δ[n− 6] − 4δ[n− 7]

To verify that we have obtained the correct convolution result, we now perform the
convolution sum (9.21) directly to compute the output. If we write out a few terms, we
can detect a pattern that is similar to the z-transform polynomial multiplication.

y[0] = h[0]x[0] = 1(0) = 0

y[1] = h[0]x[1] + h[1]x[0] = 1(1)+ 2(0) = 1

y[2] = h[0]x[2] + h[1]x[1] + h[2]x[0]
= 1(−1)+ 2(1)+ 3(0) = 1

y[3] = h[0]x[3] + h[1]x[2] + h[2]x[1] + h[3]x[0]
= 1(1)+ 2(−1)+ 3(1)+ 4(0) = 2

y[4] = h[0]x[4] + h[1]x[3] + h[2]x[2] + h[3]x[1]
= 1(−1)+ 2(1)+ 3(−1)+ 4(1) = 2

... = ...
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For each term above, notice how the index of h[k] and the index of x[n− k] sum to the
same value (i.e., n) for all products that contribute to y[n]. The same thing happens in
polynomial multiplication because exponents add.

In Section 5-4.3.1 on p. 182 we demonstrated a synthetic multiplication table
for evaluating the convolution of x[n] with h[n]. Now we have a justification
for this procedure because we are, in fact, multiplying the polynomials X(z)

and H(z). The procedure is repeated below for the numerical example of this
section.

z z0 z−1 z−2 z−3 z−4 z−5 z−6 z−7

x[n], X(z) 0 +1 −1 +1 −1 0 0 0

h[n], H(z) 1 2 3 4

X(z) 0 +1 −1 +1 −1 0 0 0

2z−1X(z) 0 +2 −2 +2 −2 0 0

3z−2X(z) 0 +3 −3 +3 −3 0

4z−3X(z) 0 +4 −4 +4 −4

y[n], Y (z) 0 +1 +1 +2 +2 −3 +1 −4

In the z-transformsX(z),H(z), andY (z), the power of z−1 is implied by the horizontal
position of the coefficient in the table. Each row is produced by multiplying the x[n]
row by one of the h[n] values and shifting the result right by the implied power of
z−1. The final answer is obtained by summing down the columns, so the bottom row
has the values of y[n] = x[n] ∗ h[n] or, equivalently, the coefficients of the polynomial
Y (z).

In this section we have established that convolution and polynomial multiplication
are essentially the same thing.5 Indeed, the most important result of z-transform
theory is

Convolution Maps to Multiplication
of z-Transforms

y[n] = h[n] ∗ x[n] z←→ Y (z) = H(z)X(z)

This result has many implications far beyond its use as a basis for understanding and
implementing convolution.

5In MATLAB, there is no special function for multiplying polynomials. Instead, you simply use the
convolution function conv to multiply polynomials since polynomial multiplication is identical to discrete
convolution of the sequences of coefficients.
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EXERCISE 9.4 Use the z-transform of

x[n] = δ[n− 1] − δ[n− 2] + δ[n− 3] − δ[n− 4]
and the system function H(z) = 1− z−1 to find the output of a first-difference filter
when x[n] is the input. Compute your answer by using polynomial multiplication
and also by using the difference equation:

y[n] = x[n] − x[n− 1]
What is the degree of the z-transform polynomial that represents the output y[n]?

9-4.1 Cascading Systems

One of the main applications of the z-transform in system design is its use in creating
alternative filter structures that have exactly the same input–output behavior.An important
example is the cascade connection of two or more LTI systems. In block diagram
form, the cascade is drawn with the output of the first system connected to the input
of the second, as in Fig. 9-3. The input signal is x[n] and the overall output is y[n].
The sequence w[n] is an intermediate signal that can be thought of as temporary
storage.

As we have already seen in Section 5-8 on p. 202, if h1[n] and h2[n] are
the respective impulse responses of the first and second systems, then the overall
impulse response from input x[n] to output y[n] in Fig. 9-3 is h[n] = h1[n] ∗ h2[n]
(i.e., convolution). Therefore, the z-transform of the overall impulse response
h[n] is the product of the individual z-transforms of the two impulse responses,
that is,

Cascade of LTI Systems

h[n] = h1[n] ∗ h2[n] z←→ H(z) = H1(z)H2(z)

An important consequence of this result follows easily from the fact that
multiplication is commutative; so that H(z) = H1(z)H2(z) = H2(z)H1(z). This implies
that convolution must also be a commutative operation and that the two systems
can be cascaded in either order and we still obtain the same overall system
response.

LTI 1

H1.´/; h1Œn�

LTI 2

H2.´/; h2Œn�X.´/ Y.´/W.´/

wŒn�xŒn� yŒn�
Figure 9-3 Cascade of two LTI
systems.
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EXAMPLE 9-6 H(z) for Cascade

To give a simple example of this idea, consider a system described by the difference
equations

w[n] = 3x[n] − x[n− 1] (9.23a)

y[n] = 2w[n] − w[n− 1] (9.23b)

which define a cascade of two first-order systems. As in Fig. 9-3, the output w[n] of
the first system is the input to the second system, and the overall output is the output of
the second system. The intermediate signal w[n] in (9.23a) must be computed prior to
being used in (9.23b). We can combine the two filters into a single difference equation
by substituting w[n] from the first system into the second, which gives

y[n] = 2w[n] − w[n− 1]
= 2(3x[n] − x[n− 1])− (3x[n− 1] − x[n− 2])
= 6x[n] − 5x[n− 1] + x[n− 2] (9.24)

Thus we have proved that the cascade of the two first-order systems is equivalent to a
single second-order system. It is important to notice that the difference equation (9.24)
defines an algorithm for computing y[n] that is different from the algorithm specified by
(9.23a) and (9.23b) together. However, the outputs of the two different implementations
would be exactly the same, assuming perfectly accurate computation.

Working out the details of the overall difference equation as in (9.24) would be
extremely tedious if the systems were higher order. The z-transform simplifies these
operations into the multiplication of polynomials. The z-transform of the first-order
systems gives the following system functions

H1(z) = 3− z−1 and H2(z) = 2− z−1

Therefore, the overall system function is the product

H(z) = (3− z−1)(2− z−1) = 6− 5z−1 + z−2

whose polynomial coefficients match the filter coefficients in the difference equation
(9.24). Note that, even in this simple example, the z-domain solution is more
straightforward than the n-domain solution.

EXERCISE 9.5 Use z-transforms to combine the following cascaded systems

w[n] = x[n] + x[n− 1]
y[n] = w[n] − w[n− 1] + w[n− 2]

into a single difference equation for y[n] in terms of x[n].
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9-4.2 Factoring z-Polynomials

If we can multiply z-transforms to get higher order systems, we can also factor z-transform
polynomials to break down a large system into smaller modules. Since cascading systems
is equivalent to multiplying their system functions, the factors of a high-order polynomial
H(z) represent component systems that make up H(z) in a cascade connection.

EXAMPLE 9-7 Split H(z) into a Cascade

Consider the following third-order system

H(z) = 1− 2z−1 + 2z−2 − z−3

which we want to split into the cascade of lower order systems with real coefficients.
Since we want a product of system functions for the cascade, we need to find the roots
and use the product form in (9.20). The MATLAB function roots([1, -2, 2, -1])

will extract the roots giving

1.0, 0.5000 + 0.8660i, and 0.5000 - 0.8660i

One of the roots ofH(z) is z = 1, soH1(z) = (1−z−1) is a factor ofH(z). The other two
first-order factors have complex roots, but these roots are complex conjugates. Therefore,
in order to obtain the other system function for the cascade we must form the product of
these terms as

H2(z) = (1− ejπ/3z−1)(1− e−jπ/3z−1) = 1− z−1 + z−2

The resulting second-order factor has real coefficients. This is an instance of the general
property that the complex-valued roots of a polynomial with real coefficients must occur
in conjugate pairs. The factorization of H(z) as

H(z) = (1− z−1)(1− z−1 + z−2)

gives the cascade shown in the block diagram of Fig. 9-4. The resulting difference
equations for the cascade are obtained by inverse transforming the factors of H(z)

w[n] = x[n] − x[n− 1]
y[n] = w[n] − w[n− 1] + w[n− 2]

1�´�1 1�´�1
C´�2

H1.´/ H2.´/

X.´/ Y.´/W.´/

wŒn�xŒn� yŒn�
Figure 9-4 Factoring
H(z) = 1− 2z−1 + 2z−2 − z−3

into the product of a first-order
system and a second-order system.



384 CHAPTER 9 z-TRANSFORMS

9-4.3 Deconvolution

The cascading property leads to an interesting question that has practical application. Can
we use the second filter in a cascade to undo the effect of the first filter? What we would
like is for the output of the second filter to be equal to the input to the first. Stated more
precisely, suppose that we have the cascade of two filters H1(z) and H2(z), and H1(z) is
known. Is it possible to find H2(z) so that the overall system has its output equal to the
input? If so, the z-transform analysis tells us that its system function would have to be
H(z) = 1, so that

Y (z) = H1(z)H2(z)X(z) = H(z)X(z) = X(z)

Since the first system processes the input via convolution, the second filter tries to
undo convolution, so the process is called deconvolution. Another term for this is inverse
filtering, and if H1(z)H2(z) = 1, then H2(z) is said to be the inverse of H1(z) (and vice
versa).

EXAMPLE 9-8 Deconvolution

If we take a specific example, we can generate a solution in terms of z-transforms. Suppose
that H1(z) = 1+ 0.1z−1 − 0.72z−2. We want H(z) = 1, so we require that

H1(z)H2(z) = 1

Since H1(z) is known, we can solve for H2(z) to get

H2(z) = 1

H1(z)
= 1

1+ 0.1z−1 − 0.72z−2

What are we to make of this example? It seems that the deconvolver for an FIR filter
must have a system function that is not a polynomial, but a rational function (ratio of two
polynomials) with a denominator instead. This means that the inverse filter for an FIR filter
cannot be another FIR filter, and deconvolution suddenly is not as simple as it appeared.
Since we have not yet considered the possibility of anything but polynomial system
functions, we cannot give the solution in the form of a difference equation. However, in
Chapter 10, we will see that other types of LTI systems exist that do have rational system
functions with denominators. We will explore aspects of the inverse filtering problem in
Problem P-10.27.

9-5 Relationship Between the z-Domain and the ω̂-Domain

The FIR system function H(z) has a functional form that is identical to the form of the
frequency response formula H(ejω̂). The same is true for the z-transform of a length-
L signal x[n] where the functional form of X(z) is identical to the form of the DTFT
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X(ejω̂). This is quite easy to see if we display the frequency-domain formulas alongside
the z-transform formulas:

z-Domain
z=ejω̂←→ ω̂-Domain

H(z) =
M
∑

k=0

bkz
−k H(ejω̂) =

M
∑

k=0

bke
−jω̂k

X(z) =
L−1
∑

n=0

x[n]z−n X(ejω̂) =
L−1
∑

n=0

x[n]e−jω̂n

After comparing the left- and right-hand sides, we see a clear correspondence between
the z- and ω̂-domains if we make the following substitution in H(z) or X(z)

z = ejω̂ (9.25)

because6 then z−n = (ejω̂)−n. The substitution (9.25) connects the frequency domain to
the z-domain, and allows us to get the DTFT X(ejω̂) from the z-transform X(z)

X(ejω̂) = X(z)
∣

∣

∣

∣

z=ejω̂
(9.26)

The same is true for getting the frequency responseH(ejω̂) from the z-transform system
function H(z). For example, when we analyze an FIR filter whose system function is
H(z) = 1− z−2, its frequency response is H(ejω̂) = 1− e−j2ω̂, after changing z to ejω̂.

DEMO
Three Domains—FIR

We have implied by the notation
z=ejω̂←→ that going from the z-transform system function

to the DTFT can be reversed. This can be accomplished by expressing H(ejω̂) in terms
of powers of e−jω̂ and then replacing each term e−jω̂k by z−k. The following example
illustrates this process.

EXAMPLE 9-9 Moving from ω̂ to z

Consider a DTFT function expressed as

H(ejω̂) = (1+ cos 2ω̂)e−j3ω̂

Using the inverse Euler formula for the cosine term gives

H(ejω̂) =
(

1+ e
j2ω̂ + e−j2ω̂

2

)

e−j3ω̂ = (ejω̂)−3 + 1
2 (e

jω̂)−1 + 1
2 (e

jω̂)−5

Making the substitution ejω̂ = z gives

H(z) = z−3 + 1
2z
−1 + 1

2z
−5 = 1

2z
−1 + z−3 + 1

2z
−5

6The variables n and k in the summations are dummy indices for counting through the terms in the sum.



386 CHAPTER 9 z-TRANSFORMS

If the impulse response of the system is needed, the inverse z-transform gives

h[n] = 1
2δ[n− 1] + δ[n− 3] + 1

2δ[n− 5]

9-5.1 The z-Plane and the Unit Circle

The z-transformX(z) is a complex-valued function of the complex variable z = x + jy,
so a plot of the magnitude |X(z)| would be a three-dimensional (3-D) plot of magnitude
versus x and y, such as Fig. 9-5. The notationX(ejω̂) in (9.26) emphasizes the connection
between the ω̂-domain and the z-domain because it indicates explicitly that the DTFT
X(ejω̂) is obtained from X(z) by evaluating X(z) for a specific set of values in the
z-plane. These values z = ejω̂ are a set of complex numbers whose magnitude is always
one and whose angle is ω̂, which is also the frequency variable of the DTFT. In other
words, the values of z = ejω̂ define a circle of radius one in the z-plane, which is called
the unit circle, and the DTFT is the z-transform evaluated on the unit circle. This is
illustrated in Fig. 9-6, which shows the unit circle and a typical point z = ejω̂, which is
at a distance of 1 from the origin and at an angle of ω̂ with respect to the real axis of the
z-plane.

Figure 9-5 The z-transform
X(z) = 1+ 1

2z
−1− 1

2z
−2 = (1+ z−1)(1− 1

2z
−1)

evaluated over the region {|z| ≤ 1.5} of the
z-plane that includes the unit circle. The
evaluation of H(z) on the unit circle is the orange
line. The view is from the first quadrant, so the
real axis runs right to left, and the point z = 1 is
on the left. The two small orange circles indicate
where X(z) = 0; these zeros are at z = −1, 1

2 .
Since |X(z)| → ∞ when |z| → 0, the height of
the plot is clipped to |H(z)| ≤ 3 to reduce the
vertical range and make the zeros easier to see.
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1

�{z}
= 2

= ±π �{z}

z = ejω

ω

π

= − 2
π

ˆ

ˆ

ω̂

ω̂

= 0ω̂

ω̂
Figure 9-6 The complex z-plane including
the unit circle, where z = ejω̂. The angle
around the circle is determined by the
frequency ω̂. The thick colored shading of
the unit circle corresponds to a frequency
interval from 0 to ω̂. The gray dots on the
unit circle are the points {1, j, −1, −j }
which correspond to ω̂ = {0, π2 , ±π, −π2 }.

The graphical representation of Fig. 9-6 gives us a convenient way of visualizing the
relationship between the ω̂-domain and the z-domain. Since the ω̂-domain lies on a special
part of the z-domain—the unit circle—many properties of the DTFT are evident from
z-plane plots, as well as from root locations when X(z) has numerator and denominator
polynomials. For example, the periodicity of the DTFT is obvious from Fig. 9-6, which
shows that evaluating the system function at all points on the unit circle requires moving
through an angle of 2π rad. But, since the frequency ω̂ is also the angle of ejω̂ in the
z-plane, a frequency range of−π < ω̂ ≤ π covers all the angles with one trip around the
unit circle. If the frequency starts at ω̂ = −π and increases to π , the circle is traversed
in a counterclockwise manner starting at z = e−jπ = −1, then to z = e−jπ/2 = −j , then
to z = ej0 = 1, and z = +j , and finally back to z = ejπ = −1. Continuing around
the unit circle more times simply cycles through more periods of the DTFT. The
gray dots in Fig. 9-6 highlight specific points in the z-plane and their corresponding
frequencies.

In Sections 9-2 and 9-4, a number of useful properties of the z-transform were
derived and their application was demonstrated. It should be clear from the discussion
so far in this section that all these properties are inherited by the DTFT by virtue
of the substitution z = ejω̂ in (9.26), see Table 9-1. To use the z-transform and
the DTFT to solve signals and systems problems, it is essential to become so
familiar with these properties that Table 9-1 no longer needs to be searched as a
reference.

9-5.2 The z-Transform and the DFT

In Chapter 8, we defined the discrete Fourier transform (DFT) for finite-length sequences
and showed that it is identical to frequency samples of the discrete-time Fourier transform
(DTFT). Not surprisingly, given the relationship between the z-transform and the DTFT,
there is also a direct relationship between the z-transform of a length-N sequence and its
N -point DFT. This is easily seen by placing the relevant equations side by side as in
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Table 9-1 Shared properties of z-transforms and DTFTs.

Property n-Domain z-Domain ω̂-Domain

Definition x[n] X(z) =
∞
∑

n=−∞
x[n]z−n X(ejω̂) =

∞
∑

n=−∞
x[n]e−jω̂n

Linearity ax1[n] + bx2[n] aX1(z)+ bX2(z) aX1(e
jω̂)+ bX2(e

jω̂)

Time delay x[n− n0] z−n0X(z) e−jω̂n0X(ejω̂)

Convolution h[n] ∗ x[n] H(z)X(z) H(ejω̂)X(ejω̂)

Cascade LTI h1[n] ∗ h2[n] H1(z)H2(z) H1(e
jω̂)H2(e

jω̂)

z-Domain DFT

X(z) =
N−1
∑

n=0

x[n]z−n z=ej (2π/N)k−→ X[k] =
N−1
∑

n=0

x[n]e−j (2π/N)kn

From (9.26), we have the general relation

X[k] = X(ej(2π/N)k) = X(z)
∣

∣

∣

∣

z=ej (2π/N)k
k = 0, 1, . . . , N − 1 (9.27)

which states that the DFT consists of samples of X(z) evaluated at N points on the unit
circle. Note that in representing the transition from the z-transform to the DFT, we have

used the notation
z=ej (2π/N)k−→ , which has a unidirectional arrow to indicate that it may not be

possible to go from the DFT values uniquely back to the z-transform polynomialX(z) by
reversing the substitution. This is because the DFT is a set ofN complex numbers obtained
directly by computation from a length-N sequence x[n]. If we know that the length of
the underlying signal is N or less, then the N DFT coefficients would be sufficient to
recover the signal and its z-transform.

Figure 9-7 shows the z-plane and the unit circle with gray dots corresponding to the
values of z where the z-transform is sampled when we evaluate (9.27), assuming N = 8,
and smaller colored dots for the sample locations when N = 60. Note that the points are
all on the unit circle at a regular angular spacing of (2π/N). This figure helps to make three
things clear about the DFT. First, the figure shows that the set of DFT coefficientsX[k] is
a periodic sequence having periodN , since if we let k go outside the range 0 ≤ k ≤ N−1,
the z-plane points z = ej2πk/N repeat around the unit circle. Second, the DFT value for
k = 0 corresponds to DC (i.e., ω̂ = 0 and z = 1), while k = N/2 (assuming N is even)
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�{z}

�{z}
(2π/N)

k = N/4 = 2

k = 3N/4 = 6

4 = k = N/2

k = 3

k = 0

k = 7k = 5

1

z = ejω̂

Figure 9-7 The complex z-plane including
the unit circle, where z = ejω̂. The gray dots
on the unit circle are locations where values
of X(z) are evaluated by the N = 8-point
DFT, i.e., at the points zk = ej (2π/8)k with
k = 0, 1, . . . , 7. The orange dots are
locations where values of X(z) are evaluated
by a 60-point DFT.

corresponds to the frequency ω̂ = π and z = −1. Finally, if we compare the N = 60
case to the N = 8 case, we can say something about zero-padding. Suppose that x[n] is
a sequence of length 8, then its z-transform is a 7th-degree polynomial, and the 8-point
DFT of x[n] is the sampled z-transform

X8[k] =
( 7
∑

n=0

x[n]z−n
)∣

∣

∣

∣

z=ej (2π/8)k
k = 0, 1, . . . , 7 (9.28)

These are the samples at the eight gray dots in Fig. 9-7. If we want more frequency
samples, say N = 60, then we can “zero-pad” the 8-point sequence with 52 zeros and
take a 60-point DFT. The result is to sample the sameX(z), but at a finer angular spacing:

X60[k] =
( 7
∑

n=0

x[n]z−n
)∣

∣

∣

∣

z=ej (2π/60)k

k = 0, 1, . . . , 59 (9.29)

These are the samples of X(z) at the 60 orange dots in Fig. 9-7. It is interesting to note
that the eight gray dots are not a subset of the 60 colored dots, which means that zero
padding will not always interpolate new frequency samples while keeping the existing
ones. Finally, we note that choosing N � 8 will increase the density of the dots in
Fig. 9-7, and in the limit asN →∞, for most practical purposes, we will have evaluated
the z-transform everywhere on the unit circle, which means that we have computed the
DTFT.

9-6 The Zeros and Poles of H(z)

The roots of the z-transform polynomials play a key role in simplifying the use of the
system function H(z) for problem solving. The product form of H(z) given in (9.20)
shows thatH(z) is a product of first-order factors (1−zkz−1). For example, in Example 9-4
the system function was factored as
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H(z) = 1− 2z−1 + 2z−2 − z−3 = (1− 1z−1)(1− ejπ/3z−1)(1− e−jπ/3z−1) (9.30a)

If we use the identity (1− zkz−1) = (z− zk)/z, then H(z) also can be written as

H(z) = (z− 1)(z− ejπ/3)(z− e−jπ/3)
z3

(9.30b)

The roots of H(z) are locations where H(z) = 0, so these locations, which come from
the factors in the numerator of (9.30b), are called the zeros of the system function. The
factored form in (9.30b) shows clearly that the zeros are located at z1 = 1, z2 = ejπ/3,
and z3 = e−jπ/3 in the z-plane, but notice that the same zeros are evident in (9.30a) as
coefficients of z−1. The zeros of H(z) can be complex as is the case in (9.30b).

Equation (9.30b) also shows that H(z)→∞ when z→ 0. Values of z for which
H(z) is infinite (and might be undefined) are called poles ofH(z). In (9.30b) we say that
the denominator term z3 represents three poles at z = 0, or equivalently that H(z) has a
third-order pole at z = 0.

When H(z) contains only negative powers of z, it is usually most convenient to use
(9.30a), since the negative powers of z have a direct correspondence to the difference
equation and the impulse response. Furthermore, the factored form in (9.30a) does show
explicitly that the zeros are located at z1 = 1, z2 = ejπ/3, and z3 = e−jπ/3 in the z-plane,
and less directly, that each factor has a pole at z = ∞. This factored form with negative
powers of z is the most commonly used factorization in z-transform theory for signal
processing. Initially, using the negative powers of z can be confusing, but there are long-
term benefits to this notation.

9-6.1 Pole-Zero Plot

A graphical presentation of the zeros and poles makes it easy to visualize their locations
relative to each other, and their positions relative to the unit circle, so we plot the zeros
and poles of H(z) as points in the complex z-plane. The plot in Fig. 9-8 shows the three
zeros and the three poles for Example 9-7. Such a plot is called a pole-zero plot. This plot
was generated in MATLAB using the zplane function.7 Each zero location is denoted

(3)

<f´g

=f´g

Figure 9-8 Zeros and poles of H(z) marked in a
z-plane that includes the unit circle.

7In the DSP-First Toolbox, there is a function called zzplane that makes pole-zero plots.
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by a small circle, and the three repeated poles at z = 0 are indicated by a single × with
a numeral 3 beside it. In general, for non-repeated poles the × symbol alone marks the
location of each pole. Since the unit circle is whereH(z) is evaluated to obtain the DTFT
of the LTI system whose system function isH(z), it is also shown for reference as a gray
circle in Fig. 9-8.

9-6.2 Significance of the Zeros of H(z)

The z-domain zeros can provide a link between the time-domain response of a system
and the system function. In Section 9-6, we showed that the zeros of a polynomial system
function are sufficient to determine H(z) except for a constant multiplier. The system
function determines the FIR difference equation of the filter because the polynomial
coefficients ofH(z) are also the coefficients of the FIR difference equation. The difference
equation (or convolution) is the computational method that turns an input x[n] into the
corresponding output y[n]. However, we can find certain inputs where knowledge of the
zero locations is sufficient to make a precise statement about the output without actually
using the difference equation to compute y[n]. Such signals are of the form x[n] = zn0
for all n, where the subscript signifies that z0 is a fixed complex number. In this case, the
output is

y[n] =
M
∑

k=0

bk x[n− k] (9.31a)

y[n] =
M
∑

k=0

bkz
n−k
0 (9.31b)

y[n] =
M
∑

k=0

bkz
n
0z
−k =

=H(z0)
︷ ︸︸ ︷

( M
∑

k=0

bkz
−k
0

)

zn0 (9.31c)

The quantity H(z0) is a complex constant obtained by evaluating H(z) at z = z0. The
value of H(z0), through complex multiplication, causes a magnitude and phase change
of the input signal zn0. A very interesting case occurs when z0 is one of the zeros ofH(z).
Then H(z0) = 0 so the output from x[n] = zn0 is zero. This zero-output case is called
nulling.

EXAMPLE 9-10 Nulling Signals with Zeros

The system function studied in Example 9-7 is H(z) = 1− 2z−1 + 2z−2 − z−3, and its
zeros are

z1 = 1 ⇒ H(z1) = 0

z2 = 1
2 + j 1

2

√
3 = 1ejπ/3 ⇒ H(z2) = 0

z3 = 1
2 − j 1

2

√
3 = 1e−jπ/3 ⇒ H(z3) = 0
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As shown in Fig. 9-8, these zeros all lie on the unit circle. Since the angle of a vector
from the origin to a point on the unit circle corresponds to ω̂ in the frequency domain,
complex sinusoids with frequencies 0, π/3, and −π/3 are “nulled out” by the system.
That is, the output resulting from each of the following three signals will be zero:

x1[n] = (z1)
n = 1

x2[n] = (z2)
n = ej (π/3)n

x3[n] = (z3)
n = e−j (π/3)n

For example, when the input is x2[n], the output is y2[n] = H(z2)(z2)
n = 0.

As illustrated by this example, zeros of the system function that lie on the unit circle
are very special. Their angles correspond to frequencies at which the gain of the system
is zero (i.e., where the DTFT (or frequency response) is zero). Thus, complex sinusoids
at those frequencies are blocked, or “nulled” by the system.

DEMO
PeZ GUI

EXERCISE 9.6 Double check the fact that the input x2[n] determined in Example 9-10 produces an
output that is zero everywhere by substituting this signal into the difference equation
y[n] = x[n] − 2x[n− 1] + 2x[n− 2] − x[n− 3] to show that the complex phasors
cancel out for all values of n.
Also show that the filter nulls out signals such as 2 cos(πn/3), which is the sum of
x2[n] and x3[n].

9-6.3 Nulling Filters

We have just shown that if the zeros of H(z) lie on the unit circle, then specific complex
exponential or sinusoidal input signals are nulled (i.e., removed, by the filter). Therefore,
it should be possible to use this result in designing a practical FIR filter that can null an
interfering sinusoidal input. Such capability is often needed to eliminate jamming signals
in a radar or communications system. Similarly, interference from a 60-Hz power line
could be eliminated by placing a null at the correct ω̂ frequency.

Zeros in the z-plane can remove only signals that have the special form x[n] = zn0.
If we want to eliminate a sinusoidal input signal, then we actually have to remove two
signals, because

x[n] = cos(ω̂0n) = 1
2 (e

jω̂0)n + 1
2 (e
−jω̂0)n

Each complex exponential can be removed with a first-order FIR filter, and then the two
filters would be cascaded to form the second-order nulling filter that removes the cosine.
The first complex exponential signal is nulled by a filter with system function

H1(z) = 1− z1z
−1
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where z1 = ejω̂0 because H1(z1) = 0 at z = z1, that is,

H1(z1) = 1− z1(z1)
−1 = 1− 1 = 0

Similarly, H2(z) = 1− z2z
−1 removes the second complex exponential if z2 = e−jω̂0 .

Then, we cascade these two filters to create the second-order nulling filter whose system
function is the product

H(z) = H1(z)H2(z)

= (1− z1z
−1)(1− z2z

−1)

= 1− (z1 + z2)z
−1 + (z1z2)z

−2

= 1− (ejω̂0 + e−jω̂0)z−1 + (ejω̂0e−jω̂0)z−2

= 1− 2 cos(ω̂0)z
−1 + z−2

This second-order FIR filter has two zeros, at z1 = ejω̂0 and z2 = e−jω̂0 , along with
two poles at the origin. Figure 9-9 shows a special case where the two zeros remove
components at z = e±jπ/4. From these zeros the numerical values for the coefficients of
H(z) are

H(z) = 1− 2 cos(π/4)z−1 + z−2

Thus the nulling filter that removes the signal cos(0.25πn) from its input is the FIR filter
whose difference equation is

y[n] = x[n] − √2 x[n− 1] + x[n− 2] (9.32)

9-6.4 Graphical Relation Between z and ω̂

The equation z = ejω̂ provides the link between the z-domain and the ω̂-domain. As we
have shown in (9.26), the DTFT is obtained by evaluating the system function on the unit
circle of the z-plane. The graphical interpretation is that we visualize (or draw) the 3-D

(2)
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Figure 9-9 Zeros on unit circle for second-order
nulling filter to remove complex exponential
components at ω̂0 = ±π/4.
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Figure 9-10 z-Transform system function for an FIR
filter evaluated over the region {|z| ≤ 1.5} of the
z-plane that includes the unit circle. Values along the
unit circle are shown as the orange line where the
DTFT (magnitude) is evaluated. The view is from the
first quadrant, so the point z = 1 is in the foreground
on the left. The height of the plot is clipped at
|H(z)| ≤ 13. Zeros on the unit circle at z = e±j2π/11

are marked with small orange circles.

plot of |H(z)|, and then restrict our attention to the unit circle to get the DTFT plot of
|H(ejω̂)|. The poles and zeros play an important role since they tell us where the 3-D plot
is either infinite or equal to zero. In a 3-D magnitude plot, the area around a zero forms a
“valley,” while the area around a pole is an extremely high “peak.” When we restrict our
attention to the unit circle, we are interested in the proximity of valleys and peaks to the
path in 3-D that is traced out along the unit circle as in Figs. 9-5 and 9-10.

By considering only the pole-zero plot of the system function, it is generally possible
to skip the 3-D plot and just imagine how a 3-D plot of |H(z)| restricted to the unit circle
would form the peaks and nulls of the plot of |H(ejω̂)| versus ω̂. As an example, we
show in Fig. 9-10 a 3-D plot obtained by evaluating the z-transform magnitude |H(z)|
over a region of the z-plane that includes the unit circle as well as values both inside
and outside the unit circle. The system in this case is an 11-point running sum FIR
filter, where the coefficients are all equal to one. The frequency response of the 11-point
running-sum filter was discussed in detail in Section 6-7 on p. 234, and the plot of its
magnitude response is repeated in Fig. 9-11. Note that there are ten zeros at ω̂ = 2πk/11,
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Figure 9-11 Frequency response (magnitude
only) for the 11-point running sum. These are
the values of H(z) along the unit circle in the
z-plane. There are 10 zeros spread out uniformly
along the frequency axis except for ω̂ = 0.
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for k = ±1,±2,±3,±4,±5, so we expect to have ten zeros of |H(z)| around the unit
circle in Fig. 9-10, where two of them are easy to see.

The system function for the 11-point running-sum filter is

H(z) =
10
∑

k=0

z−k (9.33)

From the frequency response plot we know the angles of the zeros on the unit circle, so
the polynomial in (9.33) can be represented as the product of ten factors

H(z) = (1− ej2π/11z−1)(1− ej4π/11z−1) · · · (1− ej18π/11z−1)(1− ej20π/11z−1)

(9.34)

Recall that each factor of the form (1− ej2πk/11z−1) represents a zero at z = ej2πk/11

and a pole at z = 0. Thus, (9.34) displays the 10 zeros of H(z) at z = ej2πk/11, for
k = 1, 2, . . . , 10 along with 10 poles at z = 0. In Section 9-7, we will use the roots of
unity to factorH(z) and confirm that the ten zeros ofH(z) in (9.33) are on the unit circle
at angles ω̂ = 2πk/11, for k = 1, 2, . . . , 10.

In the 3-D magnitude plot of Fig. 9-10, the ten zeros pin down the 3-D plot around
the unit circle. Inside the unit circle, the values of H(z) become very large owing to the
ten poles at z = 0. The frequency response magnitude

∣

∣H(ejω̂)
∣

∣ is obtained by selecting
the values of the z-transform along the unit circle in Fig. 9-10, which conforms to the
plot of

∣

∣H(ejω̂)
∣

∣ versus ω̂ given in Fig. 9-11. The shape of the frequency response can be
explained in terms of the zero locations shown in Fig. 9-12 by recognizing that the ten
poles at z = 0 push

∣

∣H(ejω̂)
∣

∣ up, but the zeros along the unit circle make H(ejω̂) = 0 at
regular intervals except for the region near ω̂ = 0 where the regular pattern of zeros is
broken by the missing zero at z = 1. The unit circle values follow the ups and downs of
∣

∣H(z)
∣

∣ as ω̂ goes from −π to +π with |z| = 1.
This example illustrates that an intuitive picture of the frequency response of an LTI

system can be visualized from a plot of the poles and zeros of the system function H(z).
We simply need to remember that a pole “pushes up” the frequency response and a zero
“pulls it down.” Furthermore, a zero on the unit circle forces the frequency response to
be exactly zero at the frequency corresponding to the angle of the zero.

(10)
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Figure 9-12 Zero and pole distribution for the
11-point running sum. There are ten zeros
spread out uniformly around the unit circle,
except for z = 1, and ten poles at the origin.
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9-6.5 Three-Domain Movies

With the z-transform, DTFT and impulse response (or difference equation) we now have
three ways to describe an FIR LTI system, and these three methods involve three different
domains characterized with the variables z, ω̂, and n. One vital skill for working with

DEMO
3-Domain Movies

LTI systems is the ability to visualize all three domains simultaneously for certain classes
of filters. We developed such a visualization as a movie that presents plots for all three
domains and then shows how the plots change as one parameter is varied. A typical
example shows how the frequency response and impulse response change as one or two
zeros of the FIR filter are varied. Figure 9-13 shows a frame from a 3-Domain Movie
that illustrates the tie between the z, ω̂, and n domains. The screen layout has a pole-zero
plot and H(z) for the z domain, magnitude and phase plots of the frequency response
for the ω̂ domain, and a stem plot of h[n] for the n domain. The control for these movies
is the z domain because it is easy to think about moving the zeros and watching what
happens in the ω̂ and n domains. In the example of Fig. 9-13, the movie sequence moves
the two complex-conjugate zeros around the unit circle by changing their angles. At the
same time, the coefficients ofH(z) are updated, along with the plots of h[n] andH(ejω̂).

1 + 2.8z−1 + 2.8z−2 + z−3
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Figure 9-13 One frame of a 3-Domain Movie showing the different domains: time domain (n),
frequency domain (ω̂), the z-transform domain H(z), and a pole-zero plot. In this movie, the
conjugate zero pair moves around on the unit circle.
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Finally, as another way to show the same interrelationships, we mention that there is
also a 3-Domain GUI (called PeZ) in which the user can move the zeros by clicking and
dragging with a pointing tool, and simultaneously see changes in the frequency response
and impulse response (see Fig. 10-28 on p. 473 for more details).

DEMO
PeZ GUI, Three
Domains—FIR

9-7 Simple Filters

Now that we have new knowledge of the tie between the z and ω̂ domains, we can exploit
that knowledge to design FIR filters with desirable frequency response characteristics.
In this section, we examine a special class of FIR filters that are all close relatives of the
running-sum filter.

9-7.1 Generalize the L-Point Running-Sum Filter

A generalization of the L-point running-sum filter is

y[n] =
L−1
∑

k=0

akx[n− k] (9.35)

Note that the running sum is obtained when a = 1. It is still easy to determine that the
system function for (9.35) is

H(z) =
L−1
∑

k=0

akz−k (9.36)

The filter order isM = L− 1 which is also the degree of theH(z) polynomial. Recalling
the formula (6.24) from p. 234 for the sum of L terms of a geometric series,H(z) can be
rewritten in two different rational forms

H(z) =
L−1
∑

k=0

akz−k = 1− aLz−L
1− az−1

= zL − aL
zL−1(z− a) (9.37)

The second form for H(z) is a rational function where the numerator polynomial is
zL − aL and the denominator is zL−1(z− a). The zeros of H(z) are determined by the
roots of the numerator polynomial, which are the values of z such that

zL − aL = 0 =⇒ zL = aLej2πk (9.38)

because ej2πk = 1 for k, an integer. Then we can take the Lth root of both sides to obtain
the L roots

z = aej2πk/L for k = 0, 1, 2, . . . , L− 1 (9.39)

Notice that when a = 1 the values in (9.39) satisfy the equation zL = 1, so they are the
Lth roots of unity. In general, all the numerator roots (9.39) lie on a circle of radius |a|.
The roots of the denominator in (9.37), which are either z = 0 (of order L− 1) or z = a,
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would normally be the poles ofH(z). However, since one of the numerator roots is z = a
(when k = 0 in (9.39)) the numerator has a term (z− a) that cancels the corresponding
term of the denominator, so that only the denominator term zL−1 actually causes theL− 1
poles of H(z). Therefore, it follows that H(z) has degree L− 1 and can be expressed in
the factored form

H(z) =
L−1
∑

k=0

akz−k =
L−1
∏

k=1

(

1− aej2πk/Lz−1

)

(9.40)

Notice that the product (9.40) does not include the k = 0 term which would be the
cancelled root at z = a.

EXAMPLE 9-11 H(ejω̂) from H(z)

The 11-point running-sum filter (L = 11) is the special case where a = 1 in (9.37), so
one way to write its system function is

H(z) =
10
∑

k=0

z−k = 1− z−11

1− z−1
(9.41)

Then the frequency response is obtained by substituting ejω̂ for z, followed by reducing
the rational form to a Dirichlet form as was done in (6.25) and (6.26) of Chapter 6

H(ejω̂) = H(z)∣∣
z=ejω̂ =

1− e−j11ω̂

1− e−jω̂ = D11(ω̂)e
−j5ω̂ (9.42)

The pole-zero diagram for this case was shown previously in Fig. 9-12, along with
the corresponding frequency response in Fig. 9-11. The 11 factors of the numerator
polynomial (z11 − 1) in (9.41) include a term (z− 1) for the zero at z = 1 which is
canceled by the corresponding term (z− 1) in the denominator. This explains why we
have only ten zeros around the unit circle with the gap at z = 1. The ten zeros around
the unit circle in Fig. 9-12 show up as zeros of H(ejω̂) along the ω̂ axis in Fig. 9-11 at
integer multiples of 2π/11, except for ω̂ = 0. Note that it is the gap at z = 1 that allows
the frequency response to be larger at ω̂ = 0. The other zeros around the unit circle
keep H(ejω̂) small, thereby creating the “lowpass” filter frequency response shown in
Fig. 9-11.

EXERCISE 9.7 For the M th-order FIR filter whose impulse response is

h[n] =
M
∑

k=0

akδ[n− k] (9.43)

the system function in (9.37) or (9.40) has zeros off the unit circle when a 
= 1. From
the pole-zero plot of H(z) shown in Fig. 9-14, determine the value of a and also the
filter length L.



9-7 SIMPLE FILTERS 399

(6)
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Figure 9-14 Pole-zero distribution for
the ak filter in (9.43) and (9.37) with
M = L− 1 = 6. The six zeros lie on a
circle of radius a = 0.8.

9-7.2 A Complex Bandpass Filter

Now we have a new insight that tells us how to control the frequency response of an FIR
filter by placing equally spaced zeros on the unit circle to make stopbands, but leaving
out one zero to make a passband. This viewpoint makes it easy to create other FIR filters
where we control the location of the passband. If we move the passband to a center
frequency away from ω̂ = 0, and the filter passes a small band of frequency components,
we call the filter a bandpass filter, or BPF.

One way to move the passband is to use the frequency-shifting property of the DTFT

h[n]ejω̂0n
DTFT←→ H(ej(ω̂−ω̂0))

For a simple BPF we can use the running-sum impulse response for h[n], which is all
ones, and pick ω̂0 as the center frequency. The z-transform of h[n]ejω̂0n is obtained by
using (9.40) with a = ejω̂0 . The result is

H(z) =
L−1
∑

n=0

1ejω̂0nz−n =
L−1
∏

k=1

(1− ejω̂0ej2πk/Lz−1) (9.44)

Therefore, the L− 1 zeros are at z = ej (ω̂0+2πk/L) for k = 1, 2, . . . L− 1, which are still
on the unit circle, equally spaced but missing the zero at z = ejω̂0 . An example is shown
in Fig. 9-15 for ω̂0 = 5π/L and L = 11. We expect that the passband of the filter will
move from the frequency interval around DC (z = 1) to a like interval centered around
ω̂0. Figure 9-16 confirms our intuition, because the frequency location of the peak is
ω̂ = 5π/11. This filter is a bandpass filter, since

∣

∣H(ejω̂)
∣

∣ is much smaller for frequencies
outside the narrow passband around ω̂ = 5π/11.

9-7.3 A Bandpass Filter with Real Coefficients

The previous strategy of frequency shifting gives complex-valued filter coefficients bk =
ak = ejω̂0k which might be undesirable if we want to filter real signals. However, there is
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(10)
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Figure 9-15 Zero and pole distribution for an
11-point complex BPF with ω̂0 = 5π/11. The zero
at angle 5π/11 is missing, but there are ten zeros
spread out at angles spaced by 2π/11 around the
unit circle.

11

O!

ˇ
ˇH.ej O!/

ˇ
ˇ

�–� 3�

11
�

3�

11

5�

11
�

5�

11

7�

11
�

7�

11
0

Figure 9-16 Frequency response (magnitude
only) for the 11-point complex BPF with
ω̂0 = 5π/11. These are the values along the
unit circle in the z-plane. There are ten zeros
spaced by 2π/11 along the frequency axis.

a second strategy that yields real filter coefficients—we can use a cosine to do frequency
shifting (up and down). Thus the filter coefficients are now

bk = cos(ω̂0(k − km)) for k = 0, 1, . . . , L− 1

where km is the midpoint of the impulse response, km = 1
2 (L− 1). Any length-L section

of the cosine could be used, but this choice guarantees that the linear phase condition (to
be discussed in Section 9-9) is satisfied.

With these real filter coefficients, this new BPF can be written as the sum of
two complex BPFs. By expanding the cosine coefficients of z−k in terms of complex
exponentials we obtain

H(z) =
L−1
∑

k=0

(

cos(ω̂0(k − km))
)

z−k (9.45a)

=
L−1
∑

k=0

(

1
2e
jω̂0(k−km) + 1

2e
−jω̂0(k−km)

)

z−k

= 1
2e
−jω̂0km

L−1
∑

k=0

ejω̂0kz−k + 1
2e
jω̂0km

L−1
∑

k=0

e−jω̂0kz−k

= H1(z)+H2(z) (9.45b)

Thus we expect that the frequency response will have two “Dirichlet” peaks, which is the
case in Fig. 9-17. Note that km in the exponent only contributes to the phases ofH1(z) and
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Figure 9-17 Frequency response (magnitude
only) for the 11-point real BPF exhibits two
passbands near ω̂ = ±5π/11 = ±ω̂0. Notice
that the peak magnitudes are not located
exactly at ω̂ = ±5π/11 = 0.4545π since the
sidelobes of one Dirichlet form add to the other
peak to produce H(ejω̂). The peak value is
5.569 at ω̂ = ±0.439π .
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Figure 9-18 Pole-zero distribution for the 11-point
real BPF shown in Fig 9-17. Of the original 11 roots
of unity, two have been dropped off the unit circle at
the angles ±5π/11, but there is now a double zero
on the real axis at z = −1. There are ten poles at the
origin.

H2(z). In fact, the sum in (9.45b) is the addition of complex quantities, not magnitudes,
so the phase matters when doing the sum. There is no problem in constructing a frequency
response plot in MATLAB which is shown in Fig. 9-17. In addition, the pole-zero diagram
in Fig. 9-18 can be made with the zplane function in MATLAB.

9-8 Practical Bandpass Filter Design

Although much better filters can be designed by more sophisticated methods, the example
of BPF design discussed in Section 9-7 is a useful illustration of the power of the
z-transform to simplify the analysis of such problems. Its characterization of a filter by
the zeros (and poles) of H(z) is used frequently in filter design and implementation.
The underlying reason is that the z-transform converts difficult problems involving
convolution and frequency response into simple algebraic ideas based on multiplying
and factoring polynomials. Thus, skills with basic algebra become essential everyday
tools in design.

As a final example of FIR filters, we present a high-order FIR filter that has been
designed by a computer-aided filter-design program. Most digital filter design is carried
out by software tools that permit much more sophisticated control of the passband
and stopband characteristics than we were able to achieve with the simple analysis of
Section 9-7. Design programs such as firpm and fir1 can be found in the MATLAB
software augmented with the Signal Processing Toolbox. The discussion in Section 7-4
described the underlying methodology of the window method for FIR filter design which
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Figure 9-19 Impulse response for the 24-point
BPF designed with MATLAB’s fir1 function.
These are the FIR filter coefficients {bk},
k = 0, 1, 2, . . . , 23, which are needed in the
difference equation implementation.

underlies fir1, so it is interesting to examine the output from the program fir1 to
get a notion of what can be achieved with a sophisticated design method. The software
allows us to specify the frequency range for the passband, and then computes a good
approximation to an ideal filter that has unity gain over the passband and zero gain in the
stopband. An example is shown in Figs. 9-19, 9-20, and 9-21 for a length-24 FIR BPF.

The impulse response of the 24-point FIR BPF is shown in Fig. 9-19. Notice that the
coefficients would be labeled {bk}, from k = 0, 1, 2, . . . , 23. The plot shows an obvious
symmetry about a midpoint atn = 23/2. Table 9-2 lists the values for the impulse response
and filter coefficients. These are the coefficients used in the difference equation

y[n] =
23
∑

k=0

bkx[n− k]

to implement the filter whose frequency response is shown in Fig. 9-20. Notice the
wide passbands in the frequency ranges corresponding to 2π(0.24) < |ω̂| < 2π(0.36).

Table 9-2 Filter coefficients of 24-point FIR bandpass.

b0 = −0.0108 = b23

b1 = 0.0037 = b22

b2 = −0.0052 = b21

b3 = 0.0300 = b20

b4 = 0.0000 = b19

b5 = −0.0526 = b18

b6 = 0.0164 = b17

b7 = −0.0219 = b16

b8 = 0.1275 = b15

b9 = 0.0000 = b14

b10 =−0.3236 = b13

b11 = 0.2330 = b12
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Figure 9-20 Frequency response (magnitude
only) for the 24-point BPF. The passbands
are the intervals 0.48π ≤ |ω̂| ≤ 0.72π .
The design was performed with
fir1(23,2*[0.2,0.4],kaw), where
kaw = kaiser(24,2.75) is a Kaiser
window.
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Figure 9-21 Zero and pole distribution
for a 24-point BPF designed with
MATLAB’s fir1 function. The section
of unit circle corresponding to the
passband of H(ejω̂) in Fig. 9-20 is
outlined in black.

In these intervals, the gain of the filter deviates only slightly from one, so the amplitudes
of sinusoidal input signals with these frequencies are not affected by the filter. We will
see in Section 9-9 that this filter has linear phase, so these frequency components only
experience delay.

Also note that in the regions |ω̂| < 2π(0.16) and 2π(0.44) < |ω̂| < 2π(0.5) the gain
is very nearly equal to zero. These regions are the “stopbands” of the filter, since the
amplitudes of sinusoids with these frequencies are multiplied by a very small gain and
thus blocked from appearing in the output.

Observe that the frequency response tapers smoothly from the passbands to the
stopbands. In these transition regions, sinusoids are reduced in amplitude according to
the gain shown in Fig. 9-20. In many applications, we would want such transition regions
to be very narrow. Ideally, we might even want them to have zero width. While this is
theoretically achievable, it comes with a high price, as discussed in Section 7-4.2.5. It
turns out that for an FIR frequency selective (lowpass, bandpass, highpass) filter, the
width of the transition region is inversely proportional to M , the order of the system
function polynomial. The higher the order, the narrower the transition regions can be,
and as M →∞, the transition regions shrink to zero. Unfortunately, increasing M also
increases the amount of computation required to compute each sample of the output, so
a trade-off is always required in any practical application.



404 CHAPTER 9 z-TRANSFORMS

Figure 9-21 shows the pole-zero plot of the FIR filter. Notice the distinctive pattern
of locations of the zeros. In particular, note how the zeros off the unit circle seem to be
grouped into sets of four zeros. Indeed, for each zero that is not on the unit circle, there
are also zeros at the conjugate location, at the reciprocal location, and at the conjugate
reciprocal location. These groups of four zeros are strategically placed automatically
by the design process to form the passband of the filter. Similarly, the design process
places zeros on (or close to) the unit circle to ensure that the gain of the filter is low
in the stopband regions of the frequency axis. Also, note that all complex zeros appear
in conjugate pairs, and since the system function is a 23rd order polynomial, there are
23 poles at z = 0. In Section 9-9, we will show that these properties of the pole-zero
distribution are the direct result of the symmetry of the sequence of filter coefficients.

9-9 Properties of Linear-Phase Filters

The filter that was discussed in Section 9-8 is an example of a class of systems where the
sequence of coefficients (impulse response) has symmetry of the form bk = bM−k, for
k = 0, 1, . . . ,M . Such systems have a number of interesting properties that are easy to
show in the z-domain representation.

9-9.1 The Linear-Phase Condition

FIR systems that have symmetric filter coefficients (and, therefore, symmetric impulse
responses) have frequency responses with linear phase. An example that we have already
studied is the L-point running sum, whose coefficients are all the same and therefore
clearly satisfy the condition bk = bM−k, for k = 0, 1, . . . ,M . The example of Section
9-8 also has linear phase because it satisfies the same symmetry condition. To see why
linear phase results from this symmetry, let us consider a simple example where the
system function is of the form

H(z) = b0 + b1z
−1 + b2z

−2 + b1z
−3 + b0z

−4 (9.46)

Thus, M = 4 and the length of the sequence is L = M + 1 = 5 samples. After working
out the frequency response for this special case, the generalization will be obvious. First,
observe that we can write H(z) as

H(z) = (b0(z
2 + z−2)+ b1(z

1 + z−1)+ b2
)

z−2

IfM were greater, we would simply have more groups of factors of the form (zk + z−k).
Now when we substitute z = ejω̂, each of these factors becomes a cosine term, that is,

H(ejω̂) = (2b0 cos(2ω̂)+ 2b1 cos(ω̂)+ b2
)

e−jω̂M/2

In this specific example, we have shown that H(ejω̂) is of the form

H(ejω̂) = R(ejω̂)e−jω̂M/2 (9.47)
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where, in this case, M = 4 and R(ejω̂) is the real function

R(ejω̂) = (2b0 cos(2ω̂)+ 2b1 cos(ω̂)+ b2
)

By following this style of analysis for the general case, it is easy to show that (9.47) holds
whenever bk = bM−k, for k = 0, 1, . . . ,M . In the general case, it can be shown that the
result depends on whether the integer M is even or odd

R(ejω̂) =

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

bM
2
+

M−2
2∑

k=0
2bk cos[(M2 − k)ω̂] M even

M−1
2∑

k=0
2bk cos[(M2 − k)ω̂] M odd

(9.48)

Equation (9.47) shows that the frequency response of any symmetric filter has the form
of a real amplitude functionR(ejω̂) times a linear-phase factor e−jω̂M/2. The phase factor,
as we have seen in Section 6-5.1 on p. 226, corresponds to a delay ofM/2 samples. Thus,
the analysis presented in Section 6-7 for the running-average filter is typical of what
happens in the general symmetric FIR case. The main difference is that by choosing the
filter coefficients carefully, as in Section 9-8, we can shape the function R(ejω̂) to have
a much more selective frequency response.

9-9.2 Locations of the Zeros of FIR Linear-Phase Systems

If the filter coefficients satisfy the symmetry condition bk = bM−k, for k = 0, 1, . . . ,M ,
the z-transform polynomial obeys the following “reciprocal property”

H(1/z) = zMH(z) (9.49)

To demonstrate this reciprocal property of linear-phase filters, consider a 4-point system
function H(z) and replace z with 1/z

H(1/z) = b0 + b1(1/z)
−1 + b1(1/z)

−2 + b0(1/z)
−3

= b0 + b1z
1 + b1z

2 + b0z
3

= z3(b0 + b1z
−1 + b1z

−2 + b0z
−3)

= z3H(z)

Following the same style for a general M , (9.49) is easily proved for the general case.
The reciprocal property of linear-phase filters is responsible for the distinctive pattern

of zeros in the pole-zero plot of Fig. 9-21. The zeros that are not on the unit circle occur
as quadruples. Furthermore, these quadruples are responsible for creating the passband
of the BPF. Zeros on the unit circle occur in pairs because the complex conjugate partner
must be present, and these zeros are mainly responsible for creating the stopband of the
filter.
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These properties can be shown to be true in general for linear-phase filters.
Specifically,

When bk = bM−k, for k = 0, 1, . . . ,M , then if z0 is a zero of H(z),
so are its conjugate, its inverse, and its conjugate inverse, that is,
{ z0, z

∗
0, 1/z0, 1/z∗0 } are all zeros of H(z).

The conjugate zeros are included because the filter coefficients, which are also the
coefficients ofH(z), are real. Therefore, all of the zeros ofH(z)must occur in complex-
conjugate pairs. The inverse property of the roots is a consequence of the reciprocal
property (9.49). Using (9.49), and assuming that z0 is a zero of H(z), we get

H(1/z0) = zM0 H(z0) = 0

Since H(z0) = 0, then we must have H(1/z0) = 0 also. Most FIR filters are designed
with a symmetry property, so the zero pattern of Fig. 9-21 is typical.

9-10 Summary and Links

The z-transform method was introduced in this chapter for FIR filters and finite-length
sequences in general. The z-transform reduces the manipulation of LTI systems into
simple operations on polynomials and rational functions. Roots of these z-transform
polynomials are quite important because filter properties such as the frequency response
can be inferred directly from the root locations.

We also introduced the important concept of “domains of representation” for discrete-
time signals and systems. There are three domains: the n-domain or time domain, the
ω̂-domain or frequency domain, and the z-domain. With three different domains at our
disposal, even the most difficult problems generally can be simplified by switching to
one of the other domains.

Among the laboratory projects on the website we have already provided two on the
topic of FIR filtering in Chapters 5 and 6. The first one deals with FIR filtering of sinusoidal
waveforms, convolution, and deconvolution; the second one explores the frequency
responses of common filters such as the first difference and the L-point averager. In
two other labs with projects, FIR filters are used in practical systems, such as a Touch-
Tone decoding system, and an octave band filter bank for piano note detection. Each of
these labs should be easier to understand and simpler to carry out with the newly acquired
background on z-transforms.

LAB
Encoding and Decoding
Touch-Tone Signals

LAB
Octave Band Filtering

The Companion Website also contains some demonstrations of the relationship
between the z-plane and the frequency domain and time domain.

(a) A set of 3-domain movies that show how the frequency response and the impulse
response of an FIR filter change as a zero location is moved. Several different filters
are demonstrated.

DEMO
Three Domains—FIR

(b) A movie that animates the relationship between the z-plane and the unit circle
where the frequency response lies.

DEMO
Z to Freq
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(c) The MATLAB program PeZ that facilitates exploring the three domains. There is
also a lab based on PeZ which presents various useful filters (e.g., nulling filters)
in the three domains. Please refer to Section 10-12.4 for a concise description of
how to use the interactive controls in PeZ.LAB

PeZ 3 Domains

NOTE
Problems with Solutions

9-11 Problems

The problems in this section address the major concepts of the z-transform presented
this chapter. In addition, there are many related homework problems available on the
website, which can be used for review and practice because most of them have detailed
solutions.

P-9.1 Use the superposition and time-delay properties of (9.5) and (9.6) to find the
z-transforms of the following signals:

x1[n] = 6δ[n]
x2[n] = 7δ[n− 3]
x3[n] = 2δ[n] + 9δ[n− 5]
x4[n] = 6δ[n] − 7δ[n− 3] − 2δ[n] − 9δ[n− 5]

P-9.2 Use the superposition and time-delay properties of (9.5) and (9.6) to determine
the z-transform Y (z) in terms of X(z) if

y1[n] = x[n] − x[n− 1] and

y2[n] = x[n] + x[n− 1]
and in the process obtain the two system functions.

P-9.3 Suppose that an LTI system has a system function

H(z) = 1− 3z−2 + 3z−4 + 4z−6 + 7z−7

(a) Determine the difference equation that relates the output y[n] of the system to the
input x[n].

(b) Determine and plot the output sequence y[n] when the input is x[n] = δ[n].
P-9.4 An LTI system is described by the difference equation

y[n] = 0.2 (x[n] − 1.5x[n− 1] + 0.5x[n− 2])
(a) Determine the system function H(z) for this system.

(b) Plot the poles and zeros of H(z) in the z-plane.

(c) FromH(z) obtain an expression forH(ejω̂), the frequency response of this system.
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(d) Sketch the frequency response (magnitude and phase) as a function of frequency
for −π ≤ ω̂ ≤ π .

(e) Determine the output if the input is

x[n] = 7− 6 cos[(π/3)(n− 1)] + 5 cos[0.75πn].
P-9.5 Consider an LTI system whose system function is the product of five terms

H(z) = (1− z−1)(1− 0.7e−jπ/2z−1)(1− 0.7ejπ/2z−1)(1+ ej2π/3z−1)(1+ e−j2π/3z−1)

(a) Write the difference equation that gives the relation between the input x[n] and the
output y[n].
Hint: Multiply the factors of H(z) to obtain a polynomial.

(b) Plot the poles and zeros of H(z) in the complex z-plane.

(c) If the input is of the form x[n] = Aejφejnω̂, for what values of −π < ω̂ ≤ π is it
true that y[n] = 0?

P-9.6 The diagram in Fig. P-9.6(a) depicts a cascade connection of two LTI systems,
where the output of the first system is the input to the second system and the overall
output is the output of the second system.

(a) Suppose that LTI 1 is a 3-point averager described by the difference equation
y1[n] = 1

3(x[n] + x[n− 1] + x[n− 2]) and LTI 2 is a 4-point averager described
by the system function H2(z) = 1

4(1+ z−1 + z−2 + z−3). Determine the system
function of the overall cascade system in Fig. P-9.6(a).

(b) For the cascade system in Fig. P-9.6(b), assume that LTI 1 is a 4-point averager
and LTI 2 is a 3-point averager. Determine the z-transforms, Y2(z) andW(z) when
x[n] = δ[n] − δ[n− 1].

(c) Obtain a single difference equation that relates y[n] to x[n] in Fig. P-9.6(a). Is the
cascade of the two averagers the same as a 7-point averager?

(d) Plot the poles and zeros of H(z) = H1(z)H2(z) in the complex z-plane.

x[n]

X(z)

w[n]

W(z)

y2[n]

Y2(z)

(a)

(b)

H1(z), h1[n]

LTI 1

x[n]

X(z)

y[n]

Y(z)

y1[n]

Y1(z)H1(z), h1[n]

LTI 1

H2(z), h2[n]

LTI 2

H2(z), h2[n]

LTI 2

Figure P-9.6
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P-9.7 Factor the following polynomial and plot its roots in the complex plane.

P(z) = 1+ z−1 + z−2 − z−3

In MATLAB, use the functions called roots and zplane.

P-9.8 An LTI system is described by the difference equation

y[n] = 1

4
{x[n] + x[n− 1] + x[n− 2] + x[n− 3]}

= 1

4

3
∑

k=0

x[n− k]

(a) What is h[n], the impulse response of this system?

(b) Determine the system function H(z) for this system.

(c) Plot the poles and zeros of H(z) in the complex z-plane.

Hint: Remember the Lth roots of unity.

(d) FromH(z), obtain an expression for the frequency responseH(ejω̂) of this system.

(e) Sketch the frequency response (magnitude and phase) as a function of frequency (or
plot it using freqz( ) in MATLAB, or freekz( ) in the SP-First Toolbox).

(f) Suppose that the input is

x[n] = 5+ 4 cos(0.2πn)+ 3 cos(0.5πn+ π/4)
for −∞ < n <∞. Obtain an expression for the output in the form
y[n] = A+ B cos(ω̂0n+ φ0).

P-9.9 Suppose that a systemH(z) is the cascade of three first-difference and two 2-point
running sum filters.

(a) Determine the system function H(z) for the overall system.

(b) Plot the poles and zeros of H(z) in the z-plane.

(c) FromH(z), obtain an expression for the frequency responseH(ejω̂) of the overall
cascade system.

(d) Use multiplication of z-transform polynomials to determine the impulse response
h[n] of the overall cascade system.

P-9.10 Suppose that an LTI system has system function equal to

H(z) = z−6 − 3z−7 + 2z−8 − z−9

The input to the system is the sequence

x[n] = 3δ[n] + 2δ[n− 3] − 7δ[n− 6] + 4δ[n− 9]
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(a) Without actually computing the output, determine the values of N1 and N2 so that
the following is true:

y[n] = 0 for n < N1 and n > N2

(b) Using the above N1 and N2, determine the (nonzero) values of y[N1],
y[(N1 +N2)/2] and y[N2].

(c) Use z-transforms and polynomial multiplication to find the entire sequence y[n] =
x[n] ∗ h[n].

P-9.11 The intention of the following MATLAB program is to filter a sinusoid using
the conv function.

omega = pi/6;
nn = [ 0:29 ];
xn = cos(omega*nn - pi/4);
bb = [ 1 0 0 1 ];
yn = conv( bb, xn );

(a) Determine H(z) and the zeros of the FIR filter.

(b) Determine a formula for y[n], the signal contained in the vector yn. Ignore the first
few points, so your formula must be correct only for n ≥ 3. This formula should
give numerical values for the amplitude, phase and frequency of y[n].

(c) Give a value of omega such that the output is guaranteed to be zero, for n ≥ 3.

P-9.12 A system is defined by the system function

H(z) = (1− z−1)(1+ z−1 + z−2)(1+ z−3)

(a) Write the time-domain description of this system in the form of a difference
equation.

(b) Write a formula for the frequency response of the system.

(c) Derive simple formulas for the magnitude response versus ω̂ and the phase response
versus ω̂. These formulas must contain no complex terms and no square roots.

(d) This system can “null” certain input signals. For which input frequencies ω̂0 is the
response to x[n] = cos(ω̂0n) equal to zero?

(e) When the input to the system is x[n] = cos(πn/4), determine the output signal
y[n] in the form:

A cos(ω̂0n+ φ)
Give numerical values for the constants A, ω̂0, and φ.
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P-9.13 An LTI system has zeros at ±1 and ±3, and four poles at z = 0. The input to
this system is

x[n] = 50− 60δ[n] + 20 cos(0.5πn+ π/3)
for −∞ < n <∞. If h[0] = 1, determine the output of the system y[n] corresponding
to the above input x[n]. Give an equation for y[n] that is valid for all n.
Note: Superposition makes this problem easier.

P-9.14 The input to the C-to-D converter in Fig. P-9.14 is

x(t) = 3+ cos(600πt − π/6)− 2 cos(1200πt)

The system function for the LTI system is

H(z) = 1− z−1 + z−4 − z−5

If fs = 2400 samples/s, determine an expression for y(t), the output of the D-to-C
converter.

x(t) y(t)x[n]

fs =

y[n]Ideal
C-to-D

Ideal
D-to-C

LTI
System

H(z)

1
Ts

fs = 1
Ts Figure P-9.14

P-9.15 Refer to the system for discrete-time filtering of a continuous-time signal shown
in Fig. P-9.14. Assume that the discrete-time LTI system has a system function H(z)
defined as

H(z) = 5
(

1+ b1z
−1 + z−2

)

(a) For the case where b1 = 0.8, determine a formula for the frequency response of the
discrete-time filter. Express your answer in the following form by finding α and β:

H(ejω̂) = e−jω̂ (α + β cos(ω̂)
)

(b) For the case where b1 = 0.8, plot the magnitude response of the digital filter versus
frequency for −π < ω̂ ≤ π .



412 CHAPTER 9 z-TRANSFORMS

(c) The overall frequency response of this system from x(t) to y(t) is able to null
out one continuous-time sinusoid (e.g., a system that removes a 60-Hz sinusoidal
interference from an EKG signal). The value of the filter coefficient b1 controls the
frequency location of the null. If the sampling rate is fs = 8000 Hz, determine the
value of b1 so that the overall frequency response has a null at 1600 Hz.

P-9.16 In the cascade system of Fig. P-9.6(a), it is known that the system functionH(z)
of the overall system is the product of four terms

H(z) = (1− z−2)(1− 0.8ejπ/4z−1)(1− 0.8e−jπ/4z−1)(1+ z−2)

(a) Determine the poles and zeros of H(z) and plot them in the complex z-plane.

(b) It is possible to determine two system functions H1(z) and H2(z) so that (1) the
overall cascade system has the given system function H(z), and (2) the output of
the first system is y1[n] = x[n] − x[n− 4]. Find H1(z) and H2(z).

(c) Determine the difference equation that relates y[n] to y1[n] for your answer in (b).

P-9.17 A causal FIR filter is known to have four zeros: {0.8e±jπ/3, 1.25e±jπ/3}, but the
zeros do not completely define the system.

(a) If the first sample of the impulse response is h[0] = 7, determine the impulse
response of the filter.

(b) If the DC value of the frequency response is H(ej0) = 2, determine the system
function of the filter.

P-9.18 In Section 9-9, we showed that symmetric FIR filters have special properties.
In this problem, we consider the antisymmetric case where bk = −bM−k, for
k = 0, 1, . . . ,M . Consider the specific example

H(z) = b0 + b1z
−1 − b1z

−3 − b0z
−4

where in this case of even order, b2 = −b2 = 0.

(a) Show that, for this example, H(z)
∣

∣

z=1 = 0.

(b) Show that, for this example,

H(ejω̂) = [2b0 sin(2ω̂)+ 2b1 sin(ω̂)]ej (π/2−jω̂2)

(c) Show that, for this example,

H(1/z) = −z4H(z)

(d) Generalize these results for anyM; the even-order and odd-order cases are slightly
different.
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P-9.19 Refer to Fig. P-9.6(a) which depicts a cascade connection of two LTI systems.

(a) Suppose that System 1 and System 2 both have a “square pulse” impulse response
of the form

h1[n] = h2[n] = δ[n] + δ[n− 1] + δ[n− 2] + δ[n− 3]
Determine the system functions H1(z) and H2(z) for the two systems.

(b) Use z-transforms to determine the system function H(z) of the overall system.

(c) Determine the impulse response h[n] for the overall system.

(d) Obtain a single difference equation that relates y[n] to x[n] in the cascade system.

(e) Show that H1(z) = H2(z) can be expressed as

H1(z) = H2(z) = 1− z−4

1− z−1

(f) For the overall system H(z), plot the poles and zeros in the complex z-plane.

(g) Show that the frequency responses of the two systems are

H1(e
jω̂) = H2(e

jω̂) = sin(2ω̂)

sin(ω̂/2)
e−j3ω̂/2

(h) From the frequency responses found in (g) obtain an expression for the frequency
responseH(ejω̂) and sketch the magnitude of the frequency response of the overall
cascade system for −π < ω̂ ≤ π .
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10

IIR Filters

This chapter introduces a new class of linear time-invariant (LTI) systems that have infinite
duration impulse responses. These systems are often called IIR filters, where IIR is short
for infinite-impulse-response. In contrast to the FIR case, the output of an IIR filter is
computed using previously computed values of the output signal as well as values of the
input signal. Since the output is “fed back” to be combined with the input, these systems
are examples of the general class of feedback systems. From a computational point of
view, the output samples are determined from previously computed output values, so the
term recursive filter is also used.

The z-transform system functions for IIR filters are rational functions that have poles
at the roots of the denominator polynomial and zeros at the roots of the numerator. Just
as for the FIR case, we will show that many insights into the important properties of IIR
filters can be obtained directly from the locations of the poles and zeros in the z-plane.

We begin this chapter with the first-order IIR system, which is the simplest case
because it involves feedback of only the previous output sample. We construct the impulse
response of this system and show that its duration is infinite. Then the frequency response
and the z-transform are developed for the first-order filter. After the relationships among
the three domains of representation for this simple case have been established, we consider
second-order filters. These filters are particularly important because they can be used to
model resonances such as would occur in a speech synthesizer, as well as many other

414
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natural phenomena that exhibit vibratory behavior.The frequency response for the second-
order case can exhibit a narrowband character that leads to the concepts of bandwidth and
center frequency, both of which can be controlled by appropriate choice of the feedback
coefficients of the filter. The analysis and insights developed for the first- and second-order
cases form the basis for understanding and implementing higher-order systems.

10-1 The General IIR Difference Equation

FIR filters are extremely useful and have many nice properties, but the class of FIR filters
is not the most general class of LTI systems. This is because the output y[n] is formed
solely from a finite set of samples of the input signal x[n]. The most general class of
discrete-time LTI systems that can be implemented with a finite amount of computation
is obtained when the output is formed not only from the input, but also from previously
computed outputs.

DEMO
IIR Filtering

The defining equation for this wider class of digital filters is the following general
difference equation:

Difference Equation with Feedback

y[n] =
N
∑

�=1

a�y[n− �] +
M
∑

k=0

bkx[n− k] (10.1)

The filter coefficients in the two sets {bk} and {a�} are constants. For reasons that
will become obvious in the following simple example, the coefficients {a�} are called
the feedback coefficients, and the {bk} are called the feed-forward coefficients. In all,
N +M + 1 coefficients are needed to define the difference equation1 (10.1).

Notice that if the feedback coefficients {a�} are all zero, the difference equation
(10.1) reduces to the difference equation of an FIR system. Indeed, we have asserted that
(10.1) defines the most general class of LTI systems that can be implemented with finite
computation, so FIR systems must be a special case. When discussing FIR systems we
have referred to M as the order of the system because M is the degree or order of the
polynomial system function, as well as the number of delay terms in the FIR difference
equation. For IIR systems, we have both M and N as measures of the number of delay
terms, and we see that the system function of an IIR system is the ratio of an M th-order
polynomial to an N th-order polynomial. Thus, there can be some ambiguity as to the
order of an IIR system. In general, we define N , the number of feedback terms, to be the
order of an IIR system.

EXAMPLE 10-1 IIR Block Diagram

As a first step toward understanding the general form given in (10.1), consider the first-
order case where M = N = 1, that is,

1The difference equation of the IIR filter is also called a recursion formula for generating the output
sequence. Thus, IIR systems are often called recursive filters.
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Feed-Forward Part Feedback Part

a1b1

b0

z−1z−1

x[n] y[n]

y[n − 1]

v[n]

x[n-1] Figure 10-1 First-order IIR
system showing one feedback
coefficient a1 and two feed-forward
coefficients b0 and b1.

y[n] = a1y[n− 1] + b0x[n] + b1x[n− 1]
︸ ︷︷ ︸

v[n]
(10.2)

The block diagram representation of this difference equation, which is shown in Fig. 10-1,
is constructed by noting that the signal v[n] = b0x[n]+b1x[n−1] is computed by the left
half of the diagram, and we “close the loop” by computing a1y[n− 1] from the delayed
output and adding it to v[n] to produce the output y[n]. In the diagram of Fig. 10-1, all
the paths in the feed-forward section go left-to-right, which is forward from the input to
the output; in the feedback section, the path through the delay goes right-to-left which is
from the output back to the input.

We begin by studying a simplified version of the system defined by (10.2) and depicted
in Fig. 10-1. Our objective is to characterize the filter in each of the three domains: time
domain, frequency domain, and z-domain. Since the filter is defined by a time-domain
difference equation (10.2), we first study how the difference equation is used to compute
the output from the input, and then we illustrate how feedback results in an impulse
response of infinite duration.

10-2 Time-Domain Response

To illustrate how the difference equation can be used to implement an IIR system, consider
a numerical example where the filter coefficients in (10.2) are a1 = 0.8, b0 = 5, and
b1 = 0, so that

y[n] = 0.8y[n− 1] + 5x[n] (10.3a)

In addition, assume that the input signal is

x[n] = 2δ[n] − 3δ[n− 1] + 2δ[n− 3] (10.3b)

so that the total duration of the input is four samples, as shown in Fig. 10-2.
Although it is not a requirement, it is logical that the output sequence values should be

computed in normal order (i.e., from left to right in a plot of the sequence). Furthermore,
since the input is zero before n = 0, it would be natural to assume that n = 0 is the starting
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0 2 3 4 5 6  n

2 2
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1

3

12

xŒ

Figure 10-2 Input signal to
recursive difference
equation.

index of the output. Thus, we proceed to compute the output from the difference equation
(10.3a) in the order y[0], y[1], y[2], . . . . For example, the value of x[0] is 2, so we can
evaluate (10.3a) at n = 0 obtaining

y[0] = 0.8y[0− 1] + 5x[0] = 0.8y[−1] + 5(2) (10.4)

Immediately we run into a problem: The value of y[n] at n = −1 is not known. We cannot
solve this problem by changing where we start computing the output y[n], because at
any point along the n-axis, we still need to know the output at the previous time n− 1.
If we know the value y[n− 1], however, we can use the difference equation (10.3a) to
compute the next value of the output signal at time n. Once the process is started, it can
be continued indefinitely by iteration of the difference equation. The solution requires the
following two assumptions, which taken together are called the initial rest conditions:

Initial Rest Conditions

1. The input must be assumed to be zero prior to some starting time n0 (i.e.,
x[n] = 0 for n < n0). We say that such inputs are suddenly applied.

2. The output is likewise assumed to be zero prior to the starting time of the
signal (i.e., y[n] = 0 for n < n0). We say that the system is initially at rest
if its output is zero prior to the application of a suddenly applied input.

These conditions are not particularly restrictive, especially in the case of a real-time
system, where a new output must be computed as each new sample of the input is taken.
Real-time systems must, of course, be causal in the sense that the computation of the
present output sample must not involve future samples of the input or output. Furthermore,
any practical device would have a time at which it first begins to operate.All that is needed
is for the memory containing the delayed output samples to be set initially to zero.2

With the initial rest assumption, we let y[n] = 0 for n < 0, so now we can evaluate
y[0] as

y[0] = 0.8y[−1] + 5(2) = 0.8(0)+ 5(2) = 10

2In the case of a digital filter applied to sampled data stored completely in computer memory, the causality
condition is not required, but, generally, the output is computed in the same order as the natural order of the
input samples. The difference equation could be recursed backwards through the sequence, but this would
require a different definition of initial conditions.
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1 2 Figure 10-3 Output signal from recursive
difference equation of (10.4) for the input of
Fig. 10-2. For n > 3, the sequence is proportional to
(0.8)n, because the input signal ends at n = 3.

Once we have started the recursion, the rest of the values follow easily, since the input
signal and previous outputs are known.

y[1] = 0.8y[0] + 5x[1] = 0.8(10)+ 5(−3) = −7

y[2] = 0.8y[1] + 5x[2] = 0.8(−7)+ 5(0) = −5.6

y[3] = 0.8y[2] + 5x[3] = 0.8(−5.6)+ 5(2) = 5.52

y[4] = 0.8y[3] + 5x[4] = 0.8(5.52)+ 5(0) = 4.416

y[5] = 0.8y[4] + 5x[5] = 0.8(4.416)+ 5(0) = 3.5328

...
...

This output sequence is plotted in Fig. 10-3 up to n = 7.
One key feature to notice in Fig. 10-3 is the structure of the output signal after

the input becomes zero. When x[n] = 0 for n > 3, the difference equation for n > 3
becomes

y[n] = 0.8y[n− 1] +����� 05x[n] for n > 3

Then the ratio between successive terms is a constant, and the output signal decays
exponentially with a rate determined by a1 = 0.8. Therefore, we can write the following
expression

y[n] = y[3](0.8)n−3 for n ≥ 3

for the rest of the sequence y[n] once the value for y[3] is known.

10-2.1 Linearity and Time Invariance of IIR Filters

When applied to the general IIR difference equation of (10.1), the condition of initial
rest is sufficient to guarantee that the system implemented by iterating the difference
equation is both linear and time-invariant. Although the feedback terms make the
proof more complicated than the FIR case (see Section 5-6.3 on p. 197), we can
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show that, for suddenly applied inputs and initial rest conditions, the principle of
superposition holds because the difference equation involves only linear combinations
of the input and output samples. Furthermore, since the initial rest condition must
be true just before the beginning of a suddenly applied input, time invariance also
holds.

EXERCISE 10.1 Assume that the input to the difference equation (10.3a) is x1[n] = 10x[n−4], where
x[n] is given by (10.3b) and Fig. 10-2. Thus the input is 10 times bigger and delayed
by 4. Use iteration of (10.3a) to compute the corresponding output y1[n] for n =
0, 1, . . . , 11 assuming the initial rest condition. Compare your result to the output
plotted in Fig. 10-3, and verify that the system behaves as if it is both linear and
time-invariant, that is, the output should be 10 times bigger and delayed by 4.

10-2.2 Impulse Response of a First-Order IIR System

In Chapter 5, we showed that the response to a unit impulse sequence characterizes an LTI
system completely. Recall that when x[n] = δ[n], the resulting output signal, denoted by
h[n], is by definition the impulse response. Since any other input signal can be written
as a superposition of weighted and delayed impulses, the corresponding output for that
signal can be constructed from weighted and shifted versions of the impulse response,
h[n]. In other words, since the recursive difference equation with initial rest conditions
is an LTI system, its output can always be represented via the weighting and shifting of
h[n] in the convolution sum

y[n] =
∞
∑

k=−∞
x[k]h[n− k] (10.5)

Therefore, it is of interest to characterize the recursive difference equation by its impulse
response.

To illustrate the nature of the impulse response of an IIR system, consider the first-
order recursive difference equation with b1 = 0,

y[n] = a1y[n− 1] + b0x[n] (10.6)

By definition, the impulse response h[n] is the output when the input is x[n] = δ[n], so
the difference equation

h[n] = a1h[n− 1] + b0δ[n] (10.7)

must be satisfied by h[n] for all values of n. However, (10.7) is not an explicit formula
for h[n]. If we want an explicit general formula for the impulse response in terms of the
parameters a1 and b0, we could use (10.7) to construct a table of the first few values,
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and then, in this simple case, write down the general formula by inspection. The following
table shows the sequences involved in the computation of h[n]:

n n < 0 0 1 2 3 4 · · ·
δ[n] 0 1 0 0 0 0 · · ·

h[n− 1] 0 0 b0 b0(a1) b0(a1)
2 b0(a1)

3 · · ·
h[n] 0 b0 b0(a1) b0(a1)

2 b0(a1)
3 b0(a1)

4 · · ·
From this table, we see that the explicit formula for the impulse response is

h[n] =
{

b0(a1)
n for n ≥ 0

0 for n < 0
(10.8a)

If we recall the definition of the unit step sequence from (5.17),

u[n] =
{

1 for n ≥ 0

0 for n < 0
(10.8b)

(10.8a) can be expressed in a more compact form

h[n] = b0(a1)
nu[n] (10.8c)

where multiplication of b0(a1)
n by u[n] enforces the conditions in (10.8a) for n ≥ 0 and

n < 0.

EXAMPLE 10-2 Impulse Response

For the system in (10.3a) with a1 = 0.8 and b0 = 5, the impulse response is

h[n] = 5(0.8)nu[n] =
{

5(0.8)n for n ≥ 0

0 for n < 0
(10.9)

This impulse response is nonzero for 0 ≤ n <∞ (i.e., it has infinite duration), which is
what we mean by the designation IIR.

A slightly more general problem is to determine the impulse response of the first-
order system when a shifted version of the input signal is also included in the difference
equation, that is,

y[n] = a1y[n− 1] + b0x[n] + b1x[n− 1]
︸ ︷︷ ︸

input = superposition of two terms

(10.10a)

Because this system is linear and time-invariant, and the input consists of two terms, it
follows that its impulse response can be written as a superposition of two terms as in

h[n] = b0(a1)
nu[n] + b1(a1)

n−1u[n− 1] (10.10b)

When plotting h[n], this compact form should be rewritten as three cases

h[n] =

⎧

⎪
⎨

⎪
⎩

0 n < 0

b0 n = 0

(b0 + b1a
−1
1 )(a1)

n n ≥ 1

(10.10c)



10-2 TIME-DOMAIN RESPONSE 421

from which it is easy to see that the impulse response still decays exponentially (for
n ≥ 1) at a rate dependent only on a1.

EXERCISE 10.2 Determine the impulse response h[n] of the following first-order system:

y[n] = −0.5y[n− 1] − 4x[n] + 5x[n− 1].
Plot the resulting impulse response as a function of n.

10-2.3 Response to Finite-Length Inputs

For finite-length inputs, the output of an IIR (or FIR) system can be written as a weighted
sum of shifted copies of the impulse response. The finite-length signal can be written as

x[n] =
N2
∑

k=N1

x[k]δ[n− k]

where x[n] = 0 for n < N1 and n > N2. Then the corresponding output is obtained via
a convolution sum (10.5), but with finite limits as in

y[n] =
N2
∑

k=N1

x[k]h[n− k]

Each term x[k]h[n− k] is a shifted copy of the impulse response weighted by x[k].

EXAMPLE 10-3 IIR Response to General Input

Consider again the LTI system defined by the difference equation (10.3a), whose impulse
response was shown in Example 10-2 to be h[n] = 5(0.8)nu[n]. For the input of (10.3b)
and Fig. 10-2,

x[n] = 2δ[n] − 3δ[n− 1] + 2δ[n− 3]

it is easily seen that

y[n] = 2h[n] − 3h[n− 1] + 2h[n− 3]
= 10(0.8)nu[n] − 15(0.8)n−1u[n− 1] + 10(0.8)n−3u[n− 3]

To evaluate this expression for a specific time index, we need to take into account the
different regions over which h[n], h[n− 1], and h[n− 3] are nonzero. Once we do, we
obtain
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y[n] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 n < 0

10 n = 0

10(0.8)− 15 = −7 n = 1

10(0.8)2 − 15(0.8) = −5.6 n = 2

10(0.8)3 − 15(0.8)2 + 10 = 5.52 n = 3

5.52(0.8)n−3 n > 3

A comparison to the output obtained by iterating the difference equation (see Fig. 10-3
on p. 418) shows that we have obtained the same values of the output sequence by
superposition of scaled and shifted impulse responses.

Example 10-3 illustrates two important points about IIR systems.

1. The initial rest condition guarantees that the output sequence does not begin until
the input sequence begins (or later).

2. Because of the feedback, the impulse response can be infinite in extent, and the
output due to a finite-length input sequence, being a superposition of scaled and
shifted impulse responses, is generally (but not always) infinite in extent. This is in
contrast to the FIR case, where a finite-length input always produces a finite-length
output sequence.

10-2.4 Step Response of a First-Order Recursive System

When the input signal is infinitely long, the computation of the output of an IIR system
using the difference equation is no different than for an FIR system; we simply continue
to iterate the difference equation as long as samples of the output are desired. In the FIR
case, the difference equation and the convolution sum are the same thing. This is not true
in the IIR case, and computing the output using convolution is practical only in cases
where simple formulas exist for both the input and the impulse response. Thus, IIR filters
are generally implemented by iterating the difference equation with feedback.

The computation of the response of a first-order IIR system to a unit step input
provides a relatively simple illustration of the issues involved. We use the same system
as in (10.6)

y[n] = a1y[n− 1] + b0x[n]

and assume that the input is the unit step sequence (10.8b) (i.e., x[n] = u[n]). For n ≥ 0,
the input term b0u[n] is equal to b0, so iterating the difference equation is equivalent to
“multiplying the previous output by a1 and adding b0” to produce the output sequence
one sample at a time. The first few values are tabulated here.
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n x[n] y[n]
n < 0 0 0

0 1 b0

1 1 a1(b0)+ b0

2 1 a1(a1(b0)+ b0)+ b0

3 1 a1(a
2
1 + a1 + 1)(b0)+ b0

4 1 (a4
1 + a3

1 + a2
1 + a1 + 1)b0

... 1
...

Work through the table to be sure that you understand the computation. From the tabulated
values, it can be seen that a general formula for the step response y[n] is

y[n] = b0(1+ a1 + a2
1 + · · · + an1 )

= b0

n
∑

k=0

ak1
(10.11)

With a bit of manipulation, we can get a simple closed-form expression for the general
term in the sequence y[n]. For this we need to recall the formula

n
∑

k=0

rk =

⎧

⎪
⎨

⎪
⎩

1− rn+1

1− r r �= 1

n+ 1 r = 1

(10.12)

which is the formula for summing the first n+ 1 terms of a geometric series. Armed with
this fact, the expression (10.11) for y[n] (when a1 �= 1) can be manipulated into the form

y[n] = b0
1− an+1

1

1− a1
for n ≥ 0, (10.13)

Three cases can be identified: |a1| > 1, |a1| < 1, and |a1| = 1. Further investigation
of these cases reveals two types of behavior.

1. When |a1| > 1, the term an+1
1 in the numerator dominates as n→∞, and the

values for y[n] grow without bound. This is called an unstable condition and is
usually a situation to avoid. We will say more about the issue of stability later in
Sections 10-5.3 and 10-10.

2. When |a1| < 1, the term an+1
1 decays to zero as n→∞. In this case, the system

is stable. Therefore, we can determine a limiting value for step response y[n] as
n→∞

lim
n→∞ y[n] = lim

n→∞ b0
1− an+1

1

1− a1
= b0

1− a1
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Figure 10-4 (a) Unit-step signal u[n]. (b) Step
response of the first-order IIR filter in (10.3a)
where a1 = 0.8.

3. When |a1| = 1, we might have an unbounded output, but not always. For example,
when a1 = 1, the step response (10.11) gives y[n] = (n+ 1)b0 for n ≥ 0, and the
output y[n] grows as n→∞. On the other hand, for a1 = −1, the step response
alternates; it is y[n] = b0 for n even, but y[n] = 0 for n odd.3

The MATLAB plot in Fig. 10-4 shows the unit-step signal and the step response for
the first-order system

y[n] = 0.8y[n− 1] + 5x[n]
Since a1 = 0.8 < 1, this is the second case above and the limiting value as n→∞ is 25,
which can be calculated from the filter coefficients

lim
n→∞ y[n] =

b0

1− a1
= 5

1− 0.8
= 25

It is also possible to compute the step response by the convolution sum

y[n] = x[n] ∗ h[n] =
∞
∑

k=−∞
x[k]h[n− k] (10.14)

Since the input and output are given by the formulas x[n] = u[n] andh[n] = b0(a1)
nu[n],

the result of the convolution is a compact formula that can be obtained with the
z-transform. We will revisit this convolution in Section 10-9.1 once we have the partial
fraction method for z-transforms.

3Even though the output may sometimes be bounded when a1 = 1, the system is still considered to be
unstable since not every bounded input produces a bounded output.
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10-3 System Function of an IIR Filter

We saw in Chapter 9 for the FIR case that the system function H(z) is the z-transform
of the impulse response of the system. The system function for an FIR filter is always a
polynomial, and one of its key properties is the convolution property:

Convolution in the n-domain corresponds
to multiplication in the z-domain.

y[n] = x[n] ∗ h[n] z←→ Y (z) = X(z)H(z)

This is also true for the IIR case. However, when the difference equation has feedback,
it turns out that the system function H(z) is the ratio of two polynomials. Ratios of
polynomials are called rational functions. In this section, we study the system function
for the case of a first-order IIR system, and show how the system function, impulse
response, and difference equation are related.

10-3.1 The General First-Order Case

The general form of the first-order difference equation with feedback (10.10a) is repeated
here:

y[n] = a1y[n− 1] + b0x[n] + b1x[n− 1] (10.15a)

Since this equation must be satisfied for all values of n, we can use the delay property
(9.7) on p. 372 to determine the z-transform of both sides of the equation and obtain the
following equation relating the output z-transform Y (z) to the input X(z):

Y (z) = a1z
−1Y (z)+ b0X(z)+ b1z

−1X(z) (10.15b)

Subtracting the term a1z
−1Y (z) from both sides of the equation leads to the following

manipulations:

Y (z)− a1z
−1Y (z) = b0X(z)+ b1z

−1X(z) (10.15c)

(1− a1z
−1)Y (z) = (b0 + b1z

−1)X(z) (10.15d)

Since the system is an LTI system, it should be true that Y (z) = H(z)X(z), where H(z)
is the system function of the LTI system. Solving (10.15d) for H(z) = Y (z)/X(z), we
obtain

H(z) = Y (z)

X(z)
= b0 + b1z

−1

1− a1z−1
= B(z)

A(z)
(10.15e)

Thus, we have shown thatH(z) for the first-order IIR system is a ratio of two polynomials.
The numerator polynomial B(z) = b0+b1z

−1 is defined by the weighting coefficients b0

and b1 that multiply the input signal x[n] and its delayed versions; the denominator
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polynomial A(z) = 1− a1z
−1 is defined by the feedback coefficient a1. That this

correspondence is true in general should be clear from the analysis that leads to the
formula for H(z). Indeed, the following is true for IIR systems of any order:

The coefficients of the numerator polynomial of the system function of an IIR
system are the coefficients of the feed-forward terms of the difference equation.
For the denominator polynomial, the constant term is one, and the remaining
coefficients are the negatives of the feedback coefficients.

In other words, there is one-to-one correspondence between H(z) and the difference
equation. If the system function contains higher degree polynomials

H(z) =

M
∑

k=0

bkz
−k

1−
N
∑

�=1

a�z
−�

(10.16a)

then the corresponding difference equation is

y[n] =
N
∑

�=1

a�y[n− �] +
M
∑

k=0

bkx[n− k] (10.16b)

In MATLAB, the filter function follows this same format. The statement

yy = filter(bb,aa,xx)

implements an IIR filter, where the vectors bb and aa hold the filter coefficients for the
numerator and denominator polynomials, respectively.

EXAMPLE 10-4 MATLAB for IIR Filter

The following feedback filter:

y[n] = 0.5y[n− 1] − 3x[n] + 2x[n− 1]
would be implemented in MATLAB by

yy = filter([-3,2], [1,-0.5], xx)

where xx and yy are the input and output signal vectors, respectively. Notice that the
aa vector has 1 for its first element and −a1 for its second element, just like in the
denominator polynomial A(z) in (10.15e).

In general, we arrange the difference equation so that the coefficient multiplying y[n]
is 1 (e.g., by rescaling coefficients if necessary).
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EXERCISE 10.3 Find the z-transform system function H(z) of the following feedback filter:

y[n] = 0.5y[n− 1] − 3x[n] + 2x[n− 1]

EXERCISE 10.4 DetermineH(z) for the system implemented by the following MATLAB statement:

yy = filter(5, [1,0.8], xx).

10-3.2 H(z) from the Impulse Response

In the analysis of Section 10-3.1, we assumed implicitly that the system function is
the z-transform of the impulse response of an IIR system. While this is true, we have
demonstrated only that it is true for the FIR case. In the first-order IIR case, we need to
be able to take the z-transform of an infinitely long sequence. As an example of such a
sequence, consider the impulse response h[n] = an1u[n].

Applying the definition of the z-transform from (9.8) on p. 373, we would write

H(z) =
∞
∑

n=0

h[n]z−n =
∞
∑

n=0

an1z
−n =

∞
∑

n=0

(a1z
−1)n (10.17a)

which defines H(z) as an infinite power series where the ratio between successive terms
is a1z

−1. In order for H(z) to be a legitimate function, the sum of all the terms in the
geometric series (10.17a) must be finite, which is true if |a1z

−1| < 1. When the sum is
finite, H(z) is given by the closed-form expression

H(z) =
∞
∑

n=0

an1z
−n = 1

1− a1z−1
(10.17b)

The condition for the infinite sum to equal the closed-form expression can be expressed
as |a1| < |z|. The set of values of z in the complex plane satisfying this condition is
called the region of convergence (ROC). From the preceding analysis, we can state the
following z-transform pair:

an1u[n] z←→ 1

1− a1z−1
(10.18)

which is the building block for all higher-order IIR z-transforms.
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EXAMPLE 10-5 H(z) from Impulse Response

As an example of using (10.18), we can find the difference equation that generates an
impulse response such as

h[n] = 2(0.9)nu[n] + 5(0.9)n−1u[n− 1] (10.19)

Using the linearity and delay properties of the z-transform, as well as the z-transform
pair in (10.18), the system function for the system having the given impulse response is

H(z) = 2

(

1

1− 0.9z−1

)

+ 5z−1

(

1

1− 0.9z−1

)

= 2+ 5z−1

1− 0.9z−1
(10.20)

Note that this is identical in form to H(z) in (10.15e) which we obtained previously in
Section 10-3.1 by taking the z-transform of a difference equation (10.15a). In other words,
the one-to-one correspondence between the system function and difference equation
given in (10.16a) and (10.16b) can be used to write the following difference equation that
generates h[n] in (10.19):

y[n] = 0.9y[n− 1] + 2x[n] + 5x[n− 1] (10.21)

In this section, focusing on the first-order case, we have presented the three notable
concepts of the z-transform method which can be linked to one another: the difference
equation (10.15a), the system function (10.15e), and the impulse responseh[n] = an1u[n].
The coefficients of the numerator and denominator polynomials of the system function
are the same as the coefficients of the difference equation. The system functionH(z) can
be obtained by taking the z-transform of the impulse response, and for the first-order case,
it is possible by taking the inverse z-transform to go directly from the system function to
the impulse response of the system without the tedious process of iterating the difference
equation. These methods also work for higher-order systems but the process of inverse
z-transformation must be based on breaking the z-transform into a sum of first-order
terms via the method of partial fractions, which is discussed in Section 10-9.2.

10-4 The System Function and Block Diagram Structures

The system function displays the coefficients of the difference equation in a convenient
way that makes it easy to move back and forth between the difference equation and the
system function. In this section, we exploit this correspondence to derive other difference
equations, which are alternative implementation equations of exactly the same system
function.

10-4.1 Direct Form I Structure

To illustrate the connection between the system function and the block diagram, recall
the block diagram of Fig. 10-1, which is repeated in Fig. 10-5 for convenience. Block
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Feed-Forward Part
B(z)

Feedback Part
1

A(z)

a1b1

b0

z−1z−1

x[n] y[n]

y[n − 1]

v[n]

x[n-1]

Figure 10-5 First-order IIR system showing one
feedback coefficient a1 and two feed-forward coefficients
b0 and b1 in a Direct Form I structure, which is the
cascade of a feed-forward filter and a feedback filter.

diagrams such as Fig. 10-5 are called implementation structures, or, more commonly,
simply structures, because they give a pictorial representation of the computations in the
difference equations that can be used to implement the system.

Recall that the product of two z-transform system functions corresponds to the cascade
of two systems. Therefore, the system function for the first-order feedback filter can be
factored into an FIR piece and an IIR piece, as in

H(z) = b0 + b1z
−1

1− a1z−1
=
(

1

1− a1z−1

)

(

b0 + b1z
−1
) =

(

1

A(z)

)

B(z) (10.22)

The conclusion to be drawn from the algebraic factors in (10.22) is that a valid
implementation for H(z) is the pair of difference equations

v[n] = b0x[n] + b1x[n− 1] (10.23a)

y[n] = a1y[n− 1] + v[n] (10.23b)

We see in Fig. 10-5 that the polynomial B(z) is the system function of the feed-forward
part (10.23a) of the block diagram, and that 1/A(z) is the system function of the feedback
part (10.23b) that completes the system. The system implemented in this way is called
the Direct Form I implementation because it is possible to go directly from the system
function to the filter coefficients of this block diagram (or the difference equations that
it represents) by using the coefficients of the numerator and denominator polynomials
in H(z).

10-4.2 Direct Form II Structure

We know that for an LTI cascade system, we can change the order of the systems without
changing the overall system response. This is obvious from the system function since

H(z) =
(

1

A(z)

)

B(z) = B(z)
(

1

A(z)

)

(10.24)

Using the correspondences that we have established, the right-hand side of (10.24)
leads to the block diagram shown in Fig. 10-6 where the feedback block is first in the
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a1

b0

b1

xŒ wŒ

wŒnwŒn

yŒ

(a)

´ 1

a1

b0

b1

xŒ wŒ

wŒn

yŒ

(b)

Figure 10-6 (a) First-order IIR system
showing one feedback coefficient a1 and two
feed-forward coefficients b0 and b1 in a
cascade structure with the feedback part first.
(b) First-order IIR system in Direct Form II
structure. The two delays in (a) have been
merged into one.

cascade. Note that we have defined a different intermediate variable w[n] as the output
of the feedback part and input to the feed-forward part. Thus, the block diagram shows
that an equivalent implementation of the system defined by (10.25) is

w[n] = a1w[n− 1] + x[n] (10.25a)

y[n] = b0w[n] + b1w[n− 1] (10.25b)

The block diagram representation of Fig. 10-6(a) can be simplified according to
the following observation. Notice that the input to each of the unit delay operators is
the same signal w[n]. Thus, there is no need for two distinct delay operations; they
can be combined into a single delay, as in Fig. 10-6(b). Since delay operations are
implemented with memory in a computer, the implementation of Fig. 10-6(b) would
require less memory than the implementation of Fig. 10-6(a). Note, however, that
both block diagrams represent the same difference equations (10.25a) and (10.25b).
Again, because there is such a direct and simple correspondence between the filter
coefficients in Fig. 10-6(b) and the polynomial coefficients inH(z), this implementation
is called the Direct Form II implementation of the first-order IIR system with system
function

H(z) = b0 + b1z
−1

1− a1z−1
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x[n] y[n]

v[n]

z−1

a1b1

b0

v[n-1]

Figure 10-7 Computational structure from (10.26) for a
general first-order IIR filter as a Transposed Direct Form II
structure.

EXERCISE 10.5 Find the z-transform system function of the following set of cascaded difference
equations:

w[n] = −0.5w[n− 1] + 7x[n]
y[n] = 2w[n] − 4w[n− 1]

Draw the block diagrams of this system in both Direct Form I and Direct Form II.

10-4.3 The Transposed Form Structure

In the direct form structures of Figs. 10-5 and 10-6, the sequence of operations on the
signals is delay, multiply, and then add. If the z-transform of the general first-order
difference equation (10.15a) is rewritten as

Y (z) = b0X(z)+ z−1
︸︷︷︸

delay

(b1X(z)+ a1Y (z))
︸ ︷︷ ︸

V (z) is mult. & add

(10.26)

a different computational structure is obtained, where the order of operations is multiply,
add, and then delay, as shown in the block diagram of Fig. 10-7. The corresponding
difference equations are

y[n] = b0x[n] + v[n− 1] (10.27a)

v[n] = b1x[n] + a1y[n] (10.27b)

Specifically, the signals x[n] and y[n] are multiplied by b1 and a1, respectively, and then
added together. The result is the signal v[n] in (10.27b) and in Fig. 10-7. In (10.27a), the
previous version of v[n] is added to b0x[n] to get the output y[n]. The feedback structure
given in the block diagram of Fig. 10-7 is called the transposed form4 of the Direct Form
II structure shown in Fig. 10-7.

4For directed graphs, transposing is a well-defined mathematical operation that reverses all the branches.
For block diagrams, nodes with multiple inputs must become adders while nodes with multiple outputs
become branch points; also we must relabel the input as the output, and vice versa, to get the same system
function.
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In order to verify the actual difference equation for the transposed form, we need to
write the equations that are defined by the block diagram. There is an orderly procedure
for doing this if we follow two rules:

1. Assign variable names to the inputs of all delay elements. For example, v[n] is used
in Fig. 10-7, so the output of the delay is v[n− 1].

2. Write equations at all of the summing nodes; there are two in this case. The result
is the two difference equations in (10.27a) and (10.27b).

The block diagram specifies an actual computation, so (10.27a) and (10.27b) require
three multiplications and two additions at each time step n. Equation (10.27a) must be
done first, because y[n] is needed in (10.27b). Owing to the feedback, it is impossible
to manipulate these n-domain equations into one of the cascade forms by eliminating
variables. However, we can recombine these two equations in the z-transform domain to
verify that we have the correct system function. First, we take the z-transform of each
difference equation obtaining

Y (z) = b0X(z)+ z−1V (z) (10.28a)

V (z) = b1X(z)+ a1Y (z) (10.28b)

Now we eliminate V (z) by substituting the second equation into the first as follows:

Y (z) = b0X(z)+ z−1(b1X(z)+ a1Y (z)) (10.28c)

The result is identical to (10.26) which is one form of the z-transform of the general
first-order difference equation (10.15a). Since they have the same system function and
implement the same difference equation, (10.27a) and (10.27b) are equivalent to the
Direct Form I (10.23a) and (10.23b), and to the Direct Form II (10.25a) and (10.25b).

Why are these different implementations of the same system function of interest to
us? They all use the same number of multiplications and additions to compute exactly
the same output from a given input. However, this is true only when the arithmetic is
perfect. On a computer with finite precision (e.g., 16-bit words), each calculation involves
round-off errors, which means that each implementation behaves slightly differently. In
practice, the implementation of high-quality digital filters in hardware demands careful
engineering to control round-off errors and overflows.

10-5 Poles and Zeros

Since the z-transform system function for an IIR filter is a rational function, its numerator
and denominator polynomials have roots. These root locations in the complex z-plane
provide an efficient way to characterize the system.Although we prefer to write the system
function in terms of z−1 to facilitate the correspondence with the difference equation,
when finding roots it might be better to rewrite the polynomials with powers of z. Thus
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we multiply the numerator and denominator of the first-order system function (10.15e)
by z to obtain

H(z) = b0 + b1z
−1

1− a1z−1
= b0z+ b1

z− a1
(10.29)

The roots are zeros of the numerator and denominator polynomials, so the numerator has
one root which is obtained by solving

b0z+ b1 = 0 =⇒ Root at z = −b1

b0

Likewise, the denominator root comes from solving

z− a1 = 0 =⇒ Root at z = a1

If we considerH(z) as a function of z over the entire complex z-plane, the root of the
numerator is a zero of the numerator polynomial and thus a zero of the system function
H(z), that is,

H(z)
∣

∣

z=−(b1/b0)
= 0

Furthermore, the root of the denominator is a location in the z-plane where the
denominator polynomial is zero, and thus where the function H(z) blows up

H(z)
∣

∣

z=a1
→∞

so this location (z = a1) is called a pole of the system function H(z).

EXERCISE 10.6 Verify that the poles and zeros of the following z-transform system function are
located at z = −0.5 and z = −4/3:

H(z) = 3+ 4z−1

1+ 0.5z−1

EXERCISE 10.7 For the system function H(z) of the following IIR system

y[n] = 0.5y[n− 1] − x[n] + 3x[n− 1]
determine the locations of the poles and zeros.
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10-5.1 Roots in MATLAB

Since MATLAB is used extensively in the labs and demonstrations that accompany this
text, it is worthwhile to point out how MATLAB handles polynomials and their roots. Not
surprisingly, the MATLAB format for polynomials is a vector of coefficients. The ordering
in the vector is compatible with the order of the coefficients in the functions filter and
freqz. For example, the system function in (10.29) would be represented in MATLAB
by the vectors b=[b0,b1] and a=[1,-a1]where the coefficients are thought of in terms
of powers of z−1 moving left-to-right in the vector as in the numerator and denominator
of the first rational form in (10.29). This is the format assumed by the MATLAB function
filter(b,a,xx) for implementing the difference equation of the system, and also for
freqz(b,a,omega) which computes samples of its frequency response. When using
the MATLAB function roots, we can use exactly the same vectors b and a, because the
roots function assumes that the first coefficient in a vector of polynomial coefficients is
the coefficient of the highest power of z as in the numerator and denominator polynomials
of the right-hand form of (10.29). Thus, the MATLAB statements zeros=roots(b) and
poles=roots(a) compute the zeros and poles for a system function represented as a
ratio of polynomials in the variable z.

The MATLAB function zplane, or the DSP-First function zzplane, makes a pole-
zero plot in the z-plane. Several other MATLAB-based resources are available to illustrate
and demonstrate the pole-zero plot and its relation to the impulse response and frequency
response of an LTI system. These relationships are illustrated by the MATLAB PeZ GUI.

DEMO
PeZ GUI

10-5.2 Poles or Zeros at z = 0 or∞
When the numerator and denominator polynomials have a different number of
coefficients, we can have either zeros or poles at z = 0, or at z = ∞. We saw this
behavior in Chapter 9, where causal FIR systems, whose system functions have only
a numerator polynomial, had a number of poles at z = 0 equal to the number of zeros of
the polynomial. In the general IIR case, if we include all the poles and zeros at z = ∞,
as well as all at z = 0, then we can assert that the number of poles of H(z) equals the
number of zeros. The following examples illustrate this.

EXAMPLE 10-6 Find Poles and Zeros

The system function of the IIR system

y[n] = 0.5y[n− 1] + 3x[n]

can be written down directly from the filter coefficients as

H(z) = 3

1− 0.5z−1
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When we express H(z) in positive powers of z

H(z) = 3z

z− 0.5

we see that there is one pole at z = 0.5 and one zero at z = 0.

In the next example, the poles at z = ∞ are found by taking the limit as z→∞.

EXAMPLE 10-7 Zeros at z = ∞
The system function of the IIR system

y[n] = 0.5y[n− 1] + 3x[n− 2]
can be written down from the filter coefficients as

H(z) = 3z−2

1− 0.5z−1
= 3

z(z− 0.5)

The system has poles at z = 0 and z = 0.5, and taking the limit lim
z→∞H(z), we getH(z)→

3/z2 → 0. Thus, it also has two zeros at z = ∞.

10-5.3 Output Response from Pole Location

The pole location of a first-order filter determines the shape of the impulse response. In
Example 10-5 on p. 428, we showed that a first-order system with a numerator (b0+b1z

−1)

has a system function that can be written as the sum of two first-order terms

H(z) = b0

(

1

1− a1z−1

)

+ b1z
−1

(

1

1− a1z−1

)

Thus the corresponding impulse response has two terms:

h[n] = b0(a1)
nu[n] + b1(a1)

n−1u[n− 1] (10.30a)

=

⎧

⎪
⎨

⎪
⎩

0 for n < 0

b0 for n = 0

(b0 + b1a
−1
1 )an1 for n ≥ 1

(10.30b)

This IIR system has a single pole at z = a1 and its impulse response (10.30b) is
proportional to an1 for n ≥ 1. If we change the numerator polynomial to include a term
with z−n0 , this statement is modified to be true for n ≥ n0, although the constant of
proportionality would be different. Similar behavior was observed in Example 10-3 for
a first-order IIR filter with a finite-length input. For all of these cases, eventually the
response of the IIR system behaves as (pole)n once n ≥ n0, and this (pole)n behavior
occurs when the input signal is zero.
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Since the pole of the system function is at z = a1, we see that the location of the
pole can tell us whether the impulse response decays or grows as n→∞. If |a1| < 1,
the response dies out as n→∞, but if |a1| ≥ 1, the response does not die out. In fact,
if |a1| > 1, the output signal grows exponentially without bound, which is undesirable
because a system that produces unbounded outputs is generally useless. A system that
exhibits this property is called an unstable system.As we will see in Section 10-6, systems
that produce bounded outputs when the input is bounded are called stable systems.

For the first-order case, stability can be determined by checking the pole location
with respect to the unit circle. If |a1| < 1, the pole of the system function is inside the
unit circle of the z-plane, and the system is stable. In Section 10-6, we will show that this
poles inside the unit-circle condition is true even for causal higher-order IIR systems.
Thus, stability of a system can be determined at a glance from a z-plane pole-zero plot
of the system function.

EXAMPLE 10-8 Stability from Pole Location

The causal system whose system function is

H(z) = 1− 2z−1

1− 0.8z−1
= z− 2

z− 0.8

has a zero at z = 2 and a pole at z = 0.8. Therefore, the system is stable. The location of
the zero, which is outside the unit circle, has nothing to do with stability of the system.

EXERCISE 10.8 Assume that the system function of an IIR filter is

H(z) = 2+ 2z−1

1− 1.25z−1

Plot the pole and zero in the z-plane, and determine whether or not the system is
stable.

10-6 Stability of IIR Systems

We have just seen that the pole location of a first-order IIR system is sufficient to determine
whether or not the system is stable. In this section, a general discussion of stability is
presented which applies to all causal LTI systems. The general condition for stability is
shown to be the absolute summability of the impulse response, which, in the case of a
causal IIR system with multiple poles, leads to the statement that all the poles must be
inside the unit circle.

Because IIR systems have impulse responses of infinite duration due to the feedback
inherent in their difference equations, it is important that the response does not “blow
up” as the difference equation is iterated indefinitely. This requires that the system be
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stable. One common definition of stability is that the output of a stable system can always
be bounded, |y[n]| < My <∞, for any input that is bounded as |x[n]| < Mx <∞. The
finite constantsMx andMy can be different. This definition for stability is called bounded-
input, bounded-output or BIBO stability; it is a mathematically precise way of saying
that “the output doesn’t blow up.”

For an LTI system, the BIBO definition can be reduced to one simple test on
the impulse response of the LTI system, because the input and output are related by
convolution. In the case of a causal LTI system, the lower limit on the convolution sum
is zero, so

y[n] =
∞
∑

m=0

h[m]x[n−m]

Therefore, a bound on the size of |y[n]| can be obtained as follows:

∣

∣y[n]∣∣ =
∣

∣

∣

∣

∞
∑

m=0

h[m]x[n−m]
∣

∣

∣

∣
≤
∞
∑

m=0

|h[m]| |x[n−m]|
︸ ︷︷ ︸

≤Mx

(10.31a)

where we have used the fact that the magnitude of a sum of terms is less than or equal
to the sum of the magnitudes. We can strengthen the inequality (10.31a) by replacing
|x[n−m]| for all m by its bound Mx .

|y[n]| < Mx

∞
∑

m=0

|h[m]|
︸ ︷︷ ︸

=My ?

(10.31b)

Therefore, a sufficient condition5 for bounding |y[n]| withMy <∞, whenever |x[n]| <
Mx <∞, is

Condition for Stability of a Causal LTI System
∞
∑

m=0

∣

∣h[m]∣∣ <∞ (10.32)

When (10.32) is satisfied, we say that the impulse response is absolutely summable, and
this property guarantees that the LTI system is stable.

In the case of FIR systems, the impulse response has finite duration, and (10.32) is
satisfied as long as the values of h[n] are finite. Therefore, all practical FIR systems are
stable. However, in the case of IIR systems, the impulse response is an infinitely long
sequence, so some IIR systems might not be stable.

5It can be shown that (10.32) is also a necessary condition—any system that violates (10.32) is an unstable
system.
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EXAMPLE 10-9 Unstable System

Consider the first-order difference equation where the lone feedback coefficient is a1 = 1,

y[n] = y[n− 1] + x[n] (10.33)

This system is often called an accumulator system because it simply adds the current
sample of the input, x[n], to the total of previous samples, y[n−1]. The impulse response
of this system can be shown by iteration (10.8c) to be the unit-step signal h[n] = u[n].
From the z-transform pair in (10.18) with a = 1, it follows that the system function is

H(z) =
∞
∑

n=0

z−n = 1

1− z−1
(10.34)

where the associated ROC for the infinite sum is 1 < |z|.
Applying the condition for stability in (10.32) to h[n] = u[n], we conclude that this

is NOT a stable system, because the absolutely summability test is

∞
∑

n=0

|u[n]| =
∞
∑

n=0

1→∞

Thus, it must be true that there is some bounded input that produces an unbounded output.
One such example is a shifted step input x[n] = u[n−1], for which the bound isMx = 1.
The result of Exercise 10.9 is that the output y[n] = nu[n− 1] grows linearly with n, so
we cannot find a constant My such that |y[n]| < My for all n.

EXERCISE 10.9 Show by iteration of (10.33) that the output due to the shifted step input, x[n] =
u[n− 1], is

y[n] = nu[n− 1] (10.35)

Note that having this one example (10.35) of an unbounded output is enough to
prove that the accumulator system (10.33) is unstable. On the other hand, observing
that one or even many bounded inputs produce corresponding bounded outputs is not
sufficient to prove that the accumulator system is stable. For this particular system,
there are many bounded inputs that do produce a bounded output. One such input is
the signal (−1)nu[n], which is bounded by one and produces as output the response,
y[n] = (0.5+0.5(−1)n)u[n], which is bounded by one. Fortunately, (10.32) is a necessary
and sufficient condition for stability of an LTI system with impulse response h[n], and
we do not have to test the system for all inputs. We only need to apply the absolute
summability test (10.32) once to the impulse response.

10-6.1 The Region of Convergence and Stability

In this section, we show that stability can be tested in the z-transform domain. Specifically,
the ROC of H(z) can be related to stability of the IIR system because both concepts are
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based on absolute summability. The definition of the system function is the z-transform
of the impulse response, and, if the system is causal, the lower limit on the z-transform
sum is n = 0, so

H(z) =
∞
∑

n=0

h[n]z−n (10.36)

The infinite sum (10.36) might not be finite everywhere in the z-plane, but within the
ROC the sum converges to finite (complex) values. Finiteness of |H(z)| in (10.36) can
be guaranteed by requiring absolute convergence of the infinite sum

∣

∣

∣

∣

∣

∞
∑

n=0

h[n]z−n
∣

∣

∣

∣

∣

︸ ︷︷ ︸

|H(z)|

≤
∞
∑

n=0

∣

∣h[n]∣∣∣∣z−n∣∣ <∞
︸ ︷︷ ︸

absolute convergence

(10.37)

The inequality in (10.37) relies on the fact that the magnitude of a sum is less than the
sum of the magnitudes of the individual terms. Also, on the right-hand side, we have
used the fact that the magnitude of a product of two terms is equal to the product of the
magnitudes. Thus, the ROC is defined to be the set of z values where the sum (10.36)
converges absolutely.

The unit circle in the z-plane is the case where z = ejω̂, or |z| = 1, and if we evaluate
the right-hand sum in (10.37) on the unit circle we get

∞
∑

n=0

∣

∣h[n]∣∣����� 1
∣

∣e−jω̂n
∣

∣ =
∞
∑

n=0

∣

∣h[n]∣∣ <∞ (10.38)

which implies that if the unit circle lies within the ROC, then the impulse response is
absolutely summable. Thus, we can state a z-domain condition for stability of an LTI
system based on the ROC:

An IIR system is stable, if and only if the region of convergence

for its system function H(z) includes the unit circle of the z-plane.

An easy case to remember is the first-order case (10.18), h[n] = an1u[n], where the
ROC is {z : |a1| < |z|} which is a subset of the z-plane that is the exterior of a disk of
radius |a1|. When |a1| < 1, the exterior of the disk contains the unit circle. Note that it is
also true that the first-order impulse response is absolutely summable when |a1| < 1.

For a general causal LTI IIR system, we can prove that the ROC must be the exterior of
a disk. In the following sections, we will show that the impulse response of a higher-order
causal LTI system is the weighted sum of exponential terms

h[n] =
N
∑

k=1

Akp
n
ku[n] (10.39)
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where the pk are the poles of the system and Ak are constant weights.6 To have a valid
system functionH(z), each of the exponential terms pnku[n]must have a z-transform that
is absolutely convergent, so the ROC for each term is the disk exterior {z : |pk| < |z|}.
Then the ROC of H(z) is the intersection of all the disk exteriors which is also a disk
exterior of the form {z : R < |z|}, where R is the magnitude of the pole that is farthest
from the origin of the z-plane. For stability, we need to have the unit circle inside the
ROC which is true only if all the poles are inside the unit circle.

10-7 Frequency Response of an IIR Filter

In Chapter 6, we introduced the concept of frequency response H(ejω̂) as the complex
function that determines the amplitude and phase change experienced by a complex
exponential input to an LTI system. That is, if x[n] = ejω̂n, then the output is

y[n] = H(ejω̂)ejω̂n (10.40)

In Chapter 7, we generalized the frequency response to be the same as the DTFT of the
impulse response. In Section 9-5 on p. 384, we showed that the frequency response of an
FIR system is related to the system function by

H(ejω̂) = H(z)∣∣
z=ejω̂ (10.41)

That is, the frequency response is identical to the system function evaluated on the unit
circle of the z-plane (z = ejω̂). The relation (10.41) also holds for IIR systems, but we need
one extra provision: The IIR system must be stable in order for the frequency response
to exist and to be given by (10.41). Recall that the condition for stability in (10.32) is
the absolute summability of the impulse response, which in turn guarantees that the unit
circle lies in the ROC, so the substitution in (10.41) is then legitimate. In Chapter 7, the
condition for existence of the DTFT (7.7) was also shown to be absolute summability of
the sequence.

Recall that the system function for the general first-order IIR system has the form

H(z) = b0 + b1z
−1

1− a1z−1

where the ROC is |a1| < |z|. This system is stable if |a1| < 1, so we can obtain a formula
for the frequency response by evaluating H(z) on the unit circle:

H(ejω̂) = H(z)∣∣
z=ejω̂ =

b0 + b1e
−jω̂

1− a1e−jω̂
(10.42)

This rational function (10.42) contains terms with e−jω̂, which are periodic in ω̂ with
period 2π , soH(ejω̂) is periodic with a period equal to 2π , as expected for the frequency
response of a discrete-time system.

6Equation (10.39) is true only when all the poles {pk} are distinct.
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The frequency responseH(ejω̂) in (10.42) is a complex-valued function of frequency
ω̂, so we can reduce (10.42) to two separate real formulas for the magnitude and the phase
as functions of frequency. For the magnitude response, it is expedient to compute the
magnitude squared first, and then take the positive square root. The magnitude squared
can be formed by multiplying H(ejω̂) in (10.42) by its complex conjugate (denoted by
H ∗). For our first-order example,

∣

∣H(ejω̂)
∣

∣
2 = H(ejω̂)H ∗(ejω̂)

= b0 + b1e
−jω̂

1− a1e−jω̂
· b
∗
0 + b∗1e+jω̂

1− a∗1e+jω̂

= |b0|2 + |b1|2 + b0b
∗
1e
+jω̂ + b∗0b1e

−jω̂

1+ |a1|2 − a∗1e+jω̂ − a1e−jω̂

= |b0|2 + |b1|2 + 2
{b∗0b1e
−jω̂}

1+ |a1|2 − 2
{a1e−jω̂}
This derivation does not assume that the filter coefficients are real. If the coefficients are
real, we get the further simplification

∣

∣H(ejω̂)
∣

∣
2 = |b0|2 + |b1|2 + 2b0b1 cos(ω̂)

1+ |a1|2 − 2a1 cos(ω̂)
(10.43)

This formula is not particularly informative, because it is difficult to use it to visualize
the shape of |H(ejω̂)|. However, it could be used to write a program for evaluating and
plotting the frequency response. The phase response is even messier. Arctangents are
needed to compute the angles of the numerator and denominator, and then the two phases
must be subtracted. When the filter coefficients are real, the phase is

∠H(ejω̂) = tan−1

( −b1 sin ω̂

b0 + b1 cos ω̂

)

− tan−1

(

a1 sin ω̂

1− a1 cos ω̂

)

Again, the formula is so complicated that we cannot gain much insight from it directly.
In a later section, we will use the poles and zeros of the system function together with the
relationship (10.41) to construct an approximate plot of the frequency response without
recourse to such complicated formulas.

10-7.1 Frequency Response Using MATLAB

Frequency responses can be computed and plotted easily by many signal processing
software packages. In MATLAB, for example, the function freqz is provided for just
that purpose.7 The frequency response is evaluated over an equally spaced grid in the ω̂
domain, and then its magnitude and phase can be plotted. In MATLAB, the functions

7The function freqz is part of MATLAB’s Signal Processing Toolbox. In case a substitute is needed,
there is a similar function called freekz that is part of the DSP-First Toolbox.
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Figure 10-8 Frequency response (magnitude
and phase) for a first-order feedback filter. The
pole is at z = 0.8, and the numerator has a zero
at z = −1.

abs and angle compute the magnitude and the angle of each element in a complex
vector.

EXAMPLE 10-10 Plot H(ej ω̂) via MATLAB

Consider the example

y[n] = 0.8y[n− 1] + 2x[n] + 2x[n− 1]
In order to define the filter coefficients in MATLAB, we put all the terms with y[n] on
one side of the equation, and the terms with x[n] on the other.

y[n] − 0.8y[n− 1] = 2x[n] + 2x[n− 1]
Then we read off the filter coefficients and define the vectors aa and bb as

aa = [ 1, −0.8 ] bb = [ 2, 2 ]

Thus, the vectors aa and bb are in the same form as for the filter function. The
following call to freqz generates a 401-point vector HH containing the values of
the frequency response at the vector of frequencies specified by the third argument,
2*pi*[-1:.005:1]:

HH = freqz( bb, aa, 2*pi*[-1:.005:1] );

Plots of the resulting magnitude and phase are shown in Fig. 10-8. An extended frequency
interval −2π ≤ ω̂ ≤ +2π is shown so that the 2π -periodicity of H(ejω̂) is evident.8

In this example, we can look for a connection between the poles and zeros and the
shape of the frequency response. From the coefficients of the difference equation, we
obtain the system function

8The labels on the graph were created using special plotting functions.
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Figure 10-9 Pole-zero plot for a first-order IIR
filter. The pole is at z = 0.8, and the numerator has
a zero at z = −1.

H(z) = 2+ 2z−1

1− 0.8z−1

which, as shown in Fig. 10-9, has a pole at z = 0.8 and a zero at z = −1.
The point z = −1 is the same as ω̂ = π because z = −1 = ejπ = ejω̂∣∣

ω̂=π . Thus,
H(ejω̂) has the value zero at ω̂ = π , since H(z) is zero at z = −1. In a similar manner,
the pole at z = 0.8 has an effect on the frequency response near ω̂ = 0. SinceH(z) blows
up at z = 0.8, the nearby points on the unit circle must have large values. The closest
point on the unit circle is at z = ej0 = 1. In this case, we can evaluate the frequency
response directly from the H(z) formula to get

H(ejω̂)

∣

∣

∣

∣

ω̂=0

= H(z)
∣

∣

∣

∣

z=1

= 2+ 2z−1

1− 0.8z−1

∣

∣

∣

∣

z=1

= 2+ 2(1)

1− 0.8(1)
= 4

0.2
= 20

10-7.2 Three-Dimensional Plot of a System Function

The relationship between H(ejω̂) and the pole-zero locations of H(z) can be illustrated
by making a 3-D plot ofH(z) over the complex z-plane. The frequency responseH(ejω̂)
is obtained by selecting the values of H(z) only along the unit circle, because z = ejω̂
defines the unit circle for −π < ω̂ ≤ π .

In this section, we use as an example the system function

H(z) = 1

1− 0.8z−1
(10.44)

to illustrate the relationship between H(z) and the frequency response. Figures 10-10
and 10-11 are plots of the magnitude and phase of H(z) over the region |z| ≤ 1.4 of
the z-plane. In the magnitude plot of Fig. 10-10, we observe that the pole (at z = 0.8)
creates a large peak that makes all nearby values very large. At the precise location of
the pole, H(z)→∞, but the 3-D surface has been truncated vertically, so the plot stays
within a finite vertical scale. The phase response in Fig. 10-11 also exhibits its most rapid
transition at ω̂ = 0 which is the point z = 1 (the closest point on the unit circle to the
pole at z = 0.8).

DEMO
Z to Freq
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Figure 10-10 Magnitude of H(z) in (10.44)
evaluated over a region of the z-plane including the
unit circle. The first-order filter has a pole at z = 0.8
and a zero at z = 0 (shown with an orange dot).
Values of |H(z)| along the unit circle are shown as a
solid orange line where the frequency response
(magnitude) is evaluated. The view is from the first
quadrant, so the point z = 1 is in the foreground on
the left.

Figure 10-11 Phase ofH(z) evaluated over a region
of the z-plane that includes the unit circle. Values of
the phase along the unit circle are shown as a solid
orange line. View is from the first quadrant, so the
point z = 1 lies to the left in the foreground.

The frequency responseH(ejω̂) is obtained by selecting the values of the z-transform
along the unit circle in Figs. 10-10 and 10-11. Two-dimensional plots of H(ejω̂) versus
ω̂ are given in Fig. 10-12. The shape of the frequency response can be explained in terms
of the pole location by recognizing that in Fig. 10-10 the pole at z = 0.8 pushes H(ejω̂)
up in the region near ω̂ = 0, which is the same as the point z = 1. The unit circle values
follow the ups and downs of H(z) as ω̂ goes from −π to +π .

DEMO
Three Domains - IIR

10-8 Three Domains

As depicted in Fig. 10-13, the coefficients {ak, bk} play a key role in linking the n, ω̂, and
z domain representations of signals and LTI systems.
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Figure 10-12 Frequency response for the
first-order IIR filter (10.44). (a) Magnitude.
(b) Phase. The pole is at z = 0.8 and the
numerator has a zero at z = 0. These are
the values of H(z) along the unit circle in
the z-plane of Figs. 10-10 and 10-11.

To illustrate the use of the analysis tools that we have developed in these three
domains, we consider the general second-order IIR digital filter which is the following
feedback difference equation

y[n] = a1y[n− 1] + a2y[n− 2] + b0x[n] + b1x[n− 1] + b2x[n− 2]
with constant filter coefficients {a1, a2, b0, b1, b2}. This equation provides the algorithm
for computing the output signal from the input signal by iteration. For example, the output
is the impulse response h[n] when the input is x[n] = δ[n].

LAB
PeZ - The z, n, and ω̂
Domains

Following the procedures illustrated for the first-order case, we can obtain the
z-transform system function directly from the filter coefficients as

H(z) = b0 + b1z
−1 + b2z

−2

1− a1z−1 − a2z−2

Input–Output
Computation

Poles and
Zeros

Passbands and
Stopbands

H.ej O!/

H.´/

fak; bk g
Figure 10-13 Relationship among the n-, z-,
and ω̂-domains for an LTI system. The filter
coefficients {ak, bk} play a central role in
connecting the three domains for an IIR
system. For an FIR system the set of filter
coefficients is only {bk}.
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and, when the poles are inside the unit circle, we can obtain the frequency response, or
the DTFT, by evaluating on the unit circle (z = ejω̂)

H(ejω̂) = b0 + b1e
−jω̂ + b2e

−j2ω̂

1− a1e−jω̂ − a2e−j2ω̂

SinceH(z) is a ratio of polynomials, either the coefficients {ak, bk} or the poles and zeros
of H(z) comprise a small set of parameters that completely define the filter.

Finally, the shapes of the passbands and stopbands of the frequency response are
highly dependent on the pole and zero locations with respect to the unit circle, and the
character of the impulse response can be related to the pole locations. The PeZ GUI
discussed in Section 10-12.4 is useful for visualizing these relationships among the three
domains for a system. To make this last point for the general case, we require one more
tool—a technique for getting h[n] directly from H(z). This process, which applies to
any z-transform and its corresponding sequence, is called the inverse z-transform and is
presented in the next section.

DEMO
PeZ GUI

10-9 The Inverse z-Transform and Applications

We have seen how the three domains are connected for the first-order IIR system. Many of
the concepts that we have introduced for the first-order system can be extended to higher-
order systems in a straightforward manner. However, finding the impulse response from
the system function is not an obvious extension of what we have done for the first-order
case. We need to develop a process for inverting the z-transform that can be applied
to systems with more than one pole. This process is called the inverse z-transform.
In this section, we show how to find the inverse for a general rational z-transform and
then illustrate the process with some examples of determining the impulse responses of
second-order and higher-order systems.

10-9.1 Revisiting the Step Response of a First-Order System

In Section 10-2.4, we computed the step response of a first-order system by iteration.
Now we show how the inverse z-transform can be used to obtain the same result with
some simple algebra. Consider a system whose system function is

H(z) = b0 + b1z
−1

1− a1z−1

Recall that the z-transform of the output of this system is Y (z) = H(z)X(z), so the
z-transform approach to finding the output for a given input x[n] is as follows:

1. Determine the z-transform X(z) of the input signal x[n].
2. Multiply X(z) by H(z) to get Y (z).

3. Determine the inverse z-transform of Y (z) to get the output y[n].
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This procedure will work and will avoid iteration of the difference equation (or
convolution) if we can determine X(z) and if we can perform the necessary inverse
transformation. Our focus in this section is on deriving a general procedure for step 3
which is actually two steps.

In the case of the step response, the input x[n] = u[n] is a special case of the
more general sequence anu[n] (i.e., a = 1). Therefore, from (10.18) it follows that the
z-transform of x[n] = u[n] is

X(z) = 1

1− z−1

so Y (z) = H(z)X(z) is

Y (z) = b0+b1z
−1

(1−a1z−1)(1−z−1)
(10.45a)

= b0+b1z
−1

1−(1+ a1)z−1+a1z−2
(10.45b)

Now we need to go back to the n-domain by inverse z-transformation. A standard
approach is to use a table of z-transform pairs and simply look up the answer in the
table. Our previous discussions in Chapter 9 and earlier in this chapter have developed
the basis for a simple version of such a table. A summary of the z-transform knowledge
that we have developed so far is given in Table 10-1. Although more extensive tables can
be constructed, the results assembled in Table 10-1 are adequate for most purposes in this
text.

The problem of finding y[n] from Y (z) in (10.45a) is that none of the entries in
Table 10-1 are exactly the same as the given Y (z), so we have to rearrange Y (z) into a
form where entries 1, 5, and 6 in the table can be used. The algebraic technique that we

Table 10-1 Summary of important z-transform properties and pairs.

Short Table of z-Transforms

x[n] z←→ X(z)

1. ax1[n] + bx2[n] z←→ aX1(z)+ bX2(z)

2. x[n− n0] z←→ z−n0X(z)

3. y[n] = x[n] ∗ h[n] z←→ Y (z) = H(z)X(z)
4. δ[n] z←→ 1

5. δ[n− n0] z←→ z−n0

6. anu[n] z←→ 1

1− az−1
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use is based on the partial fraction expansion9 of Y (z), which is a general method for
expressing a rational function Y (z) as a sum of first-order rational functions, that is,

Y (z) = H(z)X(z) (10.46a)

= b0 + b1z
−1

(1− a1z−1)(1− z−1)
(10.46b)

= A

1− a1z−1
+ B

1− z−1
(10.46c)

If the expression in (10.46c) is pulled together over a common denominator, it should
be possible to find A and B so that the numerator of the resulting rational function is
equal to b0 + b1z

−1 as in (10.46b). Equating the two numerators would lead to solving
the following two equations in the two unknowns A and B:

A+ B = b0

−A− a1B = b1

However, there is a much quicker way that also generalizes to higher-order
z-transforms. A systematic procedure for finding A and B is based on the observation
that, for this example,

Y (z)(1− a1z
−1) = A+ B(1− a1z

−1)

1− z−1

Then we can evaluate at the pole z = a1 to isolate A as follows:

Y (z)(1− a1z
−1)

∣

∣

∣

∣

z=a1

= A+ B(1− a1z
−1)

1− z−1

∣

∣

∣

∣

z=a1

= A

Since multiplying Y (z) by (1− a1z
−1) cancels the same factor in the denominator, we

obtain

A = Y (z)(1− a1z
−1)
∣

∣

z=a1
= b0 + b1z

−1

1− z−1

∣

∣

∣

∣

z=a1

= b0 + b1a
−1
1

1− a−1
1

Similarly, we can find B by evaluating at the pole z = 1 as

B = Y (z)(1− z−1)
∣

∣

z=1 =
b0 + b1z

−1

1− a1z−1

∣

∣

∣

∣

z=1

= b0 + b1

1− a1

Now using the superposition property of the z-transform (entry 1 in Table 10-1), and the
exponential z-transform pair (entry 6 in Table 10-1), we can use (10.46c) to write down
the desired answer as y[n] = Aan1u[n] + Bu[n] or

y[n] =
(

b0 + b1a
−1
1

1− a−1
1

)

an1u[n] +
(

b0 + b1

1− a1

)

u[n]

9The partial fraction expansion is an algebraic decomposition often presented in calculus for evaluating
integrals that contain rational forms.
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The two terms above can be put over a common denominator to express y[n] as

y[n] =
(

(b0 + b1)− (b0a1 + b1)a
n
1

1− a1

)

u[n] (10.47)

If we substitute the value b1 = 0 into (10.47), we get

y[n] = b0

(

1− an+1
1

1− a1

)

u[n]

which is the same result obtained in Section 10-2.4 by iteration of the difference equation
(10.13).

With this two-pole example, we have established the framework for using the basic
properties of z-transforms together with the partial fraction expansion10 and a few basic
z-transform pairs to perform inverse z-transformation for any rational z-transform. We
summarize this procedure in the following subsection.

10-9.2 A General Procedure for Inverse z-Transformation

Let X(z) be any rational z-transform of degree N in the denominator and M in the
numerator. Assuming that M < N , we can find the sequence x[n] that corresponds to
X(z) by the following procedure:

Procedure for
Inverse z-Transformation (M < N)

1. Factor the denominator polynomial of X(z)
and express the pole factors as (1− pkz−1)

for k = 1, 2, . . . , N .

2. Make a partial fraction expansion of X(z) to
obtain a sum of terms of the form

X(z) =
N
∑

k=1

Ak

1− pkz−1

where Ak = X(z)(1− pkz−1)
∣

∣

z=pk

3. Write down the inverse transform as

x[n] =
N
∑

k=1

Ak(pk)
nu[n]

10In MATLAB the function residuez computes the parameters of a partial fraction expansion assuming
pole factors of the form (1− pkz−1).
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This procedure will always work for any rational z-transform if the poles, pk, are
distinct. Repeated poles complicate the process, but can be handled systematically. In
this text, we restrict our attention to the case of non-repeated poles. Next we illustrate the
use of this procedure with two examples that have real poles.

EXAMPLE 10-11 Inverse z-Transform

We want to determine the signal x[n] when its z-transform X(z) is

X(z) = 1− 2.1z−1

1− 0.3z−1 − 0.4z−2
= 1− 2.1z−1

(1+ 0.5z−1)(1− 0.8z−1)

After factoring the denominator, the next step is to write X(z) in the additive form

X(z) = A

1+ 0.5z−1
+ B

1− 0.8z−1

Invoking the procedure for partial fraction expansion, we obtain

A = X(z)(1+ 0.5z−1)
∣

∣

z=−0.5 =
1− 2.1z−1

1− 0.8z−1

∣

∣

∣

∣

z=−0.5

= 1+ 4.2

1+ 1.6
= 2

and B = X(z)(1− 0.8z−1)
∣

∣

z=0.8 =
1− 2.1z−1

1+ 0.5z−1

∣

∣

∣

∣

z=0.8

= 1− 2.1/0.8

1+ 0.5/0.8
= −1

Therefore,

X(z) = 2

1+ 0.5z−1
− 1

1− 0.8z−1
(10.48)

and the two first-order terms can be inverted using entry 6 in Table 10-1 to obtain

x[n] = 2(−0.5)nu[n] − (0.8)nu[n]
Note that the poles at z = p1 = −0.5 and z = p2 = 0.8 give rise to terms in x[n] of the
form pn1u[n] and pn2u[n].

In Example 10-11, the degree of the numerator is M = 1, which is less than the
degree of the denominator, which isN = 2. This is important because the partial fraction
expansion works only for rational functions such that M < N . The next example shows
why this is so, and illustrates a method of dealing with this complication.

EXAMPLE 10-12 Long Division and Partial Fractions

In this case, define Y (z) with a second-order numerator as

Y (z) = 2− 2.4z−1 − 0.4z−2

1− 0.3z−1 − 0.4z−2
= 2− 2.4z−1 − 0.4z−2

(1+ 0.5z−1)(1− 0.8z−1)



10-10 STEADY-STATE RESPONSE AND STABILITY 451

Now we must add a constant term to the partial fraction expansion, otherwise, we cannot
generate the term −0.4z−2 in the numerator when we combine the partial fractions over
a common denominator—that is, we must assume the following form for Y (z):

Y (z) = A

1+ 0.5z−1
+ B

1− 0.8z−1
+ C

How can we determine the constant C? One way is to perform long division of the
denominator polynomial into the numerator polynomial until we get a remainder whose
degree is lower than that of the denominator. In this case, the polynomial long division
is carried out as follows:

1
−0.4z−2 − 0.3z−1 + 1 −0.4z−2 − 2.4z−1 + 2

−0.4z−2 − 0.3z−1 + 1
− 2.1z−1 + 1
︸ ︷︷ ︸

remainder

Thus, if we place the remainder (1− 2.1z−1) over the denominator (in factored form),
we can write Y (z) as a rational part (fraction) plus the constant 1, that is,

Y (z) = 1− 2.1z−1

(1+ 0.5z−1)(1− 0.8z−1)
+ 1

The next step is to apply the partial fraction expansion technique to the rational part of
Y (z). Since the rational part turns out to be identical to X(z) in (10.48) from Example
10-11, the results would be the same as in that example, so we can write Y (z) as

Y (z) = 2

1+ 0.5z−1
− 1

1− 0.8z−1
+ 1

Therefore, from entries 4 and 6 in Table 10-1,

y[n] = 2(−0.5)nu[n] − (0.8)nu[n] + δ[n]
Notice again that the time-domain sequence has terms of the form pnku[n]. The constant
term in the system function is the z-transform of an impulse, which is nonzero only at
n = 0 (entry 4 in Table 10-1).

10-10 Steady-State Response and Stability

We can use the inverse z-transform method developed in Section 10-9 to demonstrate an
important point about stability, the frequency response, and the sinusoidal steady-state
response. To illustrate this point, consider the first-order LTI system defined by

y[n] = a1y[n− 1] + b0x[n]
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From our presentation of the three domains, we can write down the impulse response,
system function, and frequency response directly from the difference equation. The
impulse response is

h[n] = b0a
n
1 u[n]

and the system function of this system is

H(z) = b0

1− a1z−1

We can then obtain the frequency response by evaluating H(z) on the unit circle

H(ejω̂) = H(z)∣∣
z=ejω̂ =

b0

1− a1e−jω̂

but this is true only if the system is stable (|a1| < 1). The objective of this section is to
refine the concept of stability and demonstrate its impact on the response to a sinusoid
applied at n = 0.

Recall from Section 10-7 and (10.40) and (10.42) that the output of this system for a
complex exponential input x[n] = ejω̂0n for −∞ < n <∞ is

y[n] = H(ejω̂0)ejω̂0n =
(

b0

1− a1e−jω̂0

)

ejω̂0n (10.49)

for all time (i.e., −∞ < n <∞). What happens if the complex exponential input
sequence is suddenly applied instead of existing for all n? The z-transform tools that
we have developed make it easy to solve this problem. Indeed, the z-transform is ideally
suited for situations where the sequences are suddenly applied exponentials. For the
suddenly applied complex exponential sequence with frequency ω̂0

x[n] = ejω̂0nu[n]
the z-transform is found from entry 6 of Table 10-1 to be

X(z) = 1

1− ejω̂0z−1

and the z-transform of the output of the LTI system is

Y (z) = H(z)X(z) =
(

b0

1− a1z−1

)(

1

1− ejω̂0z−1

)

= b0

(1− a1z−1)(1− ejω̂0z−1)

Using the technique of partial fraction expansion, we can show that

Y (z) =

(

b0a1

a1 − ejω̂0

)

1− a1z−1
+

(

b0

1− a1e−jω̂0

)

1− ejω̂0z−1
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Therefore, the output due to the suddenly applied complex exponential sequence is

y[n] =
(

b0a1

a1 − ejω̂0

)

(a1)
nu[n]

︸ ︷︷ ︸

transient component

+
(

b0

1− a1e−jω̂0

)

ejω̂0nu[n]
︸ ︷︷ ︸

steady-state component

(10.50)

Equation (10.50) shows that the output consists of two terms that start at n = 0. One
term is proportional to an exponential sequence an1 that is determined solely by the pole at
z = a1. If |a1| < 1, this term dies out with increasing n, in which case it would be called
appropriately the transient component. The second term is a complex amplitude times
the input complex exponential signal, and the result is identical to (10.49). The complex
amplitude isH(ejω̂0), the frequency response of the system evaluated at ω̂0, the frequency
of the suddenly applied complex sinusoid. This complex exponential component is the
sinusoidal steady-state component of the output, because this component remains after
the exponentially decaying transient component becomes negligibly small.

Now we see that the location of the pole of H(z) is crucial if we want the output to
reach the sinusoidal steady state, and the transient to die out. When |a1| < 1, the system
is stable and the pole is inside the unit circle. Under this condition, the exponential an1
dies out and we find that the limiting value for large n is

y[n] →
(

b0

1− a1e−jω̂0

)

ejω̂0n = H(ejω̂0)ejω̂0n

Otherwise, if |a1| ≥ 1, the term in (10.50) that is proportional to an1 grows with increasing
n and soon dominates the output. The following example gives a specific numerical
illustration.

EXAMPLE 10-13 Transient and Steady-State Responses

If b0 = 5, a1 = −0.8, and ω̂0 = 2π/10, the transient component in (10.50) is

yt[n] =
( −4

−0.8− ej0.2π

)

(−0.8)nu[n]

= 2.3351e−j0.3502(−0.8)nu[n]
= 2.1933(−0.8)nu[n] − j0.8012(−0.8)nu[n]

Similarly, the steady-state component in (10.50) is

yss[n] =
(

5

1+ 0.8e−j0.2π

)

ej0.2πnu[n]

= 2.9188ej0.2781ej0.2πnu[n]
= 2.9188 cos (0.2πn+ 0.2781) u[n] + j 2.9188 sin (0.2πn+ 0.2781) u[n]

Figure 10-14 shows the real parts of the total output (a), the transient component (b), and
the steady-state component (c). The signals all start at n = 0 which is when the complex
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exponential is applied at the input. Note how the transient component (−0.8)n oscillates,
but dies away, which explains why the steady-state component eventually equals the total
output. In Fig. 10-14, y[n] in (a) and yss[n] in (c) look identical for n > 15.

On the other hand, if the pole were at z = 1.1, the system would be unstable and the
output would “blow up” as shown in Fig. 10-15. In this case, the output contains a term
(1.1)n that eventually dominates and grows without bound.

The result of Example 10-13 can be generalized by observing that the only difference
between this example and a system with a higher-order system function is that the total
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Figure 10-14 Illustration of transient and
steady-state responses of a stable IIR system:
(a) Total output 
{y[n]}, (b) decaying transient
component 
{yt[n]}, and (c) steady-state
response 
{yss[n]}.
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Figure 10-15 Illustration of an unstable IIR
system where the output is dominated by the
growing exponential component. Pole is at
z = 1.1.
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output would includeN exponential terms for theN poles of the system function as well
as the term H(ejω̂0)ejω̂0nu[n]. Specifically, it can be shown that for a suddenly applied
exponential input sequence x[n] = ejω̂0nu[n], the output of an N th-order IIR (N > M)
system is always of the form

y[n] =
N
∑

k=1

Ak(pk)
nu[n]

︸ ︷︷ ︸

transient response

+H(ejω̂0)ejω̂0nu[n]
︸ ︷︷ ︸

steady-state response

where pk, k = 1, 2, . . . , N are the distinct poles of the system function. Therefore, the
sinusoidal steady state exists and will dominate in the total response as n→∞ if the
poles of the system function all lie strictly inside the unit circle. This makes the concept of
frequency response useful in a practical setting where the system is stable and all signals
must have a starting point at some finite time.

10-11 Second-Order Filters

We now focus our attention on filters with two feedback and three feed-forward
coefficients. The general difference equation (10.1) becomes the second-order difference
equation

y[n] = a1y[n− 1] + a2y[n− 2] + b0x[n] + b1x[n− 1] + b2x[n− 2] (10.51)

As in Section 10-8, we can characterize the second-order filter (10.51) in each of the three
domains: time domain, frequency domain, and z-domain. We start with the z-transform
domain because by now we have demonstrated that the poles and zeros of the system
function give a great deal of insight into most aspects of both the time and frequency
responses.

DEMO
PeZ GUI

10-11.1 z-Transform of Second-Order Filters

Using the approach followed in Section 10-3.1 for the first-order case, we can take the
z-transform of the second-order difference equation (10.51) by replacing each delay with
z−1 (second entry in Table 10-1). Then we can solve forH(z) by moving all theY (z) terms
to the left-hand side and then dividing to find H(z) as Y (z)/X(z). For the second-order
filter we obtain

H(z) = Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
(10.52)

Thus, the system function H(z) for an IIR filter is a ratio of two second-degree
polynomials, where the numerator polynomial depends on the feed-forward coefficients
{bk} and the denominator depends on the feedback coefficients {a�}. In order to work
problems such as Exercise 10.10, it is only necessary to read the filter coefficients from
the difference equation and then substitute them directly into the z-transform expression
(10.52) for H(z). Conversely, given the system function H(z), it is a simple matter to
write down the difference equation.
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EXERCISE 10.10 Find the system function H(z) of the IIR filter defined by the difference equation:

y[n] = 0.5y[n− 1] + 0.3y[n− 2] − x[n] + 3x[n− 1] − 2x[n− 2]

EXERCISE 10.11 For the system function

H(z) = 1+ 2z−1 + z−2

1− 0.8z−1 + 0.64z−2

write down the difference equation that relates the input x[n] to the output y[n].

10-11.2 Structures for Second-Order IIR Systems

The difference equation (10.51) with two feedback terms can be interpreted as an
algorithm for computing the output sequence from the input. As we showed in
Section 10-4, other computational orderings are possible, and the z-transform has the
power to derive alternative structures through polynomial manipulations. Two alternative
computational orderings that implement the system defined byH(z) in (10.52) are given
in Figs. 10-16 and 10-17.

In order to verify that the block diagram in Fig. 10-16 has the correct system function,
we need to write the equations of the structure at the adders, and then eliminate the internal
variable(s). For the case of the Direct Form II in Fig. 10-16, the equations at the output
of the summing nodes on the output and input sides are

y[n] = b0w[n] + b1w[n− 1] + b2w[n− 2]
w[n] = x[n] + a1w[n− 1] + a2w[n− 2] (10.53)

b2

b1

a2

a1

b0

x[n] y[n]w[n]

w[n −1]

w[n −2]

z−1

z−1

Figure 10-16 Direct Form II (DF-II) computational
structure for the second-order recursive filter. The signal
w[n] is delayed twice, then multiplied by filter coefficients
and followed by adding to form the output signal y[n] and
to update w[n].
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It is impossible to eliminatew[n] in these two time-domain equations, but easy if we work
with algebra in the z-transform domain. The corresponding z-transform equations are

Y (z) = b0W(z)+ b1z
−1W(z)+ b2z

−2W(z)

W(z) = X(z)+ a1z
−1W(z)+ a2z

−2W(z)

which can be rearranged into the form

Y (z) = (b0 + b1z
−1 + b2z

−2)W(z)

X(z) = (1− a1z
−1 − a2z

−2)W(z)

Since the system function H(z) is the ratio of Y (z) to X(z), we divide the two equations
to obtain

H(z) = Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2

Thus we have proved that the Direct Form II structure in Fig. 10-16 which implements
the pair of difference equations (10.53) is identical to the system defined by the single
difference equation (10.51).

The Transposed Direct Form II in Fig. 10-17 can be worked out similarly. The
difference equations represented by the block diagram are

y[n] = b0x[n] + v1[n− 1]
v1[n] = b1x[n] + a1y[n] + v2[n− 1]
v2[n] = b2x[n] + a2y[n]

(10.54)

Taking the z-transform of each of the three equations gives

Y (z) = b0X(z)+ z−1V1(z)

V1(z) = b1X(z)+ a1Y (z)+ z−1V2(z)

V2(z) = b2X(z)+ a2Y (z)

(10.55)

b0

b1 a1

a2b2

v1[n]

v2[n]

x[n] y[n]

z−1

z−1

Figure 10-17 Transposed Direct Form II (TDF-II)
computational structure for the second-order recursive
filter. The signals x[n] and y[n] are first multiplied by
filter coefficients, followed by adding, delaying, and
adding once more to form the output.
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Using these equations, we can eliminate V1(z) and V2(z) as follows:

Y (z) = b0X(z)+ z−1(b1X(z)+ a1Y (z)+ z−1V2(z))

Y (z) = b0X(z)+ z−1(b1X(z)+ a1Y (z)+ z−1(b2X(z)+ a2Y (z)))

Moving all the X(z) terms to the right-hand side and the Y (z) terms to the left-hand side
gives

(1− a1z
−1 − a2z

−2)Y (z) = (b0 + b1z
−1 + b2z

−2)X(z)

After division, we obtain the same result again

H(z) = Y (z)

X(z)
= b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2

Thus we have shown that the Transposed Direct Form II is equivalent to the system
function for the basic Direct Form I difference equation in (10.51). Both cases illustrate
the power of the z-transform approach in manipulating the difference equation sets that
correspond to different structures.

In theory, the system with system function given by (10.52) can be implemented by
iterating any of the difference equation sets (10.51), (10.53), or (10.54). For example,
the MATLAB function filter uses the Transposed Direct Form II structure. However,
as mentioned before, the reason for having different block diagram structures is that the
order of calculation defined by the difference equations in (10.51), (10.53), or (10.54)
is different. In a hardware implementation, the different structures behave differently,
especially when using fixed-point arithmetic where rounding error is fed back into the
structure. With double-precision floating-point arithmetic as in MATLAB, there is little
difference.

10-11.3 Poles and Zeros

Finding the poles and zeros of H(z) is less confusing if we rewrite the polynomials as
functions of z rather than z−1. Thus, the general second-order rational z-transform would
become

H(z) = b0 + b1z
−1 + b2z

−2

1− a1z−1 − a2z−2
= b0z

2 + b1z+ b2

z2 − a1z− a2

after multiplying the numerator and denominator by z2. Recall from algebra the following
important property of polynomials:

Property of Real Polynomials

A polynomial of degree N has N roots.
If all the coefficients of the polynomial are real, the roots either must be real or

must occur in complex conjugate pairs.
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Therefore, in the second-order case, the numerator and denominator polynomials each
have two roots, and there are two possibilities: Either the roots are complex conjugates of
each other, or they are both real. We will now concentrate on the roots of the denominator,
but exactly the same results hold for the numerator. From the quadratic formula, we get
two poles at

a1 +
√

a2
1 + 4a2

2
and

a1 −
√

a2
1 + 4a2

2

When a2
1 + 4a2 ≥ 0, both poles are real, and when a2

1 + 4a2 = 0, they are real and equal.
However, when a2

1 + 4a2 < 0, the square root produces an imaginary result, and we have
complex conjugate poles with values

p1 = 1
2a1 + j 1

2

√

− (a2
1 + 4a2

)

and p2 = 1
2a1 − j 1

2

√

− (a2
1 + 4a2

)

(10.56)

The complex poles can be expressed in polar form as p1 = rejθ and p2 = re−jθ , where
r is the radius and ±θ the angles. A simple way to express the relationship between
complex roots and filter coefficients is to expand the complex conjugate factors

(1− rejθz−1)(1− re−jθ z−1) = 1− 2r cos(θ)z−1 + r2z−2 (10.57)

To summarize we write

Complex Poles

a2 = −r2 a1 = 2r cos θ

r = √−a2 θ = cos−1

(

a1

2
√−a2

)

(10.58)

EXAMPLE 10-14 Complex Poles

The following H(z) has two poles and two zeros.

H(z) = 2+ 2z−1

1− z−1 + z−2
= 2

z2 + z
z2 − z+ 1

The system function can be written in factored form as either of the two forms

H(z) = 2z(z+ 1)

(z− ejπ/3)(z− e−jπ/3) (10.59a)

= 2(1+ z−1)

(1− ejπ/3z−1)(1− e−jπ/3z−1)
(10.59b)
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<f´g

=f´g

Figure 10-18 Pole-zero plot for system with

H(z) = 2+ 2z−1

1− z−1 + z−2 . The two poles are on the unit

circle at angles θ = ±π/3. There is one zero at z = −1
and another zero at z = 0.

In the form (10.59a), it is easy to see that the poles {p1, p2} and zeros {z1, z2} are

p1 = 1
2 + j 1

2

√
3 = ejπ/3

p2 = 1
2 − j 1

2

√
3 = e−jπ/3

z1 = 0

z2 = −1

The poles and zeros are plotted in Fig. 10-18.

10-11.4 Impulse Response of a Second-Order IIR System

We have derived the general z-transform system function for the second-order filter

H(z) = B(z)

A(z)
= b0 + b1z

−1 + b2z
−2

1− a1z−1 − a2z−2
(10.60)

and we have seen that the denominator polynomial A(z) has two roots that define the
poles of the second-order filter. Expressing H(z) in terms of the poles gives

H(z) = b0 + b1z
−1 + b2z

−2

(1− p1z−1)(1− p2z−1)
(10.61)

Using the partial fraction expansion technique developed in Section 10-9, we can express
the system function (10.60) as

H(z) = (−b2/a2)+ A1

1− p1z−1
+ A2

1− p2z−1

where A1 and A2 can be evaluated by Ak = H(z)(1−pkz−1)
∣

∣

z=pk (as long as p1 �= p2).
Therefore, the impulse response has the form

h[n] = (−b2/a2)δ[n] + A1(p1)
nu[n] + A2(p2)

nu[n] (10.62)

In (10.62), the poles may both be real or they may be a pair of complex conjugates. In
the following examples, we examine these two cases separately.



10-11 SECOND-ORDER FILTERS 461

10-11.4.1 Distinct Real Poles

If p1 and p2 are real, the impulse response is composed of two real exponentials of the
form pn1u[n] and pn2u[n]. This case is illustrated by the following example.

EXAMPLE 10-15 Second-Order System Real Poles

Assume that the system function is

H(z) = 1

1− 5
6z
−1 + 1

6z
−2
= 1

(1− 1
2z
−1)(1− 1

3z
−1)

(10.63)

After factoring the denominator, we see that the poles are at z = 1
2 and z = 1

3 . In addition,
there are two zeros at z = 0. The poles and zeros of H(z) are plotted in Fig. 10-19. We
can extract the filter coefficients directly from the denominator of H(z) and write the
following difference equation

y[n] = 5
6y[n− 1] − 1

6y[n− 2] + x[n] (10.64)

which must be satisfied for any input and its corresponding output. Specifically, the
impulse response would satisfy the difference equation

h[n] = 5
6h[n− 1] − 1

6h[n− 2] + δ[n] (10.65)

which can be iterated to compute h[n] if we know the values of h[−1] and h[−2].
Specifically, to start the iteration, we need to know the values of the impulse
response sequence just prior to n = 0 where the impulse first becomes nonzero. These
values are supplied by the initial rest condition, which means that h[−1] = 0 and

(2)

<f´g

=f´g

Figure 10-19 Pole-zero plot for system of Example 10-15. The
poles are at z = 1

2 and z = 1
3 ; there are two zeros at z = 0.
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h[−2] = 0. The following table shows the computation of a few values of the impulse
response:

n n < 0 0 1 2 3 4 · · ·
x[n] 0 1 0 0 0 0 · · ·

h[n− 2] 0 0 0 1 5
6

19
36 · · ·

h[n− 1] 0 0 1 5
6

19
36

65
216 · · ·

h[n] 0 1 5
6

19
36

65
216

211
1296 · · ·

In contrast to the simpler first-order case, iteration is not too helpful because it is very
difficult to guess the general nth term for the impulse response sequence. Fortunately, we
can rely on the inverse z-transform technique to give us the general formula. Applying
the partial fraction expansion to (10.63), we obtain

H(z) = 3

1− 1
2z
−1
− 2

1− 1
3z
−1

Then the inverse z-transform yields h[n] = 3( 1
2 )
n u[n]−2( 1

3)
n u[n]. Since both poles are

inside the unit circle, the impulse response dies out for n large (i.e., the system is stable).

EXERCISE 10.12 Find the impulse response of the following second-order system:

y[n] = 1
4y[n− 2] + 5x[n] − 4x[n− 1]

Hint: It will help to show that the poles are at z = ± 1
2 .

10-11.5 Complex Poles

In this section, we study the case where the coefficients a1 and a2 in the second-order
difference equation are such that the poles of H(z) are complex. If we express the poles
in polar form

p1 = rejθ and p2 = re−jθ = p∗1
it is convenient to rewrite the denominator polynomial in terms of the parameters r and
θ . From (10.58), we can write

A(z) = (1− p1z
−1
) (

1− p2z
−1
)

= 1− 2r cos θz−1 + r2z−2 (10.66)

The system function is therefore

H(z) = b0 + b1z
−1 + b2z

−2

1− 2r cos θz−1 + r2z−2
(10.67)
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We can also identify the two feedback filter coefficients as a1 = 2r cos θ and a2 = −r2,
so the corresponding difference equation is

y[n] = (2r cos θ)y[n− 1] − r2y[n− 2] + b0x[n] + b1x[n− 1] + b2x[n− 2]
(10.68)

This parameterization is significant because it allows us to see directly how the poles
define the feedback terms of the difference equation (10.68). For example, if we want to
change the angles of the poles, ±θ , then we vary only the coefficient a1.

EXAMPLE 10-16 Second-Order System: Complex Poles

Consider the following system

y[n] = y[n− 1] − y[n− 2] + 2x[n] + 2x[n− 1]
whose system function is

H(z) = 2+ 2z−1

1− z−1 + z−2
= 2(1+ z−1)

(1− ejπ/3z−1)(1− e−jπ/3z−1)
(10.69)

A pole-zero plot for thisH(z) was already given in Fig. 10-18. Using the partial fraction
expansion technique, we can write H(z) in the form

H(z) =

(

2+ 2e−jπ/3

1− e−j2π/3

)

1− ejπ/3z−1
+

(

2+ 2ejπ/3

1− ej2π/3

)

1− e−jπ/3z−1
= 2e−jπ/3

1− ejπ/3z−1
+ 2ejπ/3

1− e−jπ/3z−1

The right-hand side is the sum of two first-order terms for which entry 6 in Table 10-1
applies with a = ejπ/3 and a = e−jπ/3. The individual terms are complex conjugates, so
their sum is purely real:

h[n] = 2e−jπ/3ej (π/3)nu[n] + 2ejπ/3e−j (π/3)nu[n] = 4 cos ((2π/6)(n− 1)) u[n]
The two complex exponentials with frequencies ±π/3 combine to form the cosine. The
impulse response is plotted in Fig. 10-20.

An important observation about the system in Example 10-16 is that it produces a
pure sinusoid when stimulated by an impulse. Such a system is an example of a sine wave

0 5 10 15

0

2

4

2

4
20

Time Index .n/

Figure 10-20 Impulse response for system

with H(z) = 2+ 2z−1

1− z−1 + z−2 .
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oscillator. After being stimulated by the single input sample from the impulse, the system
continues indefinitely to produce a sinusoid of frequency ω̂0 = (2π/6). This frequency is
equal to the angle of the poles. A first-order filter (or a filter with all real poles) can only
decay (or grow) as (p)n or oscillate up and down as (−1)n, but a second-order system can
oscillate with different periods. This is important when modeling physical signals such
as speech, music, or other sounds.

Note that in order to produce the continuing sinusoidal output, the system must have
its poles on the unit circle11 of the z-plane (i.e., r = 1). Also note that the angle of the
poles is exactly equal to the radian frequency of the sinusoidal output. Thus, we can
control the frequency of the sinusoidal oscillator by adjusting the a1 coefficient of the
difference equation (10.68) while leaving a2 fixed at a2 = −1.

EXAMPLE 10-17 Poles on Unit Circle

As an example of an oscillator with a different frequency, we can use (10.68) to define
a difference equation with prescribed pole locations. If we take r = 1 and θ = π/2, as
shown in Fig. 10-21, we get a1 = 2r cos θ = 0 and a2 = −r2 = −1, and the difference
equation (10.68) becomes

y[n] = −y[n− 2] + x[n] (10.70)

The system function of this system is

H(z) = 1

1+ z−2
= 1

(1− ejπ/2z−1)(1− e−jπ/2z−1)

=
1
2

1− ejπ/2z−1
+

1
2

1− e−jπ/2z−1

The inverse z-transform gives a general formula for h[n]:
h[n] = 1

2e
j (π/2)nu[n] + 1

2e
−j (π/2)nu[n] = cos ((2π/4)n) u[n] (10.71)

(2)

<f´g

=f´g

Figure 10-21 Pole-zero plot for system with H(z) = 1

1+ z−2 .

The poles are on the unit circle at z = ±j , and there are two
zeros at z = 0.

11Strictly speaking, a system with poles on the unit circle is unstable, so for some inputs the output may
increase without bound. As in the case of the accumulator system in Section 10-9, the impulse response of
this second-order system does not blow up.
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Once again, the frequency of the cosine term in the impulse response is equal to the angle
of the pole, π/2 = (2π/4).

The preceding two examples have shown that if the complex conjugate poles of the
second-order system lie on the unit circle, the output oscillates sinusoidally and does
not decay to zero. If the poles lie outside the unit circle, the output grows exponentially,
whereas if they are inside the unit circle, the output decays exponentially to zero.

EXAMPLE 10-18 Stable Complex Poles

As an example of a stable system, we make the radius of the poles less than one with
r = 1

2 and the angles ±π/3, as shown in Fig. 10-22. Then the filter coefficients are
a1 = 2r cos θ = 2( 1

2 )(
1
2 ) = 1

2 and a2 = −r2 = −( 1
2 )

2 = − 1
4 , so the difference equation

(10.68) becomes

y[n] = 1
2y[n− 1] − 1

4y[n− 2] + x[n] (10.72)

The system function of this system is

H(z) = 1

1− 1
2z
−1 + 1

4z
−2
=

1√
3
e−jπ/6

1− 1
2e
jπ/3z−1

+
1√
3
ejπ/6

1− 1
2e
−jπ/3z−1

and the inverse z-transform of the right-hand side gives the general formula for h[n] after
combining two complex exponential terms into a real sinusoid as

h[n] = 2√
3
( 1

2 )
n cos ((2π/6)n− π/6) u[n] (10.73)

In this case, the general formula for h[n] has an exponential decay of ( 1
2 )
n multiplying a

periodic cosine with period 6. The frequency of the cosine term in the impulse response
(10.73) is again the angle of the pole, π/3 = 2π/6; while the decaying term rn = ( 1

2 )
n is

controlled by the radius of the pole r . Figure 10-23 shows h[n] for this example. Note the
rapid decay of the impulse response. This rapid decay can be predicted from the pole-zero
plot in Fig. 10-22, since, in general, poles that are not close to the unit circle correspond
to rapidly decaying exponential components of the impulse response.

DEMO
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(2)

<f´g

=f´g

Figure 10-22 Pole-zero plot for system with

H(z) = 1

1− 1
2z
−1 + 1

4z
−2

. The two poles are

inside the unit circle at a radius of r = 1/2 and at
angles θ = ±π/3. There are two zeros at z = 0.
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Figure 10-23 Impulse response for a two-pole
system with system function H(z) = 1

1− 1
2 z
−1+ 1

4 z
−2

.

10-12 Frequency Response of Second-Order IIR Filter

The general formula for the frequency response of a second-order system is

H(ejω̂) = b0 + b1e
−jω̂ + b2e

−j2ω̂

1− a1e−jω̂ − a2e−j2ω̂
(10.74)

The numerator and denominator of (10.74) contain terms like e−jω̂ and e−j2ω̂, soH(ejω̂)
is a periodic function with a period of 2π . Formulas for the magnitude and phase of
H(ejω̂) can be obtained but they do not provide much insight. Rather than work out a
general formula, we take a specific numerical example to show the kind of formulas that
result.

EXAMPLE 10-19 Frequency Response of a Second-Order System

Consider the case where the system function is

H(z) = 1− z−2

1− 0.9z−1 + 0.81z−2
(10.75)

In order to find the magnitude of the frequency response, we work with the magnitude
squared and then take the positive square root at the end. The magnitude squared is derived
by multiplying out all the terms in the numerator and denominator of H(ejω̂)H ∗(ejω̂),
and then collecting terms where the inverse Euler formula applies.

|H(ejω̂)|2 = H(ejω̂)H ∗(ejω̂)

= 1− e−j2ω̂

1− 0.9e−jω̂ + 0.81e−j2ω̂
· 1− ej2ω̂

1− 0.9ejω̂ + 0.81ej2ω̂

= 2− 2 cos(2ω̂)

2.4661− 3.258 cos ω̂ + 1.62 cos(2ω̂)

This formula is useful for computations because it is expressed completely in terms of
cosine functions. The procedure is general, so a similar formula could be derived for any
IIR filter. Since the cosine is an even function, |H(ejω̂)|2 is an even function of ω̂, that is,

|H(e−jω̂)|2 = |H(ejω̂)|2
This is true for any system function when the difference equation has real coefficients.
The magnitude |H(ejω̂)|, which requires a square root, is also an even function.

DEMO
Three Domains–IIR
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The phase response is a bit messier. Recall that the angle of a complex number z
can be found via tan−1 (�{z}/
{z}). If arctangents are used to extract the angles of the
numerator and denominator, then the two angles must be subtracted to get the phase. The
filter coefficients in this example are real, so the phase is

∠H(ejω̂) = tan−1

(

sin(2ω̂)

1− cos(2ω̂)

)

− tan−1

(

0.9 sin ω̂ − 0.81 sin(2ω̂)

1− 0.9 cos ω̂ + 0.81 cos(2ω̂)

)

which can be shown to be an odd function of ω̂ (i.e., ∠H(e−jω̂) = −∠H(ejω̂)).
The even magnitude and odd phase are general characteristics of the frequency

response (or any DTFT) of a real impulse response (or any real sequence). As discussed
in Section 6-4.3 for the FIR case and now demonstrated for an IIR filter, the frequency
response has conjugate symmetry such that

H(e−jω̂) = H ∗(ejω̂)
whenever the impulse response is real.

The formulas obtained in this example are too complicated to provide much insight
directly. Subsequent discussions will show how to use the poles and zeros of H(z)
to construct an approximate plot of the frequency response without recourse to such
formulas.

10-12.1 Frequency Response via MATLAB

As discussed in Sect. 10-7.1, the MATLAB function freqz can be used to evaluate the
frequency response over a grid in the ω̂ domain for −π < ω̂ ≤ π . Then the magnitude
and phase ofH(ejω̂) can be extracted with the functions abs and angle prior to plotting
the frequency response.

EXAMPLE 10-20 MATLAB for H(ej ω̂)

Consider the system introduced in Example 10-19:

y[n] = 0.9y[n− 1] − 0.81y[n− 2] + x[n] − x[n− 2] (10.76)

In order to define the filter coefficients in MATLAB, we put all the terms with y[n] on
one side of the equation, and the terms with x[n] on the other.

y[n] − 0.9y[n− 1] + 0.81y[n− 2] = x[n] − x[n− 2]
Then we read off the filter coefficients and define the vectors aa and bb as follows:

aa = [ 1, −0.9, 0.81 ]

bb = [ 1, 0, −1 ]
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The following call to freqz generates a vector HH containing the values of the
frequency response evaluated at the vector of frequencies specified by the third argument,
[-pi:(pi/100):pi]:

HH = freqz(bb, aa, [-pi:(pi/100):pi])

A plot of the resulting magnitude and phase is shown in Fig. 10-24. Since H(ejω̂) is
always periodic with a period of 2π , it is sufficient to make the frequency response plot
over the range −π < ω̂ ≤ π .

In this example, we can show a connection between the poles and zeros and the shape
of the frequency response. For this system, we have the system function

H(z) = 1− z−2

1− 0.9z−1 + 0.81z−2

which has its poles at z = 0.9e±jπ/3 and zeros at z = 1 and z = −1. Since z = −1 is the
same as z = ejπ , we conclude thatH(ejω̂) is zero at ω̂ = π , becauseH(z) = 0 at z = −1;
likewise, the zero ofH(z) at z = +1 is a zero ofH(ejω̂) at ω̂ = 0. The poles have angles
of±π/3 rad, so the poles have an effect on the frequency response near ω̂ = ±π/3. Since
H(z) is infinite at z = 0.9e±jπ/3, the nearby points on the unit circle (at z = e±jπ/3) must
have large values. In this case, we can evaluate the frequency response directly from the
formula to get

H(ejω̂)
∣

∣

ω̂=π/3 = H(z)
∣

∣

z=ejπ/3

= 1− z−2

1− 0.9z−1 + 0.81z−2

∣

∣

∣

∣

z=ejπ/3

= 1− (− 1
2 − j 1

2

√
3)

1− 0.9( 1
2 − j 1

2

√
3)+ 0.81(− 1

2 − j 1
2

√
3)

⇒ ∣

∣H(ejπ/3)
∣

∣ =
∣

∣

∣1.5+ j0.5(
√

3)
∣

∣

∣

∣

∣

∣0.145+ j0.045(
√

3)
∣

∣

∣

= 10.522

This value of the frequency response magnitude is a good approximation to the true
maximum value of 10.5257, which occurs at ω̂ = 0.334π .

10-12.2 3-dB Bandwidth

The width of the peak of the frequency response in Fig. 10-24 is called the bandwidth. For
consistency, bandwidth must be measured at some standard point on the plot of |H(ejω̂)|.
The most common practice is to plot |H(ejω̂)| on a dB scale and use the 3-dB width,
which is calculated as follows:
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Figure 10-24 Frequency response (magnitude
and phase) for a second-order IIR filter. The
poles are at z = 0.9e±jπ/3 and the numerator
has zeros at z = 1 and z = −1. (a) Magnitude
response with shaded regions showing the 3-dB
bandwidth around the peak at ω̂ = π/3.
(b) Phase response which is nonlinear.

Determine the peak value for |H(ejω̂)| and then find the nearest frequency on
each side of the peak where the value of the frequency response is 1√

2
Hpeak.

The 3-dB width is the difference �ω̂ between these two frequencies. In
decibels, the term 1√

2
is approximately −3 dB, so the 3-dB bandwidth �ω̂

is measured 3 dB below the peak.

In Fig. 10-24, the true peak value is 10.5257 at ω̂ = 0.334π , so we look for points
where |H(ejω̂)| = 1√

2
Hpeak = (0.707)(10.5257) = 7.443. These occur at ω̂ = 0.302π

and ω̂ = 0.369π , so the bandwidth is �ω̂ = 0.067π = 2π(0.0335) = 0.2105 rad.
Alternatively, if we plot 20 log10 |H(ejω̂)| instead of |H(ejω̂)| as in Fig. 10-25, the
maximum value is 20.42 dB so the 3-dB bandwidth points are the frequencies where
20 log10 |H(ejω̂)| = 20.42− 3 = 17.42 dB, which is 3 dB down from the peak. Note
how 20 log10 |H(ejω̂)| approaches −∞ at the frequencies corresponding to the zeros of
H(z) at z = ±1 (where |H(ej0)| = 0 and |H(ejπ)| = 0).

The 3-dB bandwidth calculation can be carried out efficiently with a computer
program, but it is also helpful to have an approximate formula that can give quick

O!

3dB

20 log10 jH.ej O!/j
20:4

17:4

3 333
0

Figure 10-25 Log magnitude of frequency
response (in dB) corresponding to
Fig. 10-24(a). The shaded region shows the
3-dB bandwidth around the peak at ω̂ = π/3.
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“back-of-the-envelope” calculations. For poles at re±jθ , an excellent approximation for
the second-order case with narrow peaks is given by the formula

�ω̂ ≈ 2
|1− r|√

r
(10.77)

which shows that the distance of the pole from the unit circle |1− r| controls the
bandwidth.12 In Fig. 10-24 where r = 0.9, the bandwidth estimate (10.77) evaluates to

�ω̂ ≈ 2
(1− 0.9)√

0.9
≈ 0.2

0.9487
≈ 0.2108 rad

The measured value of �ω̂ was 0.2105 rad, so we see that the approximation is quite
good in this case, where the pole is rather close to the unit circle (radius = 0.9).

10-12.3 Three-Dimensional Plot of a System Function

Since the frequency response H(ejω̂) is the system function evaluated on the unit circle,
we can illustrate the connection between the z and ω̂ domains with a 3-D plot such as the
one shown in Fig. 10-26. The poles and zeros of H(z) provide the connection because
they have a significant impact on the 3-D plot, and thus have a predictable influence on
the frequency response, which is H(z) evaluated on the unit circle.

Figure 10-26 shows a plot of the system function H(z) at points inside, outside, and
on the unit circle. The peaks located at the poles, 0.85e±jπ/2, determine the frequency
response behavior near ω̂ = ±π/2. If the poles were moved closer to the unit circle, the
frequency response would have higher and narrower peaks. The zeros at z = ±1 create
valleys that, in this case, lie on the unit circle at ω̂ = 0, π .

DEMO
Z to Freq

Given the intuition derived from the 3-D example in Fig. 10-26, we can estimate any
value of |H(ejω̂)| directly from the poles and zeros. This can be done systematically by
writing H(z) in the following form:

H(z) = G (z− z1)(z− z2)

(z− p1)(z− p2)

where z1 and z2 are the zeros and p1 and p2 are the poles of the second-order filter.
The parameter G is a gain term that has been factored out. Then the magnitude of the
frequency response is

∣

∣H(ejω̂)
∣

∣ = G |e
jω̂ − z1| |ejω̂ − z2|
|ejω̂ − p1| |ejω̂ − p2| (10.78)

Equation (10.78) has a simple geometric interpretation. Each term |ejω̂−zi | or |ejω̂−pi |
is the vector length from the zero zi or the pole pi to the position ejω̂, as shown in
Fig. 10-27. The frequency response at a fixed value of ω̂ is the product of G times the

12This approximate formula for bandwidth is good only when the poles are isolated from one another.
The approximation breaks down, for example, when a second-order system has two poles with small angles.
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Figure 10-26 z-transform magnitude evaluated over
a region of the z-plane including the unit circle. The
view is from the first quadrant, so the z = 1 point is
in the foreground at the left. Values along the unit
circle are the frequency response (magnitude) for
the second-order IIR filter defined in (10.75). The
poles are at z = 0.85e±jπ/2 and the numerator has
zeros at z = ±1. The zeros are denoted by orange
dots that can be seen along the real axis.

product of all the lengths of the vectors from the zeros to the point z = ejω̂ divided by
the product of all the lengths of the vectors from the poles to ejω̂.

∣

∣H(ejω̂)
∣

∣ = G Z1Z · Z2Z

P1Z · P2Z

As we go around the unit circle, these vector lengths change. When we are on top of a
zero, one of the numerator lengths is zero, so |H(ejω̂)| = 0 at that frequency. When we
are close to a pole, one of the denominator lengths is very small, so

∣

∣H(ejω̂)
∣

∣ is large at
that frequency.

We can apply this geometric reasoning to estimate the magnitude of H(ejω̂) at ω̂ =
π/4 which is the configuration shown in Fig. 10-27. The gain G is assumed to be 1.
Rough estimates for the vector lengths are Z1Z ≈ 1.8 and Z2Z ≈ 0.7 for the zeros, and
P1Z ≈ 0.7 and P2Z ≈ 1.6 for the poles. Thus we obtain the following estimate for the
magnitude of the frequency response at ω̂ = π/4:

∣

∣H(ejπ/4)
∣

∣ = G Z1Z · Z2Z

P1Z · P2Z
= (1)(1.8)(0.7)

(0.7)(1.6)
= 1.8

1.6
= 1.125
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Figure 10-27 z-transform evaluated on the unit
circle (z = ejω̂) by using a product of vector
lengths from the poles and zeros. PiZ denotes the
vector from the ith pole to (z = ejω̂), and ZjZ
denotes the vector from the j th zero to (z = ejω̂).

The actual value obtained from evaluating the formula (10.75) for H(z) is
∣

∣H(ejπ/4)
∣

∣ =
1.132. See Problems P-10.19 and P-10.23 for application of this method to notch filters
and all-pass filters.

EXERCISE 10.13 For the pole-zero plot in Fig. 10-27, apply this geometric reasoning to estimate
the magnitude of H(ejω̂) in Fig. 10-26 at ω̂ = π/2, which is close to the pole at
z = j0.85. Assume that the gain G is equal to 1. In this case, the estimate can be
exact because the vector lengths do not have to be approximated.

10-12.4 Pole-Zero Placing with the PeZ GUI

In order to build an intuitive understanding of the relationship between the location of
poles and zeros in the z-domain, the impulse response h[n] in the n-domain, and the
frequency responseH(ejω̂) in the ω̂-domain, a GUI called PeZ was written in MATLAB
for doing interactive explorations of the three domains. The PeZ GUI is contained in the
DSP-First Toolbox. To run PeZ, type pezdemo at the command prompt and you will see
the GUI shown in Fig. 10-28. PeZ is based primarily on the factored form of the system
function, which represents the rational z-transform in terms of the poles and zeros:

H(z) = B(z)

A(z)
= G

M
∏

k=1

(1− zkz−1)

N
∏

�=1

(1− p�z−1)

(10.79)

where M is the number of zeros and N is the number of poles.
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Figure 10-28 Graphical user interface for PeZ which illustrates the three-domains concept. The user can enter poles
and zeros and see the resulting impulse response and frequency response. In addition, the poles and zeros can be moved
with a mouse pointer and the other plots will be updated in real time. The example shown here is the same as H(z) in
(10.75) and the plots in Fig. 10-24.

The PeZ GUI is controlled by the Pole-Zero Plot panel in the upper left where
the user can add (or delete) poles and zeros, as well as move them around with the
pointing device. The button denoted ZZ is used to add zeros; the button PP is used to
add poles. By default, the Add with Conjugate property is turned on, so poles and
zeros are typically added in pairs to satisfy the complex conjugate property, giving real
coefficients. For more detailed information about the PeZ controls and menus, access the
menu item called “Help.”

DEMO
PeZ GUI

Here are some of the features of PeZ. In the Pole-Zero Plot panel, you can
selectively place pole pairs or zero pairs in the z-plane, and then observe (in the
other plotting panels) how their placement affects the impulse and frequency responses.
The orange ray in the z-domain window is tied to the orange vertical lines on the
frequency responses, and they move together13. This helps identify frequency domain
features that are caused by pole locations or zero locations, because the angle around

13The orange lines highlight an important feature in PeZ. In MATLAB the Pez display is rendered in
color and these lines are actually red.
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the unit circle corresponds to frequency ω̂. A single pole (or zero) can be added if the
Add with Conjugate property is turned off.

In PeZ, an individual pole/zero pair can be moved around and the corresponding
H(ejω̂) and h[n] plots will be updated as you drag the pole (or zero) pair. Since exact
placement of poles and zeros with the mouse is difficult, an Edit button is provided
for numerical entry of the real and imaginary parts. Before you can edit a pole or zero,
however, you must first select it in the list of Pole Locations or Zero Locations .
Next, you will have to make the necessary change in the edit field (box above the Edit

button) and then press the Edit button for the change to take effect. Removal of individual
pole pairs or zero pairs can be performed with the Delete button below the edit box.
Note that all poles and/or zeros can be easily cleared by clicking on the -A button or by
using the -P or -Z buttons.

10-13 Example of an IIR Lowpass Filter

First-order and second-order IIR filters are useful and provide simple examples, but, in
many cases, we use higher-order IIR filters because they can realize better frequency
responses with flatter passbands and stopbands and sharper transition regions. The
butter, cheby1, cheby2, and ellip functions in MATLAB’s Signal Processing
Toolbox can be used to design filters with prescribed frequency-selective characteristics.
As an example, consider the system with system function H(z) given by (10.80a).

H(z) = 0.0798(1+z−1+z−2+z−3)

1−1.556z−1+1.272z−2−0.398z−3
(10.80a)

= 0.0798(1+z−1)(1−ejπ/2z−1)(1−e−jπ/2z−1)

(1−0.556z−1)(1−0.846ej0.3πz−1)(1−0.846e−j0.3πz−1)
(10.80b)

= −1

5
+ 0.62

1−.556z−1
+ 0.17ej0.96π

1−.846ej0.3πz−1
+ 0.17e−j0.96π

1−.846e−j0.3πz−1
(10.80c)

This system is an example of a lowpass elliptic filter whose numerator and
denominator coefficients were obtained using the MATLAB function ellip. The exact
call was ellip(3,1,30,0.3). Each of the three different forms above is useful:
(10.80a) for identifying the coefficients used in the difference equation implementation
of the filter, (10.80b) for sketching the pole-zero plot and the frequency response, and
(10.80c) for finding the impulse response.14 Figure 10-29 shows the poles and zeros of
this filter. Note that all the zeros are on the unit circle and that all the poles are strictly
inside the unit circle, as they must be for a stable system.

EXERCISE 10.14 From (10.80a), determine the difference equation (using Direct Form I) for
implementing this system.

14Factoring polynomials and obtaining the partial fraction expansion was done in MATLAB using the
functions roots and residuez, respectively.



10-13 EXAMPLE OF AN IIR LOWPASS FILTER 475

<f´g

=f´g

Figure 10-29 Pole-zero plot for a third-order IIR filter (10.80b).
Three zeros lie on the unit circle at z = ±j and z = −1.
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Figure 10-30 Frequency response for a
third-order IIR filter; (a) magnitude, (b) phase.

The system function was evaluated on the unit circle using the MATLAB function
freqz. A plot of this result is shown in Fig. 10-30. Note that the frequency response is
large in the vicinity of the poles and small around the zeros. In particular, the passband
of the frequency response is |ω̂| ≤ 2π(0.15), which corresponds to the poles with angles
at ±0.3π . Also, the frequency response is exactly zero at ω̂ = ±0.5π and ω̂ = π since
the zeros of H(z) are at these angles and lie on the unit circle.

EXERCISE 10.15 From (10.80a) or (10.80b), determine the value of the frequency response at ω̂ = 0.

Finally, Fig. 10-31 shows the impulse response of the system. It oscillates and dies
out with increasing n because the dominant terms come from the two complex conjugate
poles at angles ±0.3π and radius 0.846. The decaying envelope is (0.846)n.
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Figure 10-31 Impulse response for a
third-order IIR filter.

EXERCISE 10.16 Use the partial fraction form (10.80c) to determine an equation for the impulse
response of the filter.

The elliptic filter example described in this section is a simple example of a practical
IIR lowpass filter. Higher-order filters can exhibit much better frequency-selective filter
characteristics.

10-14 Summary and Links

The class of IIR filters was introduced in this chapter, along with new methods for using
the z-transform to deal with poles. The z-transform changes problems about impulse
responses, frequency responses, and system structures into algebraic manipulations of
polynomials and rational functions. Poles of the system function H(z) turn out to be
the most important elements for IIR filters because properties such as the shape of the
frequency response or the form of the impulse response can be inferred quickly from
the pole locations.

IIR filters can be used for many tasks; frequency-selective filtering is the most
common, but nulling or notch filters are also very useful for removing narrowband
interference (e.g., 60 Hz power line signals). The MATLAB GUI called PeZ (see
Fig. 10-28) is an ideal tool for studying the poles and zeros of IIR filters, and the connection
between the time domain (n), the frequency domain (ω̂), and the z-transform domain.
Some of the things that can be done with PeZ are the following:

DEMO
PeZ GUI

1. Placing Zeros: When placed on the unit circle, zeros of B(z) force the frequency
response to be zero which can then be used to null out sinusoids at one frequency.

2. Placing Poles: When placed near the unit circle (but inside), roots of A(z) create
peaks in the frequency response which can be used to form BPFs.

3. Designing IIR Notch Filters: By placing conjugate zeros on the unit circle with
poles at the same angle, but just inside the unit circle, a notch or narrow region
with small gain can be formed. The frequency response of the notch is much sharper
than a nulling filter which is an FIR filter formed only from the conjugate zeros on
the unit circle (see Problem P-10.19).
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4. Designing Allpass Filters: By placing poles inside the unit circle with zeros at
corresponding conjugate reciprocal locations, the frequency response has constant
magnitude for all frequencies. Such systems are called all-pass filters (see Problem
P-10.23).

We also continued to stress the important concept of “domains of representation.”
The n-domain or time domain, the ω̂-domain or frequency domain, and the z-domain give
us three domains for thinking about the characteristics of an LTI system. We completed
the ties between domains by introducing the inverse z-transform for constructing a signal
from its z-transform. As a result, even difficult problems such as convolution can be
simplified by working in the most convenient domain (z) and then transforming back to
the original domain (n).

LAB
PeZ—the z, n, and ω̂
Domains

In a lab devoted to studying the three domains, the PeZ GUI is used to explore the
properties of IIR filters. The PeZ tool is useful for studying IIR systems because it presents
the user with multiple views of an LTI system: pole-zero domain, frequency response,
and impulse response. (See Fig. 10-28.)

The Companion Website also contains the following demonstrations of the
relationship between the z-plane and the frequency domain and time domain:

(a) A set of “three-domain” movies that show how the frequency response and impulse
response of an IIR filter change as a pole location is varied. Several different filters
are demonstrated.

DEMO
Three Domains—IIR

(b) A movie that animates the relationship between the z-plane and the unit circle
where the frequency response lies.

DEMO
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(c) The PeZ GUI can be used to construct different IIR and FIR filters. There is also
a tutorial on how to use PeZ.

10-15 Problems

The problems in this section address the major concepts of this chapter. On the Companion
Website there are many related homework problems which can be used to review and
practice. Most of them have detailed solutions.

NOTE
Problems with Solutions

P-10.1 The Fibonacci sequence is generated by a recursion.

(a) Determine a general formula for the Fibonacci sequence by finding the impulse
response of the following second-order system:

y[n] = y[n− 1] + y[n− 2] + x[n]

(b) Determine the two poles of this system. Is this a stable system?

P-10.2 Find the impulse response of the second-order system

y[n] = 0.8(y[n− 1] − y[n− 2])+ x[n− 1]
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Express your answer as separate formulas for the cases where n < 1 and n ≥ 1, thus
covering the entire range of n.

P-10.3 Use time invariance to determine the impulse response of the following first
order system:

y[n] = 0.4y[n− 1] + 6x[n− 8]
Assume that the system is at rest for n < 0. Plot the resulting signal h[n] as a function of
n. Pay careful attention to where the nonzero portion of the impulse response begins.

P-10.4 Find the impulse response of a system having a pole at 0.4 and a zero at 0 and
h[0] = 4. Use this h[n] to determine the output due to the input signal

x[n] =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

0 n < 1, n ≥ 7

2 n = 1

−3 n = 2

0 n = 3

5 n = 4

0 n = 5

−1.5 n = 6

Write the formula as the sum of four terms, each of which is a shifted impulse response.
Assume the initial rest condition. Plot the resulting signal y[n] as a function of n for
0 ≤ n ≤ 12.

P-10.5 The impulse response of an LTI system is h[n] = 8
(√

3
)−n

u[n]. When the

input signal is x[n] = δ[n] + δ[n− 2] + βδ[n− 6], determine the value of β so that the
output y[n] = x[n] ∗ h[n] is zero for n ≥ 6.

P-10.6 For the following feedback filters, determine the locations of the poles and zeros
and plot the positions in the z-plane:

(a) y[n] = 1
2y[n− 1] + 1

3y[n− 2] − x[n] − 2x[n− 1] + 3x[n− 2]

(b) y[n] = 1
2y[n− 2] − 1

3y[n = 2] − x[n] + 2x[n− 1] + 3x[n− 2]
In part (b), only the signs on y[n− 2] and x[n− 1] were changed from those in part (a).
Compare the two results.

P-10.7 In this problem, the degrees of the numerator and denominator polynomials are
different, so there should be zeros (or poles) at z = 0 or z = ∞. Determine the poles and
zeros of the following filters:
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(a) y[n] = 1
2y[n− 1] − 1

3y[n− 2] − x[n]
(b) y[n] = 1

2y[n− 1] − 1
3y[n− 2] − x[n− 2]

(c) y[n] = 1
2y[n− 1] − 1

3y[n− 2] − x[n− 5]
Plot the positions of the poles and zeros in the z-plane. Make sure that the number of
poles and zeros is the same, by allowing zeros (or poles) at z = ∞ or z = 0.

P-10.8 Given an IIR filter defined by the difference equation

y[n] = − 3
4y[n− 1] + x[n]

(a) Determine the system function H(z). What are its poles and zeros?

(b) When the input to the system is three shifted impulses

x[n] =

⎧

⎪
⎨

⎪
⎩

+1 n = 0, 3, 5

−2 n = 6

0 otherwise

determine the functional form for the output signal y[n]. Assume that the output
signal y[n] is zero for n < 0.

P-10.9 An LTI allpass filter is described by the difference equation

y[n] = 2
3y[n− 1] − 12x[n] + 18x[n− 1]

(a) Determine the system function H(z) for this system. Express H(z) as a ratio of
polynomials in z−1 (negative powers of z) and also as a ratio of polynomials in
positive powers of z.

(b) Plot the poles and zeros of H(z) in the z-plane.

(c) FromH(z), obtain an expression forH(ejω̂), the frequency response of this system.

(d) Show that |H(ejω̂)|2 is constant for all ω̂, and determine the constant value.

P-10.10 Given an IIR filter defined by the difference equation

y[n] = −0.6y[n− 2] + x[n]
(a) Determine the system function H(z), and then find its poles and zeros.

(b) When the input to the system is

x[n] = 6δ[n] + 2δ[n− 1] + 4.5δ[n− 2] + 3δ[n− 4]
determine the output signal y[n]. Assume that y[n] is zero for n < 0.
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P-10.11 An IIR filter has 6 poles at the 6th root of 0.8 and 6 zeros at z = 0

(a) Find the z-transform system function of the system. Plot its poles in the z-plane.

(b) Find the difference equation of the system.

(c) When the input signal is x[n] = δ[n]+βδ[n−p], determine values of p for which
the output signal is zero for n ≥ 6.

P-10.12 Determine the inverse z-transform of the following:

(a) Ha(z) = 1− 0.8z−1

1+ 0.7z−1

(b) Hb(z) = z−3

1− 0.6z−1

(c) Hc(z) = 2− 0.5z−1 − 3z−3 + 4z−4

(d) Hd(z) = 2z−5

z+ 0.68
− z−7 + z−2

1− 0.4z−1

P-10.13 Determine the inverse z-transform of the following:

(a) Xa(z) = 1− z−1

1− 1
12z
−1 − 1

12z
−2

(b) Xb(z) = 1+ z−2

1+ 0.8z−1 + 0.64z−2

(c) Xc(z) = z2

(z− 2)(z− 0.25)2

P-10.14 For each of the pole-zero plots (1–6) in Fig. P-10.14, determine which of the
following systems (specified by either an H(z) or a difference equation) matches the
pole-zero plot:

S1 : y[n] = 0.9y[n− 1] + 1
2x[n] + 1

2x[n− 1]
S2 : y[n] = −0.9y[n− 1] + 9x[n] + 10x[n− 1]

S3 : H(z)=
1
2 (1− z−1)

1+ 0.9z−1

S4 : y[n] = 1
4x[n] + x[n− 1] + 3

2x[n− 2] + x[n− 3] + 1
4x[n− 4]

S5 : H(z)= 1− z−1 + z−2 − z−3 + z−4

S6 : y[n] =∑2
k=0 x[n− k]

S7 : y[n] = x[n] + x[n− 1] + x[n− 2] + x[n− 3] + x[n− 4] + x[n− 5]
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 (5)

Pole-Zero Plot #1

 (3)

Pole-Zero Plot #4

Pole-Zero Plot #2

 (4)

Pole-Zero Plot #5

Pole-Zero Plot #3

Pole-Zero Plot #6

<f´g

<f´g

<f´g

<f´g

<f´g

<f´g

=f´g

=f´g

=f´g

=f´g

=f´g

=f´g

Figure P-10.14

P-10.15 Given an IIR filter defined by the difference equation

y[n] = 1
4y[n− 1] + x[n]

(a) When the input to the system is a unit-step sequence, u[n], determine the functional
form for the output signal y[n]. Use the inverse z-transform method. Assume that
the output signal y[n] is zero for n < 0.

(b) Find the output when x[n] is a complex exponential that starts at n = 0:

x[n] = ej (π/6)nu[n]
(c) From (b), identify the steady-state component of the response, and compare its

magnitude and phase to the frequency response at ω̂ = π/6.

P-10.16 The system function of an LTI system is given by the formula

H(z) = (1+ z−1)(1− ej0.4πz−1)(1− e−j0.4πz−1)

(1− 0.7ej0.8πz−1)(1− 0.7e−j0.8πz−1)

(a) Write the difference equation that gives the relation between the input x[n] and the
output y[n].

(b) Plot the poles and zeros of H(z) in the complex z-plane.
Hint: Express H(z) as a ratio of factored polynomials in z instead of z−1.

(c) If the input is of the form x[n] = Aejϕejω̂0n, for what values of −π ≤ ω̂0 ≤ π is
it true that y[n] = 0?
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P-10.17 For each of the frequency response plots (1–6) in Fig. P-10.17, determine
which of the following systems (specified by either an H(z) or a difference equation)
matches the frequency response:

S1 : y[n] = 0.9y[n− 1] + 1
2x[n] + 1

2x[n− 1]

S2 : y[n] = −0.9y[n− 1] + 9x[n] + 10x[n− 1]

S3 : H(z) =
1
2 (1− z−1)

1+ 0.9z−1

S4 : y[n] = 1
4x[n] + x[n− 1] + 3

2x[n− 2] + x[n− 3] + 1
4x[n− 4]

S5 : H(z) = 1− z−1 + z−2 − z−3 + z−4

S6 : y[n] =
2
∑

k=0

x[n− k]

S7 : y[n] = x[n] + x[n− 1] + x[n− 2] + x[n− 3] + x[n− 4] + x[n− 5]
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P-10.18 In Fig. P-10.18, match five of the six pole-zero plots (PZ 1–6) with the correct
one of five possible frequency responses (J–N). In the pole-zero plots, poles are denoted
by x and zeros by o.

Pole-Zero Plot #1

 (2)

Pole-Zero Plot #3

Pole-Zero Plot #5

Pole-Zero Plot #2

Pole-Zero Plot #4

Pole-Zero Plot #6
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Figure P-10.18

P-10.19 An IIR notch filter is defined by the system function

H(z) = (1− ejπ/3z−1)(1− e−jπ/3z−1)

(1− rejπ/3z−1)(1− re−jπ/3z−1)

(a) Determine the difference equation that relates the input x[n] to the output y[n].
(b) Plot the poles and zeros of H(z) in the z-plane for the case r = 0.9.
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(c) Use the techniques of Section 10-12.3 to sketch the magnitude of the frequency
response of the system for the case r = 0.9.

(d) How does the frequency response change as r → 1?

(e) How would you change the frequency location of the “notch”?

P-10.20 In Fig. P-10.20, match five of the six pole-zero plots (PZ 1–6) with the correct
one of five possible impulse responses (J–N). In the pole-zero plots, poles are denoted
by x and zeros by o.

Pole-Zero Plot #1

 (2)

Pole-Zero Plot #3

Pole-Zero Plot #5

Pole-Zero Plot #2

Pole-Zero Plot #4

Pole-Zero Plot #6
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=f´g

=f´g

=f´g

Figure P-10.20

P-10.21 The IIR filter described by the difference equation

y[n] = 0.9y[n− 1] − 0.9x[n] + x[n− 1]
is an all-pass filter.
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(a) Determine the system function H(z) for this system. Express H(z) as a ratio of
polynomials in z−1 and as a ratio of polynomials in z.

(b) For this first-order system, determine the pole and zero locations. Verify that the
zero and the pole are reciprocals.

(c) For H(z) in part (a), show that |H(ejω̂)|2 = 1.

(d) If the input to the system is

x[n] = 6+ 7 cos(0.3πn)+ 8 cos(0.8πn)

Explain why the output as

x[n] = 6+ 7 cos(0.3πn+ ϕ1)+ 8 cos(0.8πn+ ϕ2)

(e) Determine the value of the two phase terms ϕ1 and ϕ2.

P-10.22 The input to the C-to-D converter in Fig. P-10.22 is

x(t) = 4+ cos(500πt)− 3 cos[(2000π/3)t]
The system function for the LTI system is

H(z) = (1− z−1)(1− ejπ/2z−1)(1− e−jπ/2z−1)

(1− 0.9ej2π/3z−1)(1− 0.9e−j2π/3z−1)

If fs = 1000 samples/sec, determine an expression for y(t), the output of the D-to-C
converter.

Ideal
C-to-D

Ideal
D-to-C

x[n] y[n] y(t)x(t) LTI
System

H(z)

fs =
1
Ts

fs =
1
Ts Figure P-10.22

P-10.23 An IIR system is defined by the system function

H(z) = (1− 1.25ejπ/3z−1)(1− 1.25e−jπ/3z−1)

(1− 0.8ejπ/3z−1)(1− 0.8e−jπ/3z−1)

(a) Plot the poles and zeros of H(z) in the z-plane.

(b) Use the geometric estimation technique of Fig. 10-27 in Section 10-12.3 to sketch
the magnitude of the frequency response of the system.
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(c) This system is called an all-pass filter. If the poles were moved to a radius of
r = 0.9, how would the zeros have to be moved to maintain the all-pass character
of H(ejω̂)?

P-10.24 The system function of an IIR system is

H(z) = 1+ z−2

(1− 0.8z−1)(1+ 0.3z−1)

(a) Determine the difference equation that relates the input x[n] to the output y[n].
(b) Plot the poles and zeros of H(z) in the z-plane. Is the system stable?

(c) At what frequency does |H(ejω̂)| have its maximum value? Estimate that value.

(d) At what frequencies does |H(ejω̂)| = 0?

P-10.25 Answer the following questions about the system whose z-transform system
function is

H(z) = 1+ 0.8z−1

1− 0.7z−1

(a) Determine the poles and zeros of H(z).

(b) Derive a simple expression (purely real) for the magnitude squared of the frequency
response |H(ejω̂)|2.

(c) Is this filter a lowpass filter or a highpass filter? Explain your answer in terms of
the poles and zeros of H(z).

P-10.26 The diagram in Fig. P-10.26 depicts a cascade connection of two LTI systems;
where the output of the first system is the input to the second system, and the overall
output is the output of the second system.

LTI 2
H2(z),  h2[n]

LTI 1
H1(z),  h1[n]

w[n]

W(z)

y[n]

Y(z)

x[n]

X(z)
Figure P-10.26

(a) If the two systems are given as

H1(z) = 3

2+ z−1
and H2(z) = 10+ 5z−1

1− 0.7z−1

determine H(z), the system function of the overall cascade system. In addition,
verify that H(z) is a first-order system by finding the pole and zero of H(z).
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(b) Suppose that the two systems are IIR filters described below:

y1[n] = 1
2y1[n− 1] + x[n] + 1

2x[n− 1] and H2(z) = 3z−1

1− 5
6z
−1 + 1

6z
−2

Determine the system function of the overall cascade system.

(c) For the systems in (b), obtain a single difference equation that relates y[n] to x[n]
in Fig. P-10.26.

(d) For the systems in (b), plot the poles and zeros of H(z) in the complex z-plane.

P-10.27 The diagram in Fig. P-10.26 depicts a cascade connection of two LTI systems.

(a) Use z-transforms to show that the system function for the overall system (from
x[n] to y[n]) is H(z) = H2(z)H1(z), where Y (z) = H(z)X(z).

(b) Derive a condition on H(z) that guarantees that the output signal will always be
equal to the input signal.

(c) If System 1 is the difference equation y1[n] = x[n] + 5
6x[n− 1], find a system

function H2(z) so that output of the cascaded system will always be equal to its
input. In other words, find H2(z), which will undo the filtering action of H1(z).
This is called deconvolution and H2(z) is the inverse of H1(z).

(d) Suppose thatH1(z) represents a general FIR filter. What conditions onH1(z)must
hold if H2(z) is to be a stable and causal inverse filter for H1(z)?

P-10.28 Define a discrete-time signal using the formula:

y[n] = (0.99)n cos(2π(0.123)n+ φ)
(a) Make a sketch of y[n] versus n, as a “stem” plot. Take the range of n to be 0 ≤

n ≤ 20.

(b) Design an IIR filter that will synthesize y[n]. Give your answer in the form of
a difference equation with numerical values for the coefficients. Assume that the
synthesis will be accomplished by using an impulse input to “start” the difference
equation (which is at rest; i.e., has zero initial conditions).

P-10.29 In the following cascade of systems, all of the individual system functions,
Hi(z), are known.

x[n]
H1(z)

H1(z) = z−1 − z−3 H2(z) = 2 + z−1 y[n] = a1y[n − 1] + a2y[n − 2] + a3y[n − 3] + b0v2[n]

v1[n]
H2(z)

v2[n] y[n]
H3(z)

Figure P-10.29

(a) Determine H3(z), the z-transform of the last system.
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(b) When a1 = a2 = 1
2 , a3 = 0 and b0 = 7, determine the system function, H(z) for

the cascaded system.

(c) Consider the impulse response h[n] of the cascaded system (i.e., the output when
the input is x[n] = δ[n]). Determine values for { a1, a2, a3, b0 } so that the impulse
response is h[n] = 8δ[n− nd]. Also determine the value of the time shift nd .

P-10.30 We have shown several equivalent ways to describe an LTI system. Below is a
list of time-domain descriptions (e.g., impulse response, difference equation, MATLAB
code, or filter coefficients) of LTI systems. For each one, choose a corresponding system
function or frequency response from the list on the right. Note that there are more entries
on the right than needed.

Time-Domain Description

(a) yy=filter([0,0,1,0,1],1,xx);

(b) y[n] = 0.9y[n− 1] + 0.8y[n− 2] + x[n] − x[n− 3]
(c) h[n] = u[n− 2] − u[n− 5]

(d) y[n] =
3
∑

k=1

(√
k − 1

)

x[n− k]

(e) h[n] = 0.8n−2u[n− 2] − 0.8n−3u[n− 3]

System Function/Frequency Response

1 H(ejω̂) = 2 cos(ω̂) e−j3ω̂

2 H(z) = z−2(1− z−1)

1− 0.8z−1

3 H(ejω̂) = 1− e−j3ω̂

1− 0.9e−jω̂ − 0.8e−j2ω̂

4 H(ejω̂) = (1+ 2 cos(ω̂))e−j3ω̂

5 H(z) = z−2
(

1+ 0.707z−1
)

6 H(ejω̂) = 1− e−j3ω̂

1+ 0.9e−jω̂ + 0.8e−j2ω̂
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A

Complex Numbers

The basic manipulations of complex numbers are reviewed in this appendix. The algebraic
rules for combining complex numbers are reviewed, and then a geometric viewpoint is
taken to visualize these operations by drawing vector diagrams. This geometric view is a
key to understanding how complex numbers can be used to represent signals. Specifically,
the following three significant ideas about complex numbers are treated in this appendix:

• Simple Algebraic Rules: Operations on complex numbers (z = x + jy) follow
exactly the same rules as real numbers, with j 2 replaced everywhere by −1.1

• Elimination of Trigonometry: Euler’s formula, z = rejθ = r cos θ + jr sin θ , for
the complex exponential provides a connection between trigonometric identities
and simple algebraic operations on complex numbers.

• Representation by Vectors: A vector drawn from the origin to a point (x, y) in
a two-dimensional plane is equivalent to z = x + jy. The algebraic rules for z
are, in effect, the basic rules of vector operations. More important, however, is the
visualization gained from the vector diagrams.

1Mathematicians and physicists use the symbol i for
√−1; electrical engineers prefer to reserve the

symbol i for current in electric circuits.

489
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The first two ideas concern the algebraic nature of z = x + jy, the third its role as
a representer of signals. Skill in algebraic manipulations is necessary, but the use of
complex numbers in representation is more important in the long run. Complex numbers
are used as a convenience in signal processing because when they stand for sinusoidal
signals they can simplify manipulations of the signals. Thus, a sinusoidal problem (such
as the solution to a differential equation) is converted into a complex number problem
that can be (1) solved by the simple rules of algebra and (2) visualized through vector
geometry. The key to all this is the higher order thinking that permits abstraction of the
problem into the world of complex numbers. Ultimately, we are led to the notion of a
“transform” such as the discrete Fourier transform or z-transform to reduce many other
sophisticated problems to algebra. Because complex numbers are so crucial to almost
everything we do in the study of signals and systems, a mastery of the concepts reviewed
in this appendix is advised.

Once such insight is gained, it still is necessary to return occasionally to the lower level
reality of calculations. When you have to manipulate complex numbers, software such
as MATLAB or a calculator with built-in complex arithmetic functionality is a necessity.
It is worthwhile to invest some time to learn how to use this feature on a calculator, or in
software. However, it is also important to do some calculations by hand, so that you can
understand and check what your calculator is doing.

Finally, it is too bad that complex numbers are called “complex.” Most students,
therefore, think of them as complicated. However, their elegant mathematical properties
usually simplify mathematical expressions and calculations quite a bit.

A-1 Introduction

A complex number system is an extension of the real number system. Complex numbers
are necessary to solve equations such as

z2 = −1 (A.1)

The symbol j is introduced to stand for
√−1, so this equation (A.1) has the two solutions

z = ±j . More generally, complex numbers are needed to solve for the two roots of a
quadratic equation

az2 + bz+ c = 0

which, according to the quadratic formula, has the two solutions:

z = −b ±
√
b2 − 4ac

2a

Whenever the discriminant (b2 − 4ac) is negative, the solution must be expressed as a
complex number. For example, the roots of

z2 + 6z+ 25 = 0
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are z = −3± j4, because
√
b2 − 4ac

2a
=
√

36− 4(25)

2
=
√−64

2
= ±j4

A-2 Notation for Complex Numbers

Several different mathematical notations can be used to represent complex numbers. The
two basic types are polar form and rectangular form. Converting between them quickly
and easily is an important skill.

A-2.1 Rectangular Form

In rectangular form, all of the following notations define the same complex number.

z = (x, y)
= x + jy
= �{z} + j�{z}

The ordered pair (x, y) can be interpreted as a point in the two-dimensional plane.2

A complex number can also be drawn as a vector whose tail is at the origin of the
complex plane and whose head is at the point (x, y), in which case x is the horizontal
coordinate of the vector and y the vertical coordinate (see Fig. A-1).

Figure A-2 shows some numerical examples. The complex number z = 2+ j5 is
represented by the point (2, 5), which lies in the first quadrant of the two-dimensional
plane; likewise, z = 4− j3 lies in the fourth quadrant at the location (4,−3). Since the
complex number notation z = x + jy represents the point (x, y) in the two-dimensional
plane, the number j represents (0, 1), which is drawn as a vertical vector from the origin
up to (0, 1), as in Fig. A-2. Thus multiplying a real number, such as 5, by j changes it
from pointing along the horizontal axis to pointing vertically (i.e., j (5+ j0) = 0+ j5).

Rectangular form is also referred to as Cartesian form. The horizontal coordinate
x is called the real part, and the vertical coordinate y the imaginary part. The

0

z = x + j y

r = Length

θ = Direction

Tail

Head

Real Axis

�{z}

�{z}

Im
ag

in
ar

y
A

xi
s

Figure A-1 Complex number represented as
a vector from the origin to (x, y).

2This is also the notation used on some calculators when entering complex numbers.
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j

Real Axis

Im
ag

in
ar

y
A

xi
s

�{z}
2 + j 5

4 − j 3−3 − j 3

−5 + j 0 �{z}

Figure A-2 Complex numbers plotted as vectors in the
two-dimensional “complex plane.” Each z = x + jy is
represented by a vector from the origin to the point
with coordinates (x, y) in the complex plane.

operators �{z} and �{z} are provided to extract the real and imaginary parts of
z = x + jy:

x = �{z} (A.2a)

y = �{z} (A.2b)

A-2.2 Polar Form

In polar form, the vector is defined by its length (r) and its direction (θ) as in Fig. A-1.
Therefore, we use the following descriptive notation sometimes: r∠ θ. Three examples
are shown in Fig. A-3, where the direction θ is given in degrees. The angle is always
measured from the positive x-axis and may be either positive (counterclockwise) or
negative (clockwise). However, we generally specify the principal value of the angle so
that −180◦ < θ ≤ 180◦. This requires that integer multiples of 360◦ be subtracted from
or added to the angle until the result is between −180◦ and +180◦. Thus, the vector
3∠−80◦ is the principal value of 3∠280◦.

A-2.3 Conversion: Rectangular and Polar

Both the polar and rectangular forms are commonly used to represent complex numbers.
The prevalence of the polar form, for sinusoidal signal representation, makes it necessary
to convert quickly and accurately between the two representations.

DEMO
Zdrill

From Fig. A-4, we see that the x and y coordinates of the vector are given by

x = r cos θ (A.3a)

y = r sin θ (A.3b)

Therefore, a valid formula for z is

z = r cos θ + j r sin θ (A.4)
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�{z}

�{z}

3∠ − 80°

3∠ 150° 2∠ 45°

Figure A-3 Three complex numbers plotted in terms of
length (r) and direction (θ) of their vector representation.
The angle is always measured with respect to the positive
real axis; its units are usually radians, but are shown as
degrees in this case.

0
x

y

�{z}

�{z}

r = Length

θ = Direction

z = x + j y

Figure A-4 Basic layout for relating Cartesian
coordinates (x, y) to polar coordinates r and θ .

EXAMPLE A-1 Polar to Rectangular

In Fig. A-3, the three complex numbers are

r∠θ Cartesian Form

2∠45◦ z = √2+ j√2

3∠150◦ z = −3
√

3

2
+ j 3

2

3∠−80◦ z = 0.521− j2.954

The conversion from polar to rectangular was done via (A.4).

The conversion from (x, y) to r∠θ is a bit trickier. From Fig. A-4, the formulas are

r =
√

x2 + y2 (Length) (A.5a)

θ = arctan(y/x) (Direction) (A.5b)
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The arctangent must give a four-quadrant answer, and the direction θ is usually given in
radians rather than degrees.

EXERCISE A.1 At this point, the reader should convert to polar form the five complex numbers shown
in Fig. A-2. The answers, in a random order, are 1∠90◦, 5∠−36.87◦, 4.243∠−135◦,
5.385∠68.2◦, and 5∠180◦.

In Section A-3, we will introduce two other polar notations:

z = rejθ

= |z|ej arg z

where |z| = r = √x2 + y2 is called the magnitude of the vector and arg z = θ is its
phase in radians (not degrees). This exponential notation, which relies on Euler’s formula,
has the advantage that when it is used in algebraic expressions, the standard laws of
exponents apply.

A-2.4 Difficulty in Second or Third Quadrant

The formula for the angle, θ = arg z, is the arctan(y/x) as in (A.5b). It must be used with
care, especially when the real part is negative (see Fig. A-5). For example, the complex
number z = −3+ j2 would require that we evaluate arctan(−2/3) to get the angle; the
same calculation would be needed if z = 3− j2. The arctangent of−2/3 is−0.588 rad,
or about−33.7◦, which is the correct angle for z = 3−j2. However, for z = −3+j2, the
vector lies in the second quadrant and the angle must satisfy 90◦ ≤ θ ≤ 180◦. We get the
correct angle by adding 180◦. In this case, the correct angle is −33.7◦ + 180◦ = 146.3◦,
and if we prefer radians, the angle is π − 0.588 = 2.55 rad. The general method for
getting the angle of z in polar form (in radians) is

θ =
{

arctan(y/x) if x ≥ 0

±π + arctan(y/x) if x < 0
(A.6)

Since π and −π are effectively the same direction, when x < 0 we should pick the
appropriate one to make the final answer satisfy |θ | ≤ π .

0x

y

�{z}

�{z}

θ = Direction

r = Length

z = x + j y

ϕ

Figure A-5 In the second quadrant, the interior
angle ϕ is easily calculated from x and y, but is
not the correct angle for the polar form, which
requires the exterior angle θ with respect to the
positive real axis.
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A-3 Euler’s Formula

The conversion from polar to rectangular form (A.3) suggests the following formula:

Euler’s Formula
ejθ = cos θ + j sin θ

(A.7)

Equation (A.7) defines the complex exponential ejθ , which is equivalent to 1∠θ (i.e., a
vector of length 1 at angle θ ). A proof of Euler’s formula based on power series is outlined
in Problem P-2.4 of Chapter 2.

The amazing property of (A.7) is that the laws of exponents apply to ejθ . Euler’s
formula (A.7) is so important that it must be instantly recalled; likewise, the inverse Euler
formulas (A.8) and (A.9) should also be committed to memory.

EXAMPLE A-2 Euler’s Formula

Here are some examples:

(90◦) : 1∠π/2 ejπ/2 = cos(π/2)+ j sin(π/2)

= 0+ j1 = j

(180◦) : 1∠π ejπ = cos(π)+ j sin(π)

= −1+ j0 = −1

(45◦) : 1∠π/4 ejπ/4 = cos(π/4)+ j sin(π/4)

=
√

2

2
+ j
√

2

2

(60◦) : 1∠π/3 ejπ/3 = cos(π/3)+ j sin(π/3)

= 1

2
+ j
√

3

2

EXAMPLE A-3 Degrees to Radians

Referring back to Fig. A-3, the three complex numbers can be rewritten as follows:

2∠45◦ converts to z = 2ejπ/4

3∠150◦ converts to z = 3ej5π/6

3∠−80◦ converts to z = 3e−j4π/9 = 3e−j1.396

Numbers like −1.396 rad are difficult to visualize, because we are more used to
thinking of angles in degrees. It may be helpful to express the angles used in the exponents
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as a fraction ofπ rad (i.e.,−1.396 = −(1.396/π)π = −0.444π rad). This is a good habit
to adopt, because it simplifies the conversion between degrees and radians. If θ is given
in radians, the conversion is

θ

(

180

π

)

= direction in degrees

A-3.1 Inverse Euler Formulas

Euler’s formula (A.7) can be solved separately for the cosine and sine parts. The results
are called the inverse Euler relations

cos θ = ejθ + e−jθ
2

(A.8)

sin θ = ejθ − e−jθ
2j

(A.9)

Recalling that cos(−θ) = cos θ and sin(−θ) = − sin θ , the proof of the sin θ version
(A.9) is as follows:

e−jθ = cos(−θ)+ j sin(−θ)
= cos θ − j sin θ

e+jθ = cos θ + j sin θ

=⇒ ejθ − e−jθ = 2j sin θ

=⇒ sin θ = ejθ − e−jθ
2j

A-4 Algebraic Rules for Complex Numbers

The basic arithmetic operators for complex numbers follow the usual rules of algebra as
long as the symbol j is treated as a special token that satisfies j 2 = −1. In rectangular
form, all of these rules are relatively straightforward. The five fundamental rules are the
following:

Addition: z1 + z2 = (x1 + jy1)+ (x2 + jy2)

= (x1 + x2)+ j (y1 + y2)

Subtraction: z1 − z2 = (x1 + jy1)− (x2 + jy2)

= (x1 − x2)+ j (y1 − y2)

Multiplication: z1 × z2 = (x1 + jy1)× (x2 + jy2)

z1z2 = x1x2 + j 2y1y2 + jx1y2 + jx2y1

= (x1x2 − y1y2)+ j (x1y2 + x2y1)
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Division: z1 ÷ z2 = (x1 + jy1)/(x2 + jy2)

z1

z2
= z1z

∗
2

z2z
∗
2

= z1z
∗
2

|z2|2

= (x1 + jy1)(x2 − jy2)

x2
2 + y2

2

= (x1x2 + y1y2)+ j (x2y1 − x1y2)

x2
2 + y2

2

Conjugate: z∗1 = (x1 + jy1)
∗

= x1 − jy1

Addition and subtraction are straightforward because we need only add or subtract the
real and imaginary parts. On the other hand, addition (or subtraction) in polar form cannot
be carried out directly on r and θ ; instead, an intermediate conversion to rectangular
form is required. In contrast, the operations of multiplication and division, which are
rather messy in rectangular form, reduce to simple manipulations in polar form. For
multiplication, multiply the magnitudes and add the angles; for division, divide the
magnitudes and subtract the angles. The conjugate in polar form requires only a change
of sign of the angle.

Multiplication: (z1)(z2)=
(

r1e
jθ1
) (

r2e
jθ2
)

= (r1r2) ej (θ1+θ2)

Division: z1 ÷ z2 = r1e
jθ1

r2ejθ2

= r1

r2
ej (θ1−θ2)

Conjugate: z∗1 = (r1ejθ1)∗

= r1e−jθ1

EXERCISE A.2 The inverse or reciprocal of a complex number z is the number z−1 such that

z−1z = 1.

A common mistake with the inverse is to invert z = x+ jy by taking the inverse of x
and y separately. To show that this is wrong, take the specific case where z = 4+ j3
and w = 1

4 + j 1
3 . Show that w is not the inverse of z, because wz 
= 1. Determine

the correct inverse of z.

Polar form presents difficulties when adding (or subtracting) two complex numbers
and expressing the final answer in polar form. An intermediate conversion to rectangular
form must be done. The recipe for adding or subtracting complex numbers in polar form is:
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1. Starting in polar form, we have

z3 = z1 ± z2 = r1ejθ1 ± r2ejθ2

2. Convert both z1 and z2 to Cartesian form:

z3 = (r1 cos θ1 + j r1 sin θ1)± (r2 cos θ2 + j r2 sin θ2)

3. Perform the addition in Cartesian form:

z3 = (r1 cos θ1 ± r2 cos θ2)+ j (r1 sin θ1 ± r2 sin θ2)

4. Identify the real and imaginary parts of z3:

x3 = �{z3} = r1 cos θ1 ± r2 cos θ2

y3 = �{z3} = r1 sin θ1 ± r2 sin θ2

5. Convert back to polar form using (A.5a) and (A.5b):

z3 = x3 + jy3 ⇐⇒ z3 = r3ejθ3

If you have a calculator that converts between polar and rectangular form, learning how
to use it will save much hand calculation and also be more accurate. Most scientific
calculators even have the capability to use both notations, so the conversion into and out
of Cartesian form is transparent to the user.

EXAMPLE A-4 Adding Polar Forms

Here is a numerical example of adding two complex numbers given in polar form:

z3 = 7ej4π/7 + 5e−j5π/11

z3 = (−1.558+ j6.824)+ (0.712− j4.949)

z3 = −0.846+ j1.875

z3 = 2.057ej1.995 = 2.057ej0.635π = 2.057∠114.3◦

Remember: When the angle appears in the exponent, its units must be in radians.

A-4.1 Complex Number Exercises

To practice computations for complex numbers, try the following exercises.
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EXERCISE A.3 Add and multiply the following, then plot the results in the complex plane:

z4 = 5ej4π/5 + 7e−j5π/7

z5 =
(

5ej4π/5
) (

7e−j5π/7
)

The answers are z4 = −8.41− j2.534 = 8.783e−j0.907π and z5 = 35ej3π/35.

EXERCISE A.4 For the conjugate the simple rule is to change the sign of all the j terms. Work the
following:

(3− j4)∗ = ?

(j (1− j))∗ = ?

(ejπ/2)∗ = ?

More drill problems can be generated by using the MATLAB program zdrill, which
presents a GUI (graphical user interface) that asks questions for each of the complex
operations, and also plots the vectors that represent the solutions. The zdrill GUI has
both a novice and an advanced level. A screen shot of the GUI is shown in Fig. A-6.DEMO

zdrill

Figure A-6 The MATLAB
GUI zdrill for practicing
complex number
operations. Addition of the
complex numbers z1 = 1
and z2 = ej0.25π is
illustrated with vectors in
the panel at the lower right.
The user’s guess of z = j
is the vertical vector in that
same panel.
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EXERCISE A.5 Prove that the following three identities are true:

�{z} = (z+ z∗)/2
�{z} = (z− z∗)/(2j)
|z|2 = zz∗

A-5 Geometric Views of Complex Operations

It is important to develop an ability to visualize complex number operations. This is done
by plotting the vectors that represent the numbers in the (x, y) plane, where x = �{z} and
y = �{z}. The key is to recall that, as shown in Fig. A-1, the complex number z = x+jy
is a vector whose tail is at the origin and whose head is at (x, y).

A-5.1 Geometric View of Addition

For complex addition, z3 = z1 + z2, both z1 and z2 are viewed as vectors with their tails
at the origin. The sum z3 is the result of vector addition, and is constructed as follows
(see Fig. A-7):

1. Draw a copy of z1 with its tail at the head of z2. Call this displaced vector ẑ1.

2. Draw the vector from the origin to the head of ẑ1. This vector is the sum z3.

This method of addition can be generalized to many vectors. Figure A-8 shows the
result of adding the four complex numbers

(1+ j)+ (−1+ j)+ (−1− j)+ (1− j)
where the answer happens to be zero.

Real Axis

Im
ag

in
ar

y
A

xi
s

�{z}

�{z}

Displaced
Version of z1

z2 = 2 + j 5

z3 = 6 + j 2

z1 = 4 − j 3 Figure A-7 Graphical construction of
complex number addition z3 = z1 + z2.
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(a) (b)

´1´2

´3 ´4

´1

Sum of 2

Sum
of

3

Sum of 4 <f´g

<f´g

=f´g=f´g

Figure A-8 Result of adding the four vectors
{1+ j, −1+ j ,−1− j, 1− j} shown in (a) is
zero. The “head-to-tail” graphical method is
illustrated in (b). Note that (a) also shows that
z1 + z3 = 0 and z2 + z4 = 0.

A-5.2 Geometric View of Subtraction

The visualization of subtraction requires that we interpret the operation as addition:

z3 = z2 − z1 = z2 + (−z1)

Thus we must flip z1 to −z1 (by adding π radians to its angle) and then add the result to
z2. This method is shown in Fig. A-9 and is equivalent to the visualization of addition, as
in Fig. A-7. There are two additional comments to be made about subtraction:

1. Since z2 = z1 + z3, a displaced version of the difference vector could be drawn
with its tail at the head of z1 and its head at the head of z2.

2. The triangle with vertices at the three points 0, z1, and z2 has sides equal to z1, z2,
and z2 − z1.

EXERCISE A.6 Define a vector w to have its tail at z1 and its head at z2. Prove that w has the same
length and direction as z2 − z1.
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Displaced
Version of −z1

�{z}

z3 = 4 + j 5

z2 = 5 + j 2

z1 = 1 − j 3

−z1

�{z}

Figure A-9 Geometric view of subtraction.
The vector z1 is flipped to make (−z1) and then
a displaced version is added to z2 to obtain
z3 = z2 + (−z1).
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EXERCISE A.7 Prove the triangle inequality:

|z2 − z1| ≤ |z1| + |z2|
Use either an algebraic method by squaring both sides, or a geometric argument based
on the intuitive idea that “the shortest distance between two points is a straight line.”

A-5.3 Geometric View of Multiplication

It is best to view multiplication in terms of polar form where we multiply the magnitudes,
and add the angles. In order to draw the product vector z3, we must decide whether or
not |z1| and/or |z2| are greater than 1. In Fig. A-10, it is assumed that only |z1| is larger
than 1.

A special case occurs when |z2| = 1, because then there is no scaling of the vector
length, and the multiplication by z2 = ejθ2 becomes a rotation. Figure A-11 shows the
case where z2 = j , which gives a rotation by π/2 or 90◦, because j = ejπ/2.

A-5.4 Geometric View of Division

Division is very similar to the visualization of multiplication, except that we must now
subtract the angles and divide the magnitudes (Fig. A-12).

z3 = z1

z2
= r1

r2
ej (θ1−θ2)

(a) (b)

´1

´2

´1

´2
´3

1

2 3

<f´g<f´g

=f´g=f´g

Figure A-10 (a) Two complex numbers to
be multiplied shown as vectors.
(b) Geometric view of complex
multiplication z3 = z1z2 = (r1r2)ej (θ1+θ2).
Since |z2| < 1, the length of z3 is less than
the length of z1.

(a) (b)

´1

´2 D j

´1

´3 D j´1

<f´g<f´g

=f´g=f´g

Figure A-11 (a) Two complex numbers to
be multiplied shown as vectors. (b) Complex
multiplication becomes a rotation when
|z2| = 1. The case where z2 = j gives a
rotation by 90◦, and the length of z3 equals
the length of z1.
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�{z}

�{z}

z1

z2

θ3
θ1

θ2

z3 = z1/z2

z4 = z2(2e−jπ/2) Figure A-12 Graphical visualization of
complex number division z3 = z1/z2. Notice
that the angles subtract (i.e., θ3 = θ1 − θ2).
Since |z2| > 1, the vector z3 is shorter than z1.

EXERCISE A.8 Given two complex numbers z4 and z2, as in Fig. A-12, where the angle between them
is 90◦ and the magnitude of z4 is twice that of z2. Evaluate z4/z2.

A-5.5 Geometric View of the Inverse, z−1

This is a special case of division where z1 = 1, so we simply negate the angle and take
the reciprocal of the magnitude.

z−1 = 1

z
= 1

r
e−jθ

Refer to Fig. A-13 for examples of the inverse.

A-5.6 Geometric View of the Conjugate, z∗

In this case, we negate the angle, which has the effect of flipping the vector about the
horizontal axis. The length of the vector remains the same.

z∗ = x − jy = re−jθ

Figure A-14 shows two examples of the geometric interpretation of complex conjugation.

EXERCISE A.9 Prove the following fact:

1

z∗
= 1

r
ejθ

Plot an example for z = 1+ j ; also plot 1/z and z∗.
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θ4

z4 = 1/z3

z2 = 1/z1

Figure A-13 Graphical construction of
complex number inverse 1/z. For the vectors
shown, |z1| > 1 and |z3| < 1. Since the angle is
negated when taking the inverse, θ2 = −θ1 and
θ4 = −θ3.
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y1

−y1

−y3

y3

z3

θ1

θ3
θ2

θ4

z2 = z1
*

z4 = z3
*

Figure A-14 Graphical construction of the
complex conjugate z∗; only the imaginary part
changes sign. The vectors flip about the real
axis: z1 flips down, and z3 flips up. Since the
angle is negated when doing the conjugate,
θ2 = −θ1 and θ4 = −θ3; the magnitudes are
unchanged, |z2| = |z1| and |z4| = |z3|.

A-6 Powers and Roots

Integer powers of a complex number can be defined in the following manner:

zN = (rejθ)N = rNejNθ

In other words, the rules of exponents still apply, so the angle θ is multiplied by N and
the magnitude is raised to the N th power. Figure A-15 shows a sequence of these:

{z�} = {z0, z1, z2, z3, . . . }
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�{z}

�{z}

θ θ

θ

θ

z10z7

z5

z4

z3
z2

z1

z0 = 1

Figure A-15 Vectors representing a sequence of
powers z� for � = 0, 1, 2, . . . , 10. Since |z| = 0.9 < 1,
the vectors spiral in toward the origin. The angular
change between successive powers is constant:
θ = arg z = π/6.

where the angle steps by a constant amount; in this case, exactly π/6 rad. The magnitude
of z is less than one, so the successive powers spiral in toward the origin. If |z| > 1, the
points would spiral outward; if |z| = 1, all the powers zN would lie on the unit circle (a
circle of radius 1). One famous identity is DeMoivre’s formula:

(cos θ + j sin θ)N = cosNθ + j sinNθ

The proof of this seemingly difficult trigonometric identity is actually trivial if we invoke
Euler’s formula (A.7) for ejNθ .

EXERCISE A.10 Let zN−1, zN , and zN+1 be three consecutive members of a sequence such as shown
in Fig. A-15. If z = 0.98e−jπ/6 and N = 11, plot the three numbers.

A-6.1 Roots of Unity

In a surprising number of cases, the following equation must be solved:

zN = 1 (A.10)

In this equation,N is an integer. One solution is z = 1, but there are many others, because
(A.10) is equivalent to finding all the roots of the N th-degree polynomial zN − 1, which
must have N roots. It turns out that all the solutions are given by

z = ej2π�/N for � = 0, 1, 2, . . . , N−1

which are called the N th roots of unity. As shown in Fig. A-16, these N solutions are
complex numbers equally spaced around the unit circle. The angular spacing between
them is 2π/N .
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�{z}

�{z}

θ θ

θ

−θ

e j0 = 1

e j2π/N

e j4π/N

e j2π(N−1)/N

θ =
 2π

/N

Figure A-16 Graphical display of the N th roots of
unity (N = 12). These are the solutions of zN = 1.
Notice that there are only N distinct roots.

A-6.1.1 Procedure for Finding Multiple Roots

Once we know that the solutions to (A.10) are the N th roots of unity, we can describe
a structured approach to solving equations with multiple roots. In order to get a general
result, we consider a slightly more general situation

zN = c

where c is a complex constant, c = |c|ejϕ . The procedure involves the following six
steps:

1. Write zN as rNejNθ .

2. Write c as |c|ejϕej2π�, where � is an integer. Note that when c = 1, we would write
the number 1 as

1 = ej2π� for � = 0,±1,±2, . . .

3. Equate the two sides and solve for the magnitudes and angles separately.

rNejNθ = |c|ejϕej2π�

4. The magnitude is the positive N th root of a positive number |c|:

r = |c|1/N
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5. The angle contains the interesting information, because there are N different
solutions:

Nθ = ϕ + 2π� � = 0, 1, . . . , N−1

=⇒ θ = ϕ + 2π�

N

θ = ϕ

N
+ 2π�

N

6. Thus, the N different solutions all have the same magnitude, but their angles are
equally spaced with a difference of 2π/N between each adjacent pair.

EXAMPLE A-5 7th Roots of Unity

Solve z7 = 1, using the procedure above.

r7ej7θ = ej2π�

=⇒ r = 1

=⇒ 7θ = 2π�

θ = 2π

7
� � = 0, 1, 2, 3, 4, 5, 6

Therefore, these solutions are equally spaced around the unit circle, as shown in Fig.A-17.
In this case, the solutions are called the 7th roots of unity.

�{z}

�{z}−θ

θ

e j0

e j2π/7

e j4π/7

e j6π/7

e j8π/7

e j10π/7

e j12π/7 = e−j2π/7

θ =
 2
π

/7

θ = 2π/7

Figure A-17 Graphical display of the 7th roots of
unity. Notice that the sequence ej2π�/7 repeats
with a period equal to 7.
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EXERCISE A.11 Solve the following equation:

z5 = −1

Use the fact that−1 = ejπ. Plot all the solutions as vectors. In this case, the resulting
values would be called the fifth roots of minus one.

A-7 Summary and Links

This appendix has presented a concise review of complex numbers and their visualization
as vectors in the two-dimensional complex plane.Although this material should have been
seen previously by most students during high school algebra, our intense use of complex
notation demands much greater familiarity. The labs in Chapter 2 deal with various aspects
of complex numbers, and also introduce MATLAB. These labs also introduce some new
MATLAB functions for plotting vectors from complex numbers (zvect, zcat) and
for changing between Cartesian and polar forms (zprint). The complex numbers via
MATLAB demo is a quick reference to these routines.

LAB
Introduction to Complex
Exponentials

DEMO
Complex Numbers via
MATLAB

In addition to the labs, we have written a MATLAB GUI that will generate
drill problems for each of the complex operations studied here: addition, subtraction,
multiplication, division, inverse, and conjugate. A screen shot of the zdrill GUI is
shown in Fig. A-6.

DEMO
zdrill

A-8 Problems

The problems in this section provide a review of the major concepts of complex numbers
and complex exponentials. The MATLAB GUI zdrill on the Companion Website can
be used to generate additional problems for practice.

P-A.1 Convert the following to polar form:

(a) z = 0+ j2

(b) z = −3− j4

(c) z = (−1, 1)

(d) z = (0,−1)

P-A.2 Convert the following to rectangular form:

(a)
√

2 ej (3π/4)

(b) 3e−j (π/2)

(c) 1.6 ∠ (π/6)

(d) 7 ∠ (7π)

P-A.3 Evaluate the following by reducing the answer to rectangular form:

(a) j 3

(b) j 2n (n an integer)

(c) ej (π+2πm) (m an integer)

(d) j 1/2 (find two answers)
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P-A.4 Simplify the following complex-valued expressions into both Cartesian and polar
form:

(a) (
√

2− j2)8

(b) (
√

2− j2)−1

(c) (
√

2− j2)1/2

(d) 3ej2π/3 − 4e−jπ/6

(e) �{je−jπ/3}

P-A.5 Evaluate each expression and give the answer in both rectangular and polar form.
In all cases, assume that z1 = −4+ j3 and z2 = 1− j .

(a) z∗1

(b) z2
2

(c) z1 + z∗2

(d) jz2

(e) z−1
1 = 1/z1

(f) z1/z2

(g) ez2

(h) z1z
∗
1

(i) z1z2

P-A.6 Simplify the following complex-valued sum:

z = ej9π/3 + e−j5π/8 + ej13π/8

Give the numerical answer for z in polar form. Draw a vector diagram for the three vectors
and their sum (z).

P-A.7 Simplify the following complex-valued expressions. Give your answers in polar
form. Reduce the answers to a simple numerical form.

(a) For z = −3+ j4, evaluate 1/z.

(b) For z = −2+ j2, evaluate z5.

(c) For z = −5+ j13, evaluate |z|2.

(d) For z = −2+ j5, evaluate �{ze−jπ/2}
P-A.8 Solve the following equation for z:

z4 = j
Be sure to find all possible answers, and express your answer(s) in polar form.

P-A.9 Let z0 = ej2π/N . Prove that zN−1
0 = 1/z0.

P-A.10 Evaluate (−j)1/2 and plot the result(s).

P-A.11 For each of the following complex numbers, simplify the number into the
standard polar form (i.e., z = rejθ with r ≥ 0 and −π < θ ≤ π ):

z1 =
(

3+ 5j

8− 2j

)∗
z2 = −1

4j
z3 = jejπ/3
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P-A.12 One of the special properties of the roots of unity is the following fact:

N−1
∑

k=0

ej2πk/N = 0

Determine the value of z when z = −
N−2
∑

k=0

ej2πk/N , and N = 56. Express the answer in

polar form.

P-A.13 Find the real numbers p and q such that the following equation is true:

p

200+ jq = 0.08e−jπ/3

P-A.14 Evaluate the following definite integral, and express the answer in polar form
as indicated:

1.5
∫

1

ejπtdt = rejθ



A P P E N D I X

B

Programming
in MATLAB

MATLAB is used extensively in the laboratory exercises provided on the Companion
Website and listed in Appendix D. This appendix provides an overview of MATLAB and
some of its capabilities. We focus on programming issues since a wealth of information is
already available on syntax and basic commands.1 MATLAB has an extensive online help
system, which can be used to answer any questions not addressed in this brief presentation.
In fact, an ideal way to read this appendix would be to have MATLAB running so that
helpwin can be used whenever necessary, and the examples can be run and modified.

MATLAB (short for Matrix Laboratory) is an environment for numerical analysis and
computing. It originated as an interface to the collections of numerical routines from the
LINPACK and EISPACK projects, and it is now a widely used product of The Mathworks,
Inc. MATLAB has evolved into a powerful programming environment containing many
built-in functions for doing signal processing, linear algebra, and other mathematical

1One very useful reference is MATLAB Tutorials and Learning Resources at the Mathworks website:
http://www.mathworks.com/academia/student center/tutorials/launchpad.html.
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calculations. The language has also been extended by means of toolboxes containing
additional functions for MATLAB. For example, the Companion Website contains a
toolbox of functions needed for the laboratory exercises and demo GUIs. The toolboxes
are installed as separate directories within the MATLAB directory. Follow the instructions
on the Companion Website to install the DSP First toolbox before doing the laboratory
exercises.

NOTE
DSP First Toolbox

Since MATLAB is extensible, users find it convenient to write new functions whenever
the built-in functions fail to do a vital task. The programming necessary to create new
functions and scripts is not too difficult if the user has some experience with a high-level
computer language. This appendix gives a brief overview of MATLAB for the purpose
of programming in the context of signal processing.

B-1 MATLAB Help

MATLAB provides an online help system accessible by using the helpwin command.
For example, to get information about the function filter, enter the following at the
command prompt:

>> helpwin filter

The command prompt is indicated by » in the command window. The helpwin command
opens a new window and displays help information. Help is also available for categories;
for example, helpwin punct summarizes punctuation as used in MATLAB’s syntax.
The help system can also show the full documentation of any function in the help window
via the command doc.

Users new to MATLAB should get started with the command intro, which covers the
basic concepts in the MATLAB language. There are many demonstration programs that
illustrate the various capabilities of MATLAB; these can be started with the command
demo. Finally, if you are searching for other tutorials, some are freely available on
the Web.

When unsure about a command, use helpwin.

B-2 Matrix Operations and Variables

The basic variable type in MATLAB is a matrix.2 To declare a variable, simply assign it
a value at the MATLAB prompt. For example,

>> A = [1 2 6 8 3 5; 5 2 7 7 7 0; 4 3 7 7 7 9]
A =

1 2 6 8 3 5
5 2 7 7 7 0
4 3 7 7 7 9

2Recent versions of MATLAB offer many other data types such as structures found in conventional
programming languages. This appendix will only discuss matrices which are two-dimensional arrays.
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When the definition of a matrix involves a long formula or many entries, then a very
long MATLAB command can be broken onto two (or more) lines by placing an ellipsis
( . . . ) at the end of the line to be continued. For example,

P = [ 1, 2, 4, 6, 8 ] + [ pi, 4, exp(1), 0, -1 ] + ...
[ cos(0.1*pi), sin(pi/3), tan(3), atan(2), sqrt(pi) ];

If an expression is followed by a semicolon (;), then the result is not echoed to the
command window. This is very useful when dealing with large matrices. Also note that ;
is used to separate rows in a matrix definition. Likewise, spaces or commas (,) are used
to separate column entries.

The dimensions of a matrix can always be extracted with the size operator:

>> Asize = size(A)
Asize =

3 6

Therefore, it becomes unnecessary to assign separate variables to track the number of rows
and number of columns. Two special types of matrix variables are worthy of mention:
scalars and vectors. A scalar is a matrix with only one element; its size is 1× 1. A
vector is a matrix that has only one row or one column. In the laboratory exercises on the
Companion Website, signals are often stored as vectors.

Individual elements of a matrix variable may be accessed by giving the row index
and the column index, for example:

>> A26 = A(2,6)
A26 =

0

Submatrices may be accessed in a similar manner by using the colon operator as explained
in Section B-2.1.

B-2.1 The Colon Operator

The colon operator (:) is useful for creating index arrays, creating vectors of evenly
spaced values, and accessing submatrices. Use helpwin colon for a detailed
description of its capabilities.

The colon notation is based on the idea that an index range can be generated by
giving a start, a skip, and then the end. Therefore, a regularly spaced vector of numbers
is obtained by means of

iii = start:skip:end

Without the skip parameter, the default increment is 1. MATLAB exploits this sort of
counting when doing matrix indexing. For example, a 2× 3 submatrix can be extracted
from the larger matrix Awith A(2:3,3:5), and the result would be a matrix of all sevens
for A defined above. This is a generalization of A(2,6)which is the scalar element located
at the 2nd row and 6th column of A. The colon can also serve as a wild card—that is,A(2,:)
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is a row vector consisting of the entire 2nd row of the matrix A. Indexing backward flips
a vector. For example, A(3,6:-1:1) reverses the order of the elements in a length-6
vector, which is the third row of A. A more convenient form is A(3,end:-1:1) in which
end determines the last index in the vector. Finally, it is sometimes necessary to work
with a list of all the values in a matrix, so A(:) gives an 18× 1 column vector that is
merely the columns of A concatenated together into one long column. This is an example
of reshaping the matrix. More general reshaping of the matrix A can be accomplished
with the reshape(A,M,N) function. For example, the 3× 6 matrix A can be reshaped
into a 9× 2 matrix with: Anew = reshape(A,9,2).

B-2.2 Matrix and Array Operations

The default operations in MATLAB are matrix operations. Thus A*B means matrix
multiplication, which is defined and reviewed next.

B-2.2.1 A Review of Matrix Multiplication

The operation of matrix multiplication AB can be carried out only if the two matrices
have compatible dimensions (i.e., the number of columns in Amust equal the number of
rows in B). For example, a 5× 8 matrix can multiply an 8× 3 matrix to give a result AB
that is 5× 3. In general, if A ism× n, then B must be n×p, and the product AB would
bem×p. Usually matrix multiplication is not commutative (i.e., AB �= BA). If p �= m,
then the product BA cannot be defined, but even when BA is defined, we find that the
commutative property applies only in special cases.

Each element in the product matrix is calculated with an inner product. To generate the
first element in the product matrix, C = AB, simply take the first row of A and multiply
element-by-element with the first column of B, and then sum. For example, if

A =
⎡

⎣

a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

⎤

⎦ and B =
[

b1,1 b1,2

b2,1 b2,2

]

then the first element of C = AB is

c1,1 = a1,1b1,1 + a1,2b2,1

which is, in fact, the inner product between the first row of A and the first column of B.
Likewise, c2,1 is found by taking the inner product between the second row of A and the
first column of B, and so on for c1,2 and c2,2. The final result would be

C =
⎡

⎣

c1,1 c1,2

c2,1 c2,2

c3,1 c3,2

⎤

⎦ =
⎡

⎣

a1,1b1,1 + a1,2b2,1 a1,1b1,2 + a1,2b2,2

a2,1b1,1 + a2,2b2,1 a2,1b1,2 + a2,2b2,2

a3,1b1,1 + a3,2b2,1 a3,1b1,2 + a3,2b2,2

⎤

⎦ (B.1)
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Some special cases of matrix multiplication are the outer product and the inner
product. In the outer product, a column vector multiplies a row vector to give a matrix.
If we let one of the vectors be all 1s, then we can get a repeating result:

⎡

⎣

a1

a2

a3

⎤

⎦

[

1 1 1 1
] =

⎡

⎣

a1 a1 a1 a1

a2 a2 a2 a2

a3 a3 a3 a3

⎤

⎦

With all 1s in the row vector, we end up repeating the column vector four times.
For the inner product, a row vector multiplies a column vector, so the result is a

scalar. If we let one of the vectors be all 1s, then we will sum the elements in the other
vector:

[

a1 a2 a3 a4
]

⎡

⎢

⎢

⎣

1
1
1
1

⎤

⎥

⎥

⎦

= a1 + a2 + a3 + a4

If the vectors are identical, then the inner product sums the squares of all elements in the
vector:

[

a1 a2 a3
]

⎡

⎣

a1

a2

a3

⎤

⎦ = a2
1 + a2

2 + a2
3

All these operations are done in MATLAB with A*B as long as A and B have compatible
dimensions.

B-2.2.2 Pointwise Array Operations

If we want to do a pointwise multiplication between two arrays, some confusion can arise.
In the pointwise case, we want to multiply the matrices together element-by-element, so
they must have exactly the same size in both dimensions. For example, two 5×8 matrices
can be multiplied pointwise, although we cannot do matrix multiplication between two
5× 8 matrices. To obtain pointwise multiplication in MATLAB, we use the “point-star”
operator A.*B. For example, if A and B are both 3× 2, then

D = A.*B =
⎡

⎣

d1,1 d1,2

d2,1 d2,2

d3,1 d3,2

⎤

⎦ =
⎡

⎣

a1,1 b1,1 a1,2 b1,2

a2,1 b2,1 a2,2 b2,2

a3,1 b3,1 a3,2 b3,2

⎤

⎦

where di,j = ai,j bi,j . We will refer to this type of multiplication as array multiplication.
Notice that array multiplication is commutative because we would get the same result if
we computed D = B.*A.

A general rule in MATLAB is that when “point” is used with another arithmetic
operator, it modifies that operator’s usual matrix definition to a pointwise one. Thus we
have ./ for pointwise division and .ˆ for pointwise exponentiation. For example,

xx = (0.9) .ˆ (0:49)

generates a vector whose values are equal to (0.9)n, for n = 0, 1, 2, . . . , 49.
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Example of plot( tt, xx )

Example of stem( tt, xx )

Figure B-1 Two MATLAB plotting formats,
(a) plot and (b) stem. In both cases, the
horizontal axis is defined by the vector
tt=0:0.4:4, and the signal values are
xx = sin(0.7*pi*tt + 0.1*pi).

B-3 Plots and Graphics

MATLAB is capable of producing two-dimensional x-y plots and three-dimensional
plots, displaying images, as well as creating and playing movies. The two most common
plotting functions that are used in signal processing applications are plot and stem.
The calling syntax for both plot and stem takes two vectors, one for the x-axis points,
and the other for the y-axis.3 The statement plot(x,y) produces a connected plot with
straight lines between the data points

{(x(1),y(1)),(x(2),y(2)),...,(x(N),y(N))}
as shown in Fig. B-1(a). The same call with stem(x,y) produces the “lollipop”
presentation of the same data in Fig. B-1(b). MATLAB has numerous plotting options that
can be studied by using helpwin stem, helpwin plotedit, or by using helpwin

zoom, helpwin plot3d, or helpwin spectrogram.

B-3.1 Figure Windows

Whenever MATLAB makes a plot, it displays the graphics in a figure window. You can
have multiple figure windows open, but only one of them is considered the active window.
Any plot command executed in the command window will direct its graphical output to
the active window. The command figure(n) will pop up a new figure window that can
be referred to by the number n, or makes it active if it already exists. Control over many
of the window attributes (size, location, color, etc.) is also possible with the figure

command, which does initialization of the plot window.

3If only one argument is given,plot(y)uses the single argument as the y-axis, and uses[1:length(y)]
for the x-axis. These functions also have optional arguments. To learn about them type helpwin plot.
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B-3.2 Multiple Plots

Multiple plots per window can be done with the subplot function. This function
does not do the actual plotting; it merely divides the figure window into tiles. To
set up a 3× 2 tiling of the figure window, use subplot(3,2,tile number). For
example, subplot(3,2,3) will direct the next plot to the third tile, which is in the
second row, left side. The graphs in Fig. B-1 were done with subplot(2,1,1) and
subplot(2,1,2). The program that creates Fig. B-1 is given in Section B-5.

B-3.3 Printing and Saving Graphics

Plots and graphics may be printed to a printer or saved to a file using the print command.
To send the current figure window to the default printer, simply type print without
arguments. To save the plot to a file, a device format and filename must be specified. The
device format specifies which language will be used to store the graphics commands. For
example, a useful format for including the file in a document is to make a PNG (Portable
Network Graphics) image, which can be produced as follows:

>> print -dpng myplot

Postscript and PDF formats are also convenient when the plots are kept for printing at
a later time. For a complete list of available file formats, supported printers, and other
options, see helpwin print.

B-4 Programming Constructs

MATLAB supports the paradigm of “functional programming” in which it is possible
to nest a sequence of function calls. Consider the following equation, which can be
implemented with one line of MATLAB code.

L
∑

n=1

log (|xn|)

Here is the MATLAB equivalent:

sum( log( abs(x) ) )

where x is a vector containing the elements xn. This example illustrates MATLAB in its
most efficient form, where individual functions are combined to get the output. Writing
efficient MATLAB code requires a programming style that generates small functions that
are vectorized. Loops should be avoided. The primary way to avoid loops is to use calls
to built-in functions and toolbox functions as much as possible.
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B-4.1 MATLAB Built-In Functions

Many MATLAB functions operate on arrays just as easily as they operate on scalars. For
example, if x is an array, then cos(x) returns an array of the same size as x containing
the cosine of each element of x.

cos(x) =

⎡

⎢

⎢

⎢

⎣

cos(x1,1) cos(x1,2) · · · cos(x1,n)

cos(x2,1) cos(x2,2) · · · cos(x2,n)
...

...
...

...

cos(xm,1) cos(xm,2) · · · cos(xm,n)

⎤

⎥

⎥

⎥

⎦

Notice that no loop is needed, even though cos(x) does apply the cosine function to
every array element. Most transcendental functions follow this pointwise rule. In some
cases, it is crucial to make this distinction, such as the matrix exponential (expm) versus
the pointwise exponential (exp):

exp(A) =

⎡

⎢

⎢

⎢

⎣

exp(a1,1) exp(a1,2) · · · exp(a1,n)

exp(a2,1) exp(a2,2) · · · exp(a2,n)
...

...
...

...

exp(am,1) exp(am,2) · · · exp(am,n)

⎤

⎥

⎥

⎥

⎦

B-4.2 Program Flow

Program flow can be controlled in MATLAB using if statements, while loops, and for
loops. There is also a switch statement for cases. These are similar to any high-level
language. Descriptions and examples for each of these program constructs can be viewed
by using the MATLAB helpwin command.

B-5 MATLAB Scripts

Any expression that can be entered at the MATLAB prompt can also be stored in a text
file and executed as a script. The text file is usually created with the built-in MATLAB
editor. The file extension must be .m, and the script is executed in MATLAB simply by
typing the filename (without the extension). These programs are usually called M-files.
Here is an example:

tt = 0:0.4:4;
xx = sin(0.7*pi*tt);
subplot(2,1,1)
plot( tt, xx )
title(’Example of plot( tt, xx)’)
subplot(2,1,2)
stem( tt, xx )
title(’Example of stem( tt, xx)’)
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If these commands are saved in a file named plotstem.m that is on MATLAB’s path or
in the current directory,4 then typing plotstem at the command prompt will run the file,
and all eight commands will be executed as if they had been typed in at the command
prompt. The result is the two plots that were shown in Fig. B-1.

B-6 Writing a MATLAB Function

You can write your own functions and add them to the MATLAB environment. These
functions are another type of M-file, and are created as an ASCII file with a text editor.
The first word in the M-file must be the keyword function to tell MATLAB that this
file is to be treated as a function with arguments. On the same line as the word function
is the calling template that specifies the input and output arguments of the function.
The filename for the M-file must end in .m, and the filename will become the name
of the new command for MATLAB. For example, consider the following file, which
extracts the last L elements from a vector:

function y = foo( x, L )
%FOO get last L points of x
% usage:
% y = foo( x, L )
% where:
%
% x = input vector
% L = number of points to get
% y = output vector
N = length(x);
if( L > N )

error(’input vector too short’)
end
y = x((N-L+1):N);

If this file is called foo.m, the operation may be invoked from the MATLAB command
line by typing

aa = foo( (1:2:37), 7 );

The output will be the last seven elements of the vector (1:2:37), i.e.,

aa = [ 25 27 29 31 33 35 37 ]

B-6.1 Creating a Clip Function

Most functions can be written according to a standard format. Consider a clip function
M-file that takes two input arguments (a signal vector and a scalar threshold) and returns
an output signal vector. You can use an editor to create an ASCII file clipper.m that
contains the statements in Fig. B-2. We can break down the M-file clipper.m into
four elements:

4Type helpwin path to learn how to set the MATLAB path and current directory.
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1 function y = clipper( x, Limit )
2 %CLIPPER saturate mag of x[n] at Limit
3 % when |x[n]| > Limit, make |x[n]| = Limit
4 % keeping the sign of x[n]
5 % usage: y = clipper( x, Limit )
6 %
7 % x = input signal vector
8 % Limit = limiting value
9 % y = output vector after clipping

10

11 [nrows, ncols] = size(x);
12

13 if( ncols ˜= 1 & nrows ˜= 1 ) %-- NEITHER
14 error(’CLIPPER: input not a vector’)
15 end
16 Lx = max([nrows ncols]);
17

18 for n=1:Lx %-- Loop over entire vector
19 if( abs(x(n)) > Limit )
20 x(n) = sign(x(n))*Limit; %-- saturate
21 end
22 end
23

24 y = x; %-- copy to output vector

Lines 2–9 are comments
that start with percent (%)

Determine matrix dimensions of x

Check that x is a row
or a column vector

Length of x, which will
also be the length of y

Since x is local, we can change
it value without affecting the
value in the calling workspace

y is the name of the vector passed back to the caller
Figure B-2 Illustration of a MATLAB
function called clipper.m.

Definition of Input–Output: Function M-files must have the word function as
the very first item in the file. The information that follows function on the
same line is a declaration of how the function is to be called and what arguments
are to be passed. The name of the function should match the name of the M-file; if
there is a conflict, it is the name of the M-file stored on the disk that is known to
the MATLAB command environment.

Input arguments are listed inside the parentheses following the function name.
Each input is a matrix. The output argument (also a matrix) is on the left side of the
equals sign. Multiple output arguments are also possible if square brackets surround
the list of output arguments. For example, notice how the size(x) function in
line 11 returns the number of rows and number of columns into separate output
variables. Finally, observe that there is no explicit command for returning the
outputs; instead, MATLAB returns whatever value is contained in the output matrix
y when the function completes. For clipper the last line of the function assigns
the clipped vector to y, so that the clipped vector is returned. MATLAB does
have a command called return, but it just exits the function, it does not take an
argument.

The essential difference between the function M-file and the script M-file is dummy
variables versus permanent variables. MATLAB uses call by value so that the
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function makes local copies of its arguments. These local variables disappear after
the function completes. For example, the following statement creates a clipped
vector wwclipped from the input vector ww.

>> wwclipped = clipper(ww, 0.9999);

The arrays ww and wwclipped are permanent variables in the MATLAB
workspace. The temporary arrays created inside clipper (i.e., y, nrows, ncols,
Lx, and n) exist only while clipper runs; then they are deleted. Furthermore,
these variable names are local to clipper.m, so the name x may also be used
in the workspace as a permanent name. These ideas should be familiar to anyone
experienced with a high-level computer language.

Self-Documentation: A line beginning with the % sign is a comment line. The first
group of these in a function is used by MATLAB’s help facility to make M-files
automatically self-documenting. That is, you can now type helpwin clipper

and the comment lines immediately following the function declaration line in your
M-file will appear on the screen as help information. The format suggested in
clipper.m (lines 2–9) follows the convention of giving the function name, its
calling sequence, a brief explanation, and then the definitions of the input and
output arguments.

Size and Error Checking: The function should determine the size of each vector or
matrix that it will operate on. This information does not have to be passed as a
separate input argument, but can be extracted with the size function (line 11). In
the case of the clipper function, we want to restrict the function to operating on
vectors, but we would like to permit either a row (1× L) or a column (L× 1).
Therefore, one of the variables nrows or ncols must be equal to 1; if not, we
terminate the function with the bail-out function error, which prints a message
to the command line and quits the function (lines 13–15).

Actual Function Operations: In the case of the clipper function, the actual clipping
is done by a for loop (lines 18–22), which examines each element of the x vector
for its value compared to the threshold Limit. In the case of negative numbers, the
clipped value must be set to -Limit, hence the multiplication by sign(x(n)).
This assumes that Limit is passed in as a positive number, a fact that might also
be tested in the error-checking phase.

This particular implementation of clipper is very inefficient owing to the for

loop. In Section B-7.1, we will show how to vectorize this program for speed.

B-6.2 Debugging a MATLAB M-file

Since MATLAB is an interactive environment, debugging can be done by examining
variables in the workspace. MATLAB contains a symbolic debugger that is integrated
with the text editor. Since different functions can use the same variable names, it is
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important to keep track of the local context when setting breakpoints and examining
variables. Several useful debugging commands are listed here, others can be found with
helpwin debug. Within the visual editor, these commands are accessed with menu
items or function keys.5

dbstop is used to set a breakpoint in an M-file. It can also be used to give you a
prompt when an error occurs by typing dbstop if error before executing the
M-file. This allows you to examine variables within functions and also the calling
workspace (by typing dbup).

dbstep incrementally steps through your M-file, returning you to a prompt after each
line is executed.

dbcont causes normal program execution to resume, or, if there was an error, returns
you to the MATLAB command prompt.

dbquit quits the debug mode and returns you to the MATLAB command prompt.

keyboard can be inserted into the M-file to cause program execution to pause, giving
you a MATLAB prompt of the form K> to indicate that it is not the command-line
prompt. When stopped at a breakpoint, the values of variables can be displayed by
using the K> prompt, or by hovering over the variable name in the visual editor.

B-7 Programming Tips

This section presents a few programming tips that should improve the speed of your
MATLAB programs. For more ideas and tips, examine some of the function M-files in
the toolboxes of MATLAB by using the edit command. For example,

edit angle
edit conv
edit trapz

Copying the style of other (good) programmers is always an efficient way to improve
your own knowledge of a computer language. In the following hints, we discuss some
of the most important points involved in writing good MATLAB code. These comments
will become increasingly useful as you develop more experience in MATLAB.

B-7.1 Avoiding Loops

Since MATLAB is an interpreted language, certain common programming habits are
intrinsically inefficient. The primary one is the use of for loops to perform simple
operations over an entire matrix or vector. Whenever possible, you should try to find a
vector function (or the nested composition of a few vector functions) that will accomplish

5More details about the MATLAB debugger can be found at:
http://www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html

../../../../../www.mathworks.com/help/matlab/matlab_prog/debugging-process-and-features.html
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1 function ss = mysum1(xx)
2 %
3 [Nrows,Ncols] = size(xx);
4 ss = 0;
5 for jj=1:Nrows
6 for kk=1:Ncols
7 ss = ss + xx(jj,kk);
8 end
9 end

(a)

Determine matrix
dimensions of xx

Two for loops needed to index all rows
and columns when xx is a matrix

1 function ss = mysum2(xx)
2 %
3 ss = sum( sum(xx) );

(b)

Sum down the columns
to produce a vector

Sum elements of the vector
to produce the scalar sum ss

1 function ss = mysum3(xx)
2 %
3 ss = sum(xx(:));

(c)

Colon turns the matrix xx
into a column vector

Sum elements of the vector
to produce the scalar sum ss

Figure B-3 Three ways to add all of the elements of
a matrix. (a) Index all the array elements
individually and add them one at a time, (b) call the
sum function twice which will be the fastest method,
and (c) call the sum function once which is the
easiest code to understand and almost as fast as (b).

the desired result, rather than writing a loop. For example, if the operation is summing
all the elements in a matrix, the difference between calling sum and writing a loop can
be dramatic; the loop is slow owing to the interpreted nature of MATLAB6. Consider
the three methods for summing all the elements in a matrix, shown in Fig. B-3. The first
method in Fig. B-3(a) is the MATLAB equivalent of conventional programming. The
last two methods rely on the built-in function sum, which has different characteristics
depending on whether its argument is a matrix or a vector (called “operator overloading”).
When acting on a matrix as in Fig. B-3(b), the inner sum returns a row vector containing
the column sums; when acting on a row (or column) vector as in Fig. B-3(c), the sum is
a scalar. To get the third method, the matrix xx is converted to a column vector with the
colon operator. Then one call to sum will suffice.

B-7.2 Repeating Rows or Columns

Often it is necessary to form a matrix from a vector by replicating the vector in the rows
or columns of the matrix.7 If the matrix is to have all the same values, then functions
such as ones(M,N) and zeros(M,N) can be used. But to replicate a column vector x

6In recent versions of MATLAB, optimizations have been introduced which improve the running time
of for loops significantly.

7The function repmat is a very general operator for repeating matrices and vectors in MATLAB.
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to create a matrix that has identical columns, a loop can be avoided by using the outer-
product matrix multiply operation discussed in Section B-2.2. The following MATLAB
code fragment will do the job for 11 columns:

x = (12:-2:0).’;
% dot prime indicates transpose; prime alone is conjugate transpose
X = x * ones(1,11)

If x is a length L column vector, then the matrix X formed by the outer product is L×11.
In this example,L = 7. Note that MATLAB is case-sensitive, so the variables x and X are
different. We have used capital X to indicate a matrix, as would be done in mathematics.

B-7.3 Vectorizing Logical Operations

It is also possible to vectorize programs that contain if, else conditionals. The
clipper function (Fig. B-2) offers an excellent opportunity to demonstrate this type
of vectorization. The for loop in that function contains a logical test and might not seem
like a candidate for vector operations. However, the relational and logical operators in
MATLAB, such as greater than, apply to matrices. For example, a greater than test applied
to a 3× 3 matrix returns a 3× 3 matrix of ones and zeros.

>> %-- create a test matrix
>> X = [ 1 2 -3; 3 -2 1; 4 0 -1]

X = [ 1 2 -3
3 -2 1
4 0 -1 ]

>> %-- check the greater than condition to create a mask
>> Mask = X > 0

Mask = [ 1 1 0
1 0 1
1 0 0 ]

>> %-- pointwise multiply by mask
>> Y = Mask .* X

Y = [ 1 2 0
3 0 1
4 0 0 ]

The zeros mark where the condition was false; the ones denote where the condition was
true. Thus, when we do the pointwise multiply of X by the masking matrix Mask we
get a result that has all negative elements set to zero. Note that these last two statements
process the entire matrix without ever using a for loop.

Since the saturation done in clipper.m requires that we change the large values in
X, we can implement the entire for loop with three array multiplications. This leads to
a vectorized saturation operator that works for matrices as well as vectors:
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y = Limit*(X > Limit) - Limit*(X < -Limit) + X.*(abs(X) <= Limit);

Three different masking matrices are needed to represent the three cases of positive
saturation, negative saturation, and no action. The additions correspond to the logical OR
of these cases. The number of arithmetic operations needed to carry out this statement is
3N multiplications and 2N additions, whereN is the total number of elements in X. This is
actually more work than the loop in clipper.m if we counted only arithmetic operations.
However, the cost of code interpretation is high. This vectorized statement is interpreted
only once, whereas the three statements inside the for loop must be reinterpreted N
times. If the two implementations are timed with etime, the vectorized version will be
faster for long vectors.

B-7.4 Creating an Impulse

Another simple example of use of logical operators is given by the following trick for
creating an impulse signal vector:

nn = [-10:25];
impulse = (nn==0);

This result may be plotted with stem(nn, impulse). In a sense, this code fragment
is perfect because it captures the essence of the mathematical formula that defines the
impulse as existing only when n = 0.

δ[n] =
{

1 n = 0

0 n �= 0

B-7.5 The Find Function

An alternative to masking is to use the find function. This is not necessarily more
efficient; it just gives a different approach. The find function will determine the list of
indices in a vector where a condition is true. For example, find( y > Limit ) will
return the list of indices where the vector y is greater than the Limit value.8 Thus we
can do saturation as follows:

y = x;
yAbove = find(y > Limit);
y( yAbove ) = Limit;
yBelow = find(y < -Limit);
y( yBelow ) = -Limit;

8When applied to matrix, the statement find( y > Limit ) treats y as the vector y(:), so the example
code works for matrices as well as vectors.



526 APPENDIX B PROGRAMMING IN MATLAB

B-7.6 Seek to Vectorize

The dictum to “avoid for loops” is not always easy to obey, because it means the algorithm
must be cast in a vector form. If matrix-vector notation is incorporated into MATLAB
programs, the resulting code will run much faster. Thus, a reasonable goal is the following:

Eliminate all for loops.

Even loops with logical tests can be vectorized if masks are created for all possible
conditions. The MATLAB function profile measures various statistics about the
execution time of a program which provides useful information for modifying the code
to make it run faster.

B-7.7 Programming Style

If there were a proverb to summarize good programming style, it would probably read
something like

May your functions be short
and your variable names long.

–Anon

This is certainly true for MATLAB. Each function should have a single purpose. This
will lead to short, simple modules that can be linked together by functional composition
to produce more complex operations. Avoid the temptation to build super functions with
many options and a plethora of outputs.

MATLAB supports long variable names, so you can take advantage of this feature
to give variables descriptive names. In this way, the number of comments needed to
document the code can be drastically reduced. Comments should be limited to helpwin
information and the documentation of tricks used in the code.
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C

Fourier Series

In this appendix, we describe the mathematical theory of Fourier series. This will extend
the presentation in Chapter 3 which stated the main result that any periodic signal can be
synthesized with a sum of harmonically related sinusoids, even when the synthesis sum
needs an infinite number of terms.1 We use specific examples of pulse waves, triangular
waves, and rectified sinusoids to show how the Fourier series representation is obtained
and how each signal’s spectrum is defined by the Fourier series. Finally, we focus on
general properties of the Fourier series which not only extend the understanding of the
frequency domain, but also make the job of signal analysis easier in practice.

As stated in Chapter 3, the two aspects of the Fourier theory are analysis and synthesis.
Starting fromx(t) and calculating {ak} is called Fourier analysis.As we will show, Fourier
analysis of a continuous-time periodic signal is achieved by evaluating the following
integral:

Fourier Analysis Integral

ak = 1

T0

T0∫

0

x(t)e−jω0kt dt
(C.1)

1There are some exceptions, but none of these would ever arise in the practice of engineering when
processing actual signals.
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where ω0 = 2π/T0 = 2πF0 is the fundamental radian frequency2 and T0 = 1/F0 is the
fundamental period of the periodic signal x(t) = x(t + T0) for all t .

The reverse process of starting from {ak} and generating a periodic signal identical
to the signal x(t) in (C.1) is called Fourier synthesis. It is achieved with the following
general formula for synthesis of periodic signals:

Fourier Synthesis Summation

x(t) =
∞
∑

k=−∞
ake

jω0kt (C.2)

When taken together, equations (C.1) and (C.2) comprise the Fourier series representation
of the periodic signal x(t). When the signal x(t) is real, the complex amplitudes are
conjugate-symmetric with respect to the index k (i.e.,a−k = a∗k ), and the synthesis formula
becomes a sum of real sinusoids of the form

x(t) = A0 +
∞
∑

k=1

Ak cos(ω0kt + ϕk) (C.3)

where A0 = a0, and the amplitude and phase of the kth term come from the polar form,
ak = 1

2Ake
jϕk . In other words, the condition a−k = a∗k is sufficient for the synthesized

waveform to be a real function of time.

C-1 Fourier Series Derivation

In Chapter 3, we gave several demonstrations that a sum of complex exponentials as in
(C.2) can represent a wide range of interesting periodic signals, such as vowel-like signals,
and we carried out the details of evaluating a Fourier integral for the periodic full-wave
rectified sine (FWRS) wave. However, we did not explain why the Fourier integral in
(C.1) finds the spectrum for any periodic signal. In this section, we show how to derive
the coefficients for the harmonic sum in (C.2)—that is, we show how to go from the time
waveform x(t) to the Fourier coefficients ak by using the Fourier series integral of (C.1)
to perform Fourier analysis. This Fourier integral requires that we have a mathematical
formula that defines x(t) over one period. Several examples will be presented later to
illustrate this point. On the other hand, if x(t) is known only as a digital recording, then
numerical methods such as those discussed in Chapter 8 will be applicable.

C-1.1 Fourier Integral Derivation

The derivation of the Fourier series integral formula (C.1) relies on a simple property of
the complex exponential signal—the integral of a complex exponential over any number
of complete periods is zero. In equation form,

2The fundamental frequency in hertz is F0, so that we can use fk = kF0 to refer to the kth harmonic
frequency. As a result, f1 = F0 and f0 = 0.
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T0∫

0

ej (2π/T0)kt dt = 0 (k �= 0) (C.4)

where k is a nonzero integer. The integrand in (C.4) is a complex exponential whose
frequency is (2π/T0)k, so its period is T0/k and the integral is taken over k periods. After
substituting ω0 for 2π/T0, here is the integration:

T0∫

0

ejω0kt dt = ejω0kt

jω0k

∣

∣

∣

∣

T0

0

= ej (ω0T0)k − 1

jω0k
= 0 (k �= 0)

The numerator is zero because ω0T0 = 2π and ej2πk = 1 for any integer k.
A key ingredient in the infinite series representation (C.2) is the form of the complex

exponentials, all of which must repeat with the same period as the period of the signal
x(t), which is T0. If we define vk(t) to be the complex exponential having frequency ω0k,
then

vk(t) = ejω0kt (C.5)

Even though the minimum duration period of vk(t) would be T0/k, the following shows
that vk(t) repeats also with a period of T0:

vk(t + T0) = ejω0k(t+T0) = ejω0kt ej (ω0T0)k

= ejω0kt���� 1
ej2πk = ejω0kt = vk(t)

where again we have used ej2πk = 1 for any integer k (positive or negative).
Next we can generalize the zero-integral property (C.4) of the complex exponential

to involve two signals:

Orthogonality Property

T0∫

0

vk(t)v
∗
� (t) dt =

{

0 if k �= �
T0 if k = �

(C.6)

where the * superscript in v∗� (t) denotes the complex conjugate. Proving the orthogonality
property is straightforward. We begin with

T0∫

0

vk(t)v
∗
� (t) dt =

T0∫

0

ejω0kt e−jω0�t dt =
T0∫

0

ejω0(k−�)t dt
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There are two cases to consider for the last integral: when k = � the exponent becomes
zero, so the integral is

T0∫

0

ejω0(k−�)t dt =
T0∫

0

ej0t dt =
T0∫

0

1 dt = T0

Otherwise, when k �= � the exponent is nonzero and we can invoke the zero-integral
property in (C.4) to get

T0∫

0

ejω0(k−�)t dt =
T0∫

0

ejω0mt dt = 0

where m = k − � �= 0.
The orthogonality property of complex exponentials (C.6) simplifies the rest of the

Fourier series derivation. If we assume that the synthesis summation (C.2) is a valid
representation of x(t), then

x(t) =
∞
∑

k=−∞
ake

jω0kt (C.7)

and we can multiply both sides of (C.7) by the complex exponential v∗� (t) and integrate
over the period T0.

T0∫

0

x(t)e−jω0�t dt =
T0∫

0

( ∞
∑

k=−∞
ake

jω0kt

)

e−jω0�t dt (C.8a)

=
∞
∑

k=−∞
ak

⎛

⎝

T0∫

0

ejω0(k−�)t dt

⎞

⎠

︸ ︷︷ ︸

nonzero only when k = �

= a�T0 (C.8b)

Notice that we are able to isolate one of the complex amplitudes (a�) in (C.8b) by applying
the orthogonality property (C.6). The final analysis formula is obtained by dividing the
left-hand side of (C.8a) and right-hand side of (C.8b) by T0, giving an equation for a�.
Since � is an arbitrarily chosen index, we can replace � with k to obtain the Fourier
analysis integral previously asserted in (C.1)

A delicate step in the derivation occurs when going from (C.8a) to (C.8b) where
the order of the infinite summation and the integration is interchanged. The validity of
this manipulation depends on convergence properties of the infinite sum. If the sum
is finite, there is no problem because the integral of a sum is the sum of the integrals
of the individual terms in the sum. However, if the sum is infinite, as in the general
theory of Fourier series, then special care must be taken. A sufficient condition can be
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stated: If x(t) is a smooth function that is bounded and has only a finite number of
discontinuities and zero crossings within one period, then the interchange is permissible
and the Fourier coefficients are obtained by evaluating the Fourier integral as we have
asserted.

The fact that every periodic signal, even a discontinuous wave, can be represented as
the sum of an infinite number of sinusoids was one of the amazing claims in Fourier’s
famous thesis of 1807. Many years passed before mathematicians were able to develop
a rigorous convergence proof based on mean-square convergence to support Fourier’s
claim. In this appendix, we will give more examples of Fourier series representations of
periodic signals and discuss some of the important aspects of the mathematical theory
underlying these representations.

EXERCISE C.1 Show that since x(t) = x(t + T0), the range of integration for (C.1) can be any
convenient interval of length T0. For example, break the integral into two integrals
over [−T0/2, 0] and [0, T0/2] and then use a change of dummy variable of integration
on the one over [−T0/2, 0] prior to combining back into the form (C.1) to show that

ak = 1

T0

T0/2
∫

−T0/2

x(t)e−jω0kt dt (C.9)

EXERCISE C.2 Use (C.9) to show that if x(t) is real and even, x(−t) = x(t), then the Fourier series
coefficients are real and a−k = ak.
Hint: Use Euler’s relation to write e−jω0kt = cos(ω0kt)− j sin(ω0kt) in (C.9) and
use the facts that cos(·) is an even function and sin(·) is an odd function. Also, the
product of two even functions is even, and the product of an even function times an
odd function is odd.

C-2 Examples of Fourier Analysis

We can represent any periodic signal by using a sum of complex exponential signals, if
we constrain the frequencies to be harmonics as in (C.2). Wave shapes that do not look
at all sinusoidal, such as pulse waves, triangular waves, and rectified sinusoids have a
Fourier representation as a sum of complex exponentials, but with an infinite number of
terms. In this section, the general formulas for their Fourier coefficients ak are derived
and shown to be relatively compact.

There are four concepts to keep in mind: (1) the analysis integral that extracts complex
amplitudes {ak} from the signal x(t), (2) the spectrum plot of ak versus f , which is (3)
the frequency-domain representation of the signal x(t) as an infinite sum of harmonic
sinusoids (complex exponentials), and (4) approximate synthesis of x(t) with a finite
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number of sinusoids by truncating the infinite representation. These essential features of
Fourier analysis and synthesis are depicted in Fig. C-1. We start with the signal defined
in the time domain by a mathematical function x(t) that is known to be periodic with
period T0. In order to determine the Fourier series coefficients, we need to know x(t) over
one period as a function that can be used in the Fourier analysis integral. If the Fourier
integral can be evaluated to give a formula for the coefficients ak, then, as depicted in
the upper part of Fig. C-1, we have all the information required to plot the spectrum
of the periodic signal x(t) (i.e., we have obtained the frequency-domain representation
of the signal).

One very important point about the spectrum is illustrated in Fig. C-1: All periodic
signals with fundamental period T0 have a spectrum that looks similar to the one in
Fig. C-1. The only difference is the values of the coefficients ak. Thus, whenever we have
a spectrum that consists of harmonics, we know immediately that it is the spectrum of a
periodic signal.

In Fig. C-1, we illustrate the four Fourier concepts enumerated above beginning
with a full-wave rectified sine (FWRS) wave plotted at the bottom left of the figure. Its
spectrum is depicted schematically at the top of the figure. The details of the Fourier
analysis for the FWRS signal were presented in Section 3-5.2, but we might ask at this
point, why do we need to determine the Fourier series since it would be very easy to
write an equation that would define x(t) over one period? In fact, we must write such an
equation in order to begin the Fourier analysis calculation. The short answer is that the
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Figure C-1 Major components of Fourier analysis and synthesis showing the relationship between the original periodic
signal x(t), its spectrum, and the synthesized signal xN(t) that approximates the original.
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frequency-domain representation of the signal as a sum of complex exponentials gives
us different information that is not evident from either the equation defining one period
or the plot of the waveform shown in Fig. C-1.

This brings to the fore an important point about the concept of Fourier synthesis. In
general, the Fourier synthesis formula requires infinite limits as in (C.2), and we think of
synthesis from the spectrum as a mathematical representation of the periodic signal x(t).
From this point of view, it is sufficient to know that the Fourier series for a signal exists,
and we then use it to develop an understanding of the signal based on the spectrum and
its properties, rather than the details of the time waveform.

LAB
Synthesis of Sinusoidal
Signals

Figure C-1 has a fourth component illustrated in the lower right-hand part of the figure.
This part of the diagram suggests synthesizing a signal from the spectrum representation
of the signal. In particular, an approximate signal can be synthesized according to the
finite Fourier synthesis summation formula3

Finite Fourier Synthesis

xN(t) =
N
∑

k=−N
ake

jω0kt (C.10)

DEMO
Fourier Series
Finite Synthesis

When we regard the Fourier synthesis equation as a computational formula as in
(C.10), we sum a (necessarily) finite number of the complex exponential terms evaluated
for a range of values of t . We might want to do this simply to verify that the Fourier series
does indeed sum up to a function that closely approximates the original function definition
used to compute the coefficients ak. We could also study the rate of convergence as we
increase N toward infinity. From a more practical point of view, we may want to explore
the effect of limited bandwidth on the detailed nature of the signal. This is suggested in
Fig. C-1 by the shaded region superimposed on the spectrum. In the lower right corner of
the figure, we see the waveform that results when all frequencies above 4F0 are eliminated
from the original input signal. Thus, the resulting x4(t)might be thought of as the output
of a filtering or absorption process that removes the high-frequency signal components
that are present in the original signal. Figure C-1 shows the relationship between Fourier
analysis and Fourier synthesis using representative plots for the FWRS wave case where
the finite synthesis result with N = 4 (in the lower right corner) is an approximation to
the original FWRS wave shown (in the lower left corner).

We shall now illustrate the various aspects of Fig. C-1 by considering several
commonly used periodic signals. These examples will show that infinite limits are often
required to represent signals that occur in practical applications.

3If you have access to MATLAB, it is straightforward to write a Fourier Synthesis Program that
implements (C.10). This MATLAB programming exercise is described in more detail in the lab projects
devoted to music synthesis available on the Companion Website.



534 APPENDIX C FOURIER SERIES

C-2.1 The Pulse Wave

A simple, but very common, example is the periodic pulse wave, which is defined for one
period by

x(t) =
{

1 for 0 ≤ |t | < τ/2

0 for τ/2 ≤ |t | ≤ T0/2
(C.11)

Figure C-2 shows a plot of this signal with the basic period being infinitely repeated with
periodT0. It is called a pulse wave because it switches between one for τ seconds (the pulse
width) and zero for the remainder of the period. Pulse signals are to be found throughout
every digital hardware device, where one and zero signify on (or true), and off (or
false), respectively. In many applications where pulse waves occur, τ may be much
less than the period T0, which in turn may be very small (implying a high fundamental
frequency). When τ = T0/2, the pulse signal is commonly called a square wave because
it is on for exactly half (50%) of its period. Often the terminology is extended to “50%
duty cycle square wave.”

To obtain the Fourier series representation of the pulse wave, we must derive a formula
for the complex amplitudes ak by using the Fourier analysis integral (C.1). First note
that x(t) is most conveniently defined over the interval −T0/2 ≤ t ≤ T0/2 rather than
0 ≤ t ≤ T0. Thus, it is easiest to use the form of the Fourier analysis integral (C.9)
of Exercise C.1. After substituting x(t) defined in (C.11) into the integral (C.9), we
immediately recognize that the integral must be broken into three integrals to handle all
the cases in the definition of x(t), that is,

ak = 1

T0

−τ/2
∫

−T0/2

(0)e−jω0kt dt + 1

T0

τ/2
∫

−τ/2
(1)e−jω0kt dt + 1

T0

T0/2
∫

τ/2

(0)e−jω0kt dt (C.12)

but the first and third integrals drop out because the signal x(t) is zero for τ/2 ≤
|t | ≤ T0/2. Thus, we need only evaluate and simplify the integral from −τ/2 to τ/2 as
follows:

ak =
(

1

T0

)

e−jω0kt

−jω0k

∣

∣

∣

∣

τ/2

−τ/2

=
(

1

T0

)

e−j (2π/T0)k(τ/2) − e−j (2π/T0)k(−τ/2)

−(j2π/T0)k
= sin(πkτ/T0)

πk
(C.13)
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Figure C-2 Plot of a pulse wave signal with
fundamental frequency F0 = 1/T0 and pulse width τ .
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The formula in (C.13) is a valid expression for the Fourier coefficients of the pulse
wave for all k except k = 0, where the formula gives an indeterminate form (0/0). Thus,
we must determine the DC component directly by computing the average of x(t) over
one period. In order to do this, we return to (C.12) and set k = 0 before doing the integral,
and we obtain

a0 = 1

T0

τ/2
∫

−τ/2
(1)e−j0t dt = 1

T0

τ/2
∫

−τ/2
(1) dt

= 1

T0

(τ

2
−
(

−τ
2

))

= τ

T0

If we put this result together with (C.13), we obtain

ak =

⎧

⎪
⎨

⎪
⎩

sin(πkτ/T0)

πk
k = ±1,±2,±3, . . .

τ/T0 k = 0
(C.14)

Note that as defined in (C.11), the pulse wave is an even function of t . Therefore, as noted
in Exercise C.2, the Fourier series coefficients ak are real and they are an even function
of k (i.e., a−k = ak).

EXAMPLE C-1 Square Wave

The square wave is the special case of the pulse wave, where τ = T0/2. In this case, the
formula for the Fourier coefficients ak becomes relatively simple: all the even-indexed
coefficients (except for a0) become zero.

ak = sin(πk(T0/2)/T0)

πk
= sin(πk/2)

πk

⇒ a0 = 1

2
, a±1 = 1

π
, a±2 = 0, a±3 = −1

3π
, a±4 = 0, a±5 = 1

5π
, . . .

EXERCISE C.3 Show that the Fourier series synthesis summation for the pulse wave can be written
as

x(t) = a0 +
∞
∑

k=1

2ak cos(ω0kt)

where the ak coefficients are given by (C.14).
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C-2.1.1 Spectrum of a Pulse Wave

Figure C-3 shows the spectrum for three cases of the pulse wave whose Fourier coefficients
are given by (C.14). For added clarity, the envelope of the Fourier coefficients,

a(f ) = sin(πf τ)

πf T0
(C.15)

is plotted with a thin line as if a(f ) is a continuous function of frequency. However, the
Fourier series coefficients of the pulse wave are the values of a(f ) at discrete frequencies
kF0 (i.e., ak = a(kF0)).As shown in the plots of Fig. C-3, the envelope a(f ) in (C.15) has
a “main lobe” centered at f = 0, where the function is relatively large compared to the
“sidelobes” that surround the main lobe. The main lobe occupies the frequency interval
between the lowest frequency zeros as in Fig. C-3, which occur when πf τ = ±π , or
equivalently f = ±1/τ . When τ is equal to T0 divided by an integer as in the examples
of Fig. C-3, the envelope of the Fourier coefficients has zeros at frequencies such that kF0

is an integer multiple of 1/τ . For example, in Fig. C-3(a) where τ = T0/2, the Fourier
coefficients are zero when kF0 is an integer multiple of 1/τ = 2/T0 = 2F0. Likewise,
when τ = T0/4 the coefficients are zero for integer multiples of 4F0, and so on.

The three examples in Fig. C-3 show that the magnitude of these ak coefficients
drops off as 1/k, so they eventually become small as k increases. Even so, as defined in
Section 3-2.5, the bandwidth of any pulse wave signal is infinite because ak in (C.14)
can be nonzero for large indices as k ranges over all the integers from −∞ to +∞. In

0

(a)

0

(b)

0

(c)
f

f

f

ak

ak

ak

1

2

1

4

1

16

2F0–2F0

4F0

4F0

–4F0

–4F0

8F0–8F0

� D T0=2

� D T0=4

� D T0=16

Figure C-3 Spectrum of a pulse wave for
different pulse widths (holding T0 fixed).
(a) τ = T0/2 (square wave case) where the
mainlobe extends from −2F0 to +2F0 = 1/τ .
(b) τ = T0/4 where the mainlobe extends from
−4F0 to +4F0 = 1/τ . (c) τ = T0/16 where the
mainlobe extends from −16F0 to +16F0 = 1/τ
and no sidelobes are visible. Only the range from
k = −9 to +9 is shown, but the ak coefficients
range over −∞ < k <∞.
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Fig. C-3, we see that as the pulse width τ becomes smaller, the spectrum spreads out
to higher frequencies (i.e., the relative size of higher frequency coefficients becomes
larger). If we make the pulse width even narrower, the DC value decreases while the
higher frequency coefficients become larger relative to the low frequency coefficients.
In the limit of very narrow pulses, all the coefficients are equal but they have very small
amplitude. This is illustrated in Fig. C-3(c) where the first zero coefficient would occur
at 16F0, which is outside of the limits of the frequency scale shown.

C-2.1.2 Finite Synthesis of a Pulse Wave

Strictly speaking, the bandwidth of the pulse wave is infinite, but in a practical situation
the signal might be transmitted through a communication channel or modified by a system
that would remove frequencies above a certain limit, thereby reducing the bandwidth to a
finite value. For example, suppose that the signal bandwidth is reduced to 5F0 so that all
the frequencies above 5F0 have zero amplitude. The spectrum plots of Fig. C-3 show that
for the case τ = T0/2, the omitted coefficients would have relatively small amplitudes.
On the other hand, in the case τ = T0/16, the discarded coefficients (above 5F0) are about
the same size as the low frequency coefficients. The effect of this sort of truncation on
the time-domain signal is seen in Fig. C-4, which shows plots of

xN(t) =
N
∑

k=−N
ake

jω0kt

for N = 5 and ak in (C.14). Instead of showing the effect of increasing N , Fig. C-4
shows the effect of shortening the pulse duration when the bandwidth is restricted to 5F0.
For the widest pulse (Fig. C-4(a) with τ = T0/2), five harmonics of the fundamental are
sufficient to produce a noticeably “flat” region where the pulse is “on.” However, the
time waveform in Fig. C-4(c) shows that the bandlimited signal for τ = T0/16 does not
even reach the full pulse height. In all cases, we see oscillations during the on and off
regions, and the sharp corners of the pulse are rounded off. Both of these features are
due to the finite bandwidth of 5F0 Hz. In digital electronics, the oscillations are called
“overshoot” and “undershoot,” and the time to switch from off to on is called the “rise
time.” By increasing the bandwidth (increasing N ), we can reduce the rise time, but the
maximum overshoot will remain at about 0.09 for a unit amplitude pulse wave.4

DEMO
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In Fig. C-4(b), the pulse duration is shorter so that the pulse is rounded off; and in
the case of τ = T0/16 in Fig. C-4(c), the original pulse shape is hard to discern. Indeed,
in this case the bandlimited signal is broader than the ideal pulse and it fails to reach
the desired pulse height. Again, increasing the bandwidth will lead to a signal that more
faithfully reproduces the pulse signal—the rise time will be shorter but the oscillations
will still be present. In general, we can conclude from these examples that very narrow,
rapidly repeating pulses require very wide bandwidth for accurate reproduction.

4This overshoot is called the Gibbs phenomenon, and will be discussed in more detail in Section C-4.2.
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Figure C-4 Finite Fourier synthesis (N = 5)
for different pulse widths. (a) τ = T0/2 (square
wave case); DC level = 1/2. (b) τ = T0/4, DC
level = 1/4. (c) τ = T0/16, DC level = 1/16.

EXERCISE C.4 Describe how the waveform x5(t) would look in the case of the pulse wave when
τ = T0/8. If you have difficulty, you can synthesize x5(t) using (C.14) with this value
of τ .

EXERCISE C.5 Use MATLAB to see how the plots of Fig. C-4 would look if N in the finite Fourier
synthesis (C.10) was 21.

C-2.2 Triangular Wave

Another case that is also relatively simple to analyze is the triangular wave shown in
Fig. C-5. The mathematical formula for the triangular wave consists of two segments.
To set up the Fourier analysis integral, we choose the period from −T0/2 to +T0/2. The
definition of the waveform over that period requires two line segments:

x(t) =
{

−2t/T0 for −T0/2 ≤ t < 0

2t/T0 for 0 ≤ t < T0/2
(C.16)

The first line segment has a slope of −2/T0, the second, +2/T0. Unlike the pulse wave,
the triangular wave is a continuous signal.

Now we invoke the Fourier integral (C.1) to derive a formula for the {ak} coefficients of
the triangular wave. We might suspect from our earlier experience that the DC coefficient
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T0 Figure C-5 Triangular wave with period T0 s.

has to be found separately, so we address that case first. Using the Fourier analysis integral
(C.1) and setting k = 0, we obtain

a0 = 1

T0

T0∫

0

x(t) dt

If we recognize that the integral over one period is, in fact, the area under the triangle
from 0 to T0 in Fig. C-5, we get

a0 = 1

T0
(area) = 1

T0

(

T0

2

)

= 1

2
(C.17)

For the general case where k �= 0, we must break the Fourier series analysis integral into
two sections because the signal definition consists of two formulas:

ak = 1

T0

0
∫

−T0/2

(−2t/T0)e
−jω0kt dt + 1

T0

T0/2
∫

0

(2t/T0)e
−jω0kt dt (C.18)

The integrals are identical except for a minus sign and the limits of integration. However,
integration by parts, or an integral table, or an on-line computer algebra system such as
Wolfram|Alpha c© would be needed to carry out the actual integrals. After integration by
parts and some tedious algebraic steps, the integral for ak can be written as

ak = e−jkπ − 1

π2k2
(C.19)

Since e−jkπ = (−1)k, the numerator in (C.19) equals either 0 or −2, and we can write
the following cases for ak:

ak =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎩

−2

π2k2
k = ±1,±3,±5, . . .

0 k = ±2,±4,±6, . . .

1

2
k = 0

(C.20)

Note that in this case the coefficients are purely real and a−k = ak. This is true because
the signal is real and also an even function of t . Also observe that, as in the case of the
square wave, we cannot evaluate (C.19) for k = 0 to obtain the DC coefficient.
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Figure C-6 One-sided spectrum of a triangular
wave up to and including the 9th harmonic. The
even harmonics at f = 100, 200, 300, and
400 Hz are zero. For negative frequencies,
conjugate symmetry a−k = a∗k holds.

EXERCISE C.6 Use integration by parts to show that

∫

te−jω0ktdt = e−jω0kt

(

jω0kt + 1

ω2
0k

2

)

Then, starting from (C.18), derive the formula (C.20) for the Fourier series coefficients
of the triangular wave.

C-2.2.1 Spectrum of a Triangular Wave

A plot of the spectrum5 for the triangular wave is shown in Fig. C-6 for F0 = 50 Hz.
The complex amplitudes given in (C.20) fall off very rapidly, and only the odd-index
harmonics are present for k > 0. From the spectrum in Fig. C-6 it is easy to write down
a formula for the Fourier series representation of the triangular wave which is a time-
domain signal. For each odd index k, there are two spectrum lines, one at f = 50k and
the other at f = −50k, which can be combined.

−2

k2π2
ej2π(50k)t + −2

k2π2
e−j2π(50k)t = −4

k2π2
cos(2π(50k)t) (C.21)

The set of odd indices can be generated via k = 2�− 1 as � = 1, 2, . . . , so we can write

x(t) = 1

2
+
∞
∑

�=1

−4

(2�− 1)2π2
cos(2π(50)(2�− 1)t)
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C-2.2.2 Finite Synthesis of a Triangular Wave

The ideal triangular wave in Fig. C-5 is a continuous signal, unlike the square wave which
is discontinuous. Therefore, it is easier to approximate the triangular wave with a finite
Fourier synthesis sum (C.10). Two cases are shown in Fig. C-7, for N = 3 and 9. The
fundamental frequency is equal to F0 = 50 Hz. In the N = 9 case, the approximation is
nearly indistinguishable from the true triangularly shaped waveform but there is slight
rounding at the top and bottom of the waveform. Adding harmonics for N > 9 will

5The plot of Fig. C-6 shows only the positive-frequency half of the spectrum plot. This is a simpler, yet
sufficient, way to plot the spectrum of a real signal since the negative-frequency part can be constructed if
needed by using the conjugate symmetry of the coefficients (i.e., a−k = a∗k ).
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Figure C-7 Summing harmonic components
for a 50 Hz triangular wave via finite Fourier
synthesis (C.10). (a) N = 3. (b) Up to and
including the 9th harmonic (i.e., N = 9). The
constant DC level of 1/2 is indicated.

improve the synthesis near those points. Even the N = 3 case is a reasonably good
approximation, despite using only DC and two sinusoidal terms. We can see the reason
for this by examining the plot of the spectrum in Fig. C-6, which shows that the high-
frequency components decrease in size very quickly for k > 3. This implies that the
triangular wave can be transmitted more accurately through a bandlimiting system than
can a pulse wave of the same fundamental frequency.

C-2.3 Half-Wave Rectified Sine

A rectified sine wave is easy to produce from a pure sinusoid using a simple electronic
circuit. As discussed in Chapter 3, Section 3-5.2, the full wave rectified sine (FWRS)
finds application in AC-to-DC power converters. A related case is the half-wave rectified
sine (HWRS) signal shown in Fig. C-8 (i.e., the negative lobes of a sine wave have been
clipped off). In electronics it is easy to do such clipping with a diode. The mathematical
formula for the HWRS consists of two cases when defined over one period, 0 ≤ t ≤ T0:

x(t) =
{

sin((2π/T0)t) for 0 ≤ t < T0/2

0 for T0/2 ≤ t < T0
(C.22)

The HWRS is a continuous signal, but its first derivative is discontinuous, because the
slope changes abruptly at t = 0,±T0/2,±T0, . . ., as shown in Fig. C-8.
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x.t/

tT0 2T0
1
2
T0

T0
1
2
T0

Figure C-8 Periodic half-wave rectified sine
signal.
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When x(t) from (C.22) is used in the Fourier series analysis integral with
ω0 = (2π/T0), we must break the integral into two sections because the signal definition
consists of two pieces:

ak = 1

T0

T0/2
∫

0

sin(ω0t)e
−jω0kt dt +

������������
0

1

T0

T0∫

T0/2

(0)e−j (2πT0)kt dt (C.23)

As in the FWRS case, we can use the inverse Euler relation for sine to write the remaining
integral as the sum of two integrals

ak = 1

2jT0

T0/2
∫

0

ejω0(1−k)t dt + −1

2jT0

T0/2
∫

0

e−jω0(1+k)t dt (C.24)

In (C.24) the special cases of k = ±1 must be handled separately by substituting k = ±1
before the integration is carried out. For example, when k = 1, we get

a1 = 1

2jT0

T0/2
∫

0

1 dt +
����������� 0

−1

2jT0

T0/2
∫

0

e−jω0(2)t dt = 1

4j
= −j 1

4
(C.25)

The second integral is zero because the period of the complex exponential e−jω0(2)t

is T0/2 and (C.4) applies.
After integrating the complex exponentials in (C.24) and simplifying numerous

complex-valued expressions, the final result for ak can be written as

ak =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

1

π(1− k2)
for k even

∓j 1

4
for k = ±1

0 for k = ±3, ±5, . . .

(C.26)

Note that the DC component is a0 = 1/π ≈ 0.3183, which is exactly half the DC
component of the FWRS. This is because the HWRS signal is zero over the last half
of its period.
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EXERCISE C.7 Starting from the integrals in (C.24), derive the formula in (C.26) where k is
even for the Fourier series coefficients of the HWRS. Exploit complex exponential
simplifications such as ej2πk = 1, ejπ = −1, and so on.

C-2.3.1 Finite Synthesis of a Half-Wave Rectified Sine

Since the ideal HWRS signal in Fig. C-8 is a continuous signal, a finite Fourier sum
approximation (C.10) can be expected to be better for a given number of coefficients than
for the discontinuous square wave. Two cases are shown in Fig. C-9, for N = 2 and 8.
In the N = 8 case, the approximation is very close to the original waveform, but small
ripples are visible. Adding harmonics for N > 8 will improve the synthesis just a little
bit by reducing the ripples. The N = 2 case exhibits noticeable ripples because it is only
using DC and two sinusoidal terms.

DEMO
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It is possible to explain these differences by examining the spectrum, which will
show that the relative magnitudes of the higher frequency components being dropped for
k > 2 are quite small. A plot of the spectrum for the HWRS is shown in Fig. C-10 for
F0 = 50 Hz. The complex amplitudes given in (C.26) fall off very rapidly, and only the
even-index harmonics are present for k > 1.

From the spectrum in Fig. C-10 it is easy to write down a formula for the Fourier
series representation of HWRS waveform. For each index k, there are two spectrum lines,
one at f = 50k and the other at f = −50k, which can be combined. For example, when
k is even and k > 0

1

π(1− k2)
ej2π(50k)t + 1

π(1− k2)
e−j2π(50k)t = 2

π(1− k2)
cos(2π(50k)t) (C.27)

The set of even indices can be generated via k = 2� as � = 1, 2, . . . , so we can write

x(t) = 1

π
+ 1

2
sin(2π(50)t)+

∞
∑

�=1

2

π(1− (2�)2) cos(2π(50)(2�)t)
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Figure C-9 Summing harmonic components for
the half-wave rectified sine signal using finite
Fourier synthesis (C.10). (a) N = 2. (b) Up to and
including the 8th harmonic (i.e., N = 8). The
fundamental frequency is F0 = 50 Hz. The
constant DC level of 0.3183 is indicated in both
plots.



544 APPENDIX C FOURIER SERIES

0 50 100 200 300 400 500  f

�j

4

�1
3�

�1
15�

�1
35�

�1
63�

�1
99�

1
� Figure C-10 One-sided spectrum of a half-wave

rectified sine signal up to and including the 10th

harmonic. The fundamental frequency is F0 = 50 Hz.
The odd harmonics at f = 150, 250, 350, and 450 Hz
are zero. For negative frequencies, conjugate
symmetry a−k = a∗k holds.

It can be seen from the above analysis that half-wave rectification is another way to
obtain a signal with a nonzero DC level from the sinusoidal signal that is available from
the power company. The major difference from the FWRS signal is that the fundamental
frequency of the HWRS output is half that of the FWRS fundamental. For the DC power
supply application, this makes it somewhat more difficult to smooth out the ripples and
achieve a constant output.

C-3 Operations on Fourier Series

In signal processing, when we manipulate signals we need to predict how the signal will
change. One of the great advantages of the Fourier series representation of periodic signals
is that operations on the signal x(t) often have very simple corresponding operations on
the Fourier coefficients. These relationships are often referred to as properties of the
Fourier series representation. In Chapter 3, Section 3-3, we presented several properties
of the spectrum of a sum of sinusoids. Since the Fourier series representation is the
spectrum of a periodic signal, most of these properties must hold for the Fourier series.
This spectrum must have harmonic spectrum lines, so the only complication that might
arise is whether the operation would affect the harmonic nature of the spectrum lines, or
equivalently, the periodicity of the signal. This section revisits these properties and gives
several examples.

C-3.1 Scaling or Adding a Constant

A quick look at Section 3-3.1 reminds us that scaling is a simple property because
multiplying a periodic signal by a scale factor (i.e., γ x(t)), will multiply all its Fourier
series coefficients by the same scale factor (γ )

γ x(t) =
∞
∑

k=−∞
(γ ak)e

jω0kt

Likewise, we recall that when adding a constant only the DC component of the spectrum
will change

x(t)+ c = (a0 + c)
︸ ︷︷ ︸

new DC value

+
∑

k �=0

ake
jω0kt

Neither of these operations will change the period of the signal, so the properties in
Section 3-3.1 are true for the Fourier series.
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EXAMPLE C-2 New Square Wave

Define a bipolar square wave as follows:

y(t) =
{

+1 for 0 ≤ t < T0/2

−1 for T0/2 ≤ t < T0

This square wave can be related to the zero-one square wave of Example C-1 via y(t) =
2(x(t)−1/2). Subtracting 1/2 from x(t)will change only the DC value, then multiplying
by two will double the size of all the Fourier coefficients. Since the Fourier coefficients
of the zero-one square wave are

ak =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

1/2 for k = 0
−j
kπ

for k odd

0 for k = ±2,±4, . . .

the Fourier coefficients {bk} for y(t) are

bk =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

2(a0 − 1/2) = 0 for k = 0

2ak = 2

(−j
kπ

)

for k odd

0 for k = ±2,±4, . . .

C-3.2 Adding Signals

Another simple operation is addition, but there are two cases: If the two periodic signals
have the same fundamental frequency, then the Fourier coefficients are summed

x(t)+ y(t) =
∞
∑

k=−∞
(ak + bk)ejω0kt

where the Fourier coefficients of x(t) and y(t) are {ak} and {bk}, respectively. There are
special situations where ω0 could change after the addition (see Problem P-C.11).

If the fundamental frequencies are different, the situation is more complicated because
the sum signal might not even be periodic. If the sum signal is periodic, finding the new
fundamental frequency for the sum involves a gcd (greatest common divisor) operation.
Then using the new fundamental frequency, all the Fourier coefficients must be re-indexed
prior to adding the Fourier coefficients.
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C-3.3 Time-Scaling Property

A basic property of the Fourier series is that the Fourier coefficients are determined
by the wave shape over one period, while the fundamental frequency is determined
by the duration of the fundamental period. The operation of time-scaling, which is
defined by the equation y(t) = x(αt), will change the length of each period but
leave the wave shape the same. If x(t) is a periodic signal with period T0 and the
scaling constant is 0 < α <∞, then the period of y(t) is T0/α. In this case, we can
determine the Fourier series coefficients of y(t) by applying the time-scale operation
to the Fourier series representation of x(t). Thus, the following two expressions are
equivalent:

x(αt)=
∞
∑

k=−∞
ake

j (2π/T0)k(αt) (C.28a)

y(t)=
∞
∑

k=−∞
ake

j (2π/(T0/α))kt (C.28b)

We recognize (C.28b) as the Fourier series for a periodic function with period T0/α,
or fundamental frequency αF0. Thus, if α < 1, the period is greater than T0 and
the fundamental frequency is lower than F0. When α > 1, the opposite is true. The
key observation is that the Fourier series coefficients of the time-scaled signal x(αt)
are identical to those of the original signal x(t), only the fundamental frequency
changes.

EXERCISE C.8 Verify that the sum in (C.28b) produces a signal that satisfies y(t + T0/α) = y(t),
and, therefore, the period of y(t) = x(αt) is T0/α if the period of x(t) is T0.

EXAMPLE C-3 Time-Scaling Pulse Waves

For pulse waves, we have already derived a formula (C.14) for the Fourier coefficients,
ak, and we can easily show that the time-scaling property is true for all pulse signals
with the same ratio between pulse duration and period, τ/T0. The formula (C.14) for the
Fourier coefficients of a pulse wave is repeated below

ak =
⎧

⎨

⎩

sin(πk(τ/T0))

πk
k = ±1,±2,±3, . . .

τ/T0 k = 0

Since τ and T0 always appear together as the ratio τ/T0, the ak coefficients depend only
on the ratio.

For example, when the period is 50 ms and the pulse width is 10 ms, the ratio
τ/T0 = 0.2. Thus, we can determine the Fourier coefficients for all cases where
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τ/T0 = 0.2 by using the Fourier analysis integral for a 0.2 s pulse repeated with a period
of 1 s. The following integral is for a pulse length of τ ′ with a period of 1 s

ak =
τ ′/2
∫

−τ ′/2
e−j2πktdt

so the limits on the integral are ±τ ′/2 = ±(τ/T0)/2 = ±0.1 for this case. This integral
has fewer symbols to complicate the integration and subsequent algebraic manipulations.
It would be ideal for use with symbolic analysis programs such as Wolfram|Alpha.

EXERCISE C.9 Type in the following code to Wolfram|Alpha and interpret the result:

int_(-tau/2)ˆ(tau/2) eˆ(-i 2 pi k t) dt

C-3.4 Time-Shifting Property

In Section 3-3.3, the time-shifting property of the spectrum was derived. Since the Fourier
series defines a harmonic spectrum, it must obey the same property. If we form a new
periodic signal y(t) by time shifting x(t), then there is a simple change in the Fourier
coefficients {ak}, which are the spectrum of x(t). If the Fourier coefficients of y(t) are
{bk}, then the time-shifting property of the spectrum implies

Time Shifting Property
y(t) = x(t − τd) ←→ bk = ake−jω0kτd

Thus, time-shifting x(t) will multiply its Fourier coefficients ak by a complex
exponential.

EXAMPLE C-4 Delayed Triangular Wave

Consider a triangular wave x(t) with period T0 = 0.04 s, as depicted in the
top plot of Fig. C-11. The Fourier series coefficients ak for the triangular
wave x(t) are given by (C.20) and the period is T0 = 0.04 s, so ω0 = 50π .
Therefore, the Fourier series coefficients of the delayed signal y(t) = x(t − 0.01)
are bk = ake−j (50π)k(0.01) = ake−jπk/2 = (−j)kak or

bk = (−j)kak =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

j2(−1)k+1

π2k2
k = ±1,±3,±5, . . .

0 k = ±2,±4,±6, . . .

1/2 k = 0

(C.29)
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(a) Triangular Wave
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(b) Triangular Wave Delayed by 0.01 s
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1
2

y.t/

x.t/

Figure C-11 Illustration of time delay. (a) Triangular
wave with period T0 = 0.04 s. (b) Triangular wave
delayed by 0.01 s.

For convenience in making the plot, the waveforms of Fig. C-11 were created with
the finite sum in (C.10) usingN = 35 and ak from (C.20) and bk from (C.29). The errors
at the slope discontinuities are so small as to be unnoticeable on the scale of plotting.
Thus, the figure gives further evidence that the Fourier series approximation converges
uniformly with large N if the signal is continuous.

C-3.5 Differentiation Property

In Section 3-3.4, if we form a new signal y(t) by taking the derivative of x(t), then y(t) is
also periodic with the same period and its Fourier coefficients can be obtained as follows:

Differentiation Property

y(t) = d

dt
x(t) ←→ bk = (jω0k)ak

Assuming that the derivative operator can be applied to each term in the Fourier series
for x(t), we get

y(t) = d

dt
x(t) =

∞
∑

k=−∞
ak
d

dt
ejω0kt =

∞
∑

k=−∞
(jω0k)ak
︸ ︷︷ ︸

bk

ejω0kt

Thus, differentiating x(t) will multiply its Fourier coefficients ak by (jω0k).

EXAMPLE C-5 Differentiated Triangular Wave

Consider a triangular wave x(t) as depicted in the plot of Fig. C-12(a). The derivative is
the slope of the linear segments, but is discontinuous at t = 0, 0.02, 0.04, . . . ; hence,
the derivative is a square wave as shown in Fig. C-12(b). In general, the Fourier
series coefficients ak for the triangular wave x(t) are given by (C.20). When the
period is T0 = 0.04 s, ω0 = 2π/(0.04) = 50π , so the Fourier series coefficients of the
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Figure C-12 Illustration of time differentiation.
(a) Triangular wave. (b) Derivative of the triangular
wave. (c) Finite Fourier sum approximation using bk
for −35 ≤ k ≤ 35.

differentiated signal y(t) are bk = (j50πk)ak, or

bk = (j50πk)ak =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

50
(−2j)

πk
k = ±1,±3,±5, . . .

0 k = ±2,±4,±6, . . .

0 k = 0

(C.30)

These are the Fourier series coefficients for a square wave that varies between +50
and −50. The DC value is zero because the multiplier (j50πk) is zero for k = 0. The
plot in Fig. C-12(c) was constructed using (C.30) and the finite synthesis sum (C.10)
with N = 35. Like the pulse waveform synthesis in Fig. C-3, we see ripples near the
discontinuities.Away from the points of discontinuous slope, however, the approximation
converges to +50 and −50, which are the slopes of the triangular wave in the first and
last half of the period, respectively.

C-3.6 Frequency-Shifting Property and Multiplying by a Sinusoid

If you multiply a periodic signal by a complex exponential, the Fourier series components
will move in frequency, but their values will be unchanged. From Section 3-3.5 we expect
frequency shifting of the spectrum lines (up or down). When multiplying by a sinusoid,
which is the sum of two complex exponentials, the spectrum will be the sum of two
frequency-shifted spectra, one shifted up and the other down. Figure C-13 presents an
example of multiplying a periodic pulse wave x(t) by a sinusoid at twelve times the
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x.t/cos.2 12=T0/t/
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tT0 2T0T
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T
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8

T0 Figure C-13 Illustration of sinusoidal
multiplication. (a) Pulse wave with τ = T0/4.
(b) After multiplication by a cosine wave whose
frequency, 12F0, is 12 times the fundamental
frequency of the pulse wave.

fundamental frequency of x(t). The pulse wave has Fourier series representation using
the coefficients {ak},

x(t) =
∞
∑

k=−∞
ake

jω0kt (C.31a)

and the cosine wave can be written as the sum of two complex exponentials

cos(12ω0t) = 1

2
ej12ω0t + 1

2
e−j12ω0t (C.31b)

Using the Fourier representation, the product is

y(t) = x(t) cos(12ω0t) =
( ∞
∑

k=−∞
ake

jω0kt

)
(

1

2
ej12ω0t + 1

2
e−j12ω0t

)

(C.31c)

The product signal, y(t), will be periodic since T0 is a period of the cosine wave. Thus,
the fundamental frequency of y(t) will also be F0, and y(t) has a Fourier series with
coefficients that will be denoted as {bk}.

y(t) =
∞
∑

k=−∞
bke

jω0kt (C.31d)

After we expand (C.31c) into two summations, we can identify the frequency shifting of
the spectrum of the pulse wave Fourier series, which is shown in Fig. C-14(a). This is
illustrated by (C.31e) and Figs. C-14(b) and (c). The first sum in (C.31e) is the spectrum
in Fig. C-14(b); the second sum is Fig. C-14(c).

∞
∑

k=−∞
bke

jω0kt = 1

2

∞
∑

k=−∞
ake

jω0(k+12)t + 1

2

∞
∑

k=−∞
ake

jω0(k−12)t (C.31e)

In order to combine the sums, we must change the index of summation so the complex
exponential is the same in both, which gives

∞
∑

k=−∞
bke

jω0kt = 1

2

( ∞
∑

�=−∞
a�−12e

jω0(�)t +
∞
∑

�=−∞
a�+12e

jω0(�)t

)

(C.31f)
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Figure C-14 Frequency shifting for a periodic
pulse wave. (a) Spectrum of a pulse wave with
τ = T0/4. (b) Spectrum for the pulse wave
multiplied by e+j12ω0t which shifts the spectrum
in (a) up to be centered at 12ω0 = 2π(12F0).
(c) Spectrum for the pulse wave multiplied by
e−j12ω0t which shifts the spectrum down.
(d) Spectrum for the pulse wave multiplied by
cos(12ω0t).

Finally, we see that the Fourier series coefficients {bk} for y(t) are

bk = ak−12 + ak+12

2
for all k (C.32)

This spectrum for (C.32) is shown in Fig. C-14(d), where the two shifted copies in
Figs. C-14(b) and (c) have been added together after scaling by 1/2. In general, the
addition of the two shifted spectra involves a complex phasor addition, but this case is
simple because the cosine has zero phase and the {ak} coefficients of the pulse wave are
real.

C-4 Average Power, Convergence, and Optimality

Parseval’s Theorem for the Fourier series establishes an equivalence between the sum of
the squares of the Fourier coefficients and the signal power. In effect, a spectrum plot of the
coefficients {|ak|2} can be interpreted as the distribution of signal power versus frequency.



552 APPENDIX C FOURIER SERIES

Therefore, when the Fourier series of a signal has only a few large coefficients, we can
determine what fraction of the signal power is contained in those frequency components.
Likewise, when we truncate the Fourier series and synthesize a signal from a finite
Fourier sum like (C.10), we can estimate the approximation error by summing |ak|2 for
the coefficients being dropped. This concept underlies audio compression methods such
as MP3, and also JPEG image compression, which achieve low bit rates by operating on
a frequency domain representation of the signal.

The average power of the periodic signal x(t) is the total energy6 of one period of
x(t) divided by the period.

P = 1

T0

T0∫

0

|x(t)|2dt. (C.33)

The average power is a convenient measure of the size (or strength) of the periodic signal.

EXAMPLE C-6 Average Power of a Sinusoid

For the case where x(t) = A cos (ω0t + ϕ), the average power integral

Ps = 1

T0

T0∫

0

|A cos (ω0t + ϕ) |2dt

can be evaluated directly, by using the trigonometric identity | cos θ |2 = cos2 θ =
1
2 (1+ cos 2θ) to simplify the integrand

Ps = 1

T0

T0∫

0

1
2A

2dt + 1

T0

T0∫

0

1
2A

2 cos(2ω0t + 2ϕ)dt

︸ ︷︷ ︸

integral over two periods is zero

= 1
2A

2

Note that the average power depends only on the amplitude of the sinusoidal signal.

The result in Example C-6 can be related to the Fourier series coefficients if we recall
that Euler’s formula leads directly to the Fourier series of one sinusoid, i.e.,

A cos(ω0kt + ϕ) = 1
2Ae

jϕejω0kt + 1
2Ae

−jϕe−jω0kt (C.34)

6The “total energy” of a signal is defined as

E =
∞
∫

−∞
|x(t)|2dt

This terminology comes from physics where if x(t)were a velocity, the kinetic energy would be proportional
to the square of velocity, or x2. The total energy of a periodic function would be infinite, but the average
power, being an integral over 0 to T0, is generally finite.
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The Fourier series has only two nonzero coefficients, ak = 1
2Ae

jϕ and a−k = 1
2Ae

−jϕ .
Now consider a single complex exponential signal xk(t) = akejω0kt as would appear in a
general Fourier series representation. Since |xk(t)| = |ak|, its average power is

Pk = 1

T0

T0∫

0

|xk(t)|2dt = 1

T0

T0∫

0

|ak|2dt = |ak|2

so the average power of a single complex exponential is its magnitude squared.Adding the
average powers of the two complex exponentials in (C.34) turns out to give an alternate
way to obtain the average power of the sinusoid:

Ps = |ak|2 + |a−k|2 = | 12Aejϕ|2 + | 12Ae−jϕ|2 = 1
2A

2 (C.35)

This is not a coincidence. It is a special case of a more general result that holds when the
Fourier series has more than two coefficients. The general result given below is known
as Parseval’s Theorem, and it applies to any periodic signal x(t) that has a Fourier series:

Parseval’s Theorem

P = 1

T0

T0∫

0

|x(t)|2dt =
∞
∑

k=−∞
|ak|2 (C.36)

EXERCISE C.10 Use Parseval’s Theorem to determine the average power of the signal

x(t) = 2 cos(200πt)+ sin(400πt)

whose period is 10 ms.

EXERCISE C.11 Explain why the average power of the signal x(t) = 2 sin(120πt)+ cos(240πt) is
the same as the average power of that of the signal in Exercise C.10.

EXERCISE C.12 Use Parseval’s Theorem to complete the proof of the famous formula:

π2

M
=
∞
∑

k=1

1

k2

by finding the numerical value of the integer M . In the history of mathematics, this
was known as the Basel problem, which was solved by Euler in 1735.
http://en.wikipedia.org/wiki/Basel_problem

Hint: use Parseval’s Theorem with the square wave and its Fourier series coefficients.

../../../../../en.wikipedia.org/wiki/Basel_problem
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C-4.1 Derivation of Parseval’s Theorem

It is relatively straightforward to demonstrate the validity of Parseval’s Theorem. The
average power of a periodic signal can be expressed as

P = 1

T0

T0∫

0

|x(t)|2dt = 1

T0

T0∫

0

x(t)x∗(t)dt (C.37)

Recall that the conjugate of a sum is equal to the sum of the conjugates. If the Fourier
series representation of x(t) exists, then the complex conjugate of the periodic signal can
be represented by the Fourier series

x∗(t) =
( ∞
∑

k=−∞
ake

jω0kt

)∗
=

∞
∑

k=−∞
a∗k e
−jω0kt (C.38)

Substituting (C.38) into (C.37) and interchanging the order of integration and summation
gives the desired result:

P = 1

T0

T0∫

0

x(t)

( ∞
∑

k=−∞
a∗k e
−jω0kt

)

dt

=
∞
∑

k=−∞
a∗k

⎛

⎝

1

T0

T0∫

0

x(t)e−jω0ktdt

⎞

⎠

︸ ︷︷ ︸

=ak

=
∞
∑

k=−∞
a∗k ak =

∞
∑

k=−∞
|ak|2 (C.39)

Therefore, we have demonstrated that the average power of a periodic signal is equal to the
sum of the average powers of the individual complex exponential signals that comprise
the Fourier series representation of the periodic signal.7

C-4.2 Convergence of Fourier Synthesis

We can think of the finite Fourier synthesis sum (C.10) as making an approximation to
the true signal, i.e.,

x(t) ≈ xN(t) =
N
∑

k=−N
ake

jω0kt

7It should be noted that implicit in the above demonstration of the validity of the Parseval Theorem, is
that the frequencies are harmonically related so that the term within the large parentheses on the second line
of the derivation of (C.39) is, in fact, the Fourier integral for obtaining ak from x(t). An alternate derivation
would use the Fourier series representation for both x(t) and x∗(t) and then invoke the orthogonality of the
harmonically related complex exponentials to eliminate integrals involving different frequencies.
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Figure C-15 Summing harmonic components
via the finite Fourier synthesis sum (C.10).
(a) N = 7. (b) N = 13.

In fact, our discussion so far suggests that with enough terms in the sum, the approximation
will be perfect (i.e., xN(t)→ x(t), as N →∞). This is illustrated by Fig. C-15, which
shows the square wave approximations for N = 7 and N = 13.

DEMO
Fourier Series
Finite Synthesis

One way to assess the quality of the approximation is to define an error signal,
eN(t) = x(t)−xN(t), that measures the difference between the true signal and the signal
that would be synthesized with N terms. Then we can quantify the error by measuring a
feature of the error. For example, a commonly used feature is the maximum magnitude
of the difference over one period, which is called the worst-case error.

Eworst = max
t∈[0,T0)

|x(t)− xN(t)| (C.40)

For the square wave, |eN(t)|, the absolute value of the error, is shown in Fig. C-16
for N = 7 and N = 13. Figure C-16 was generated with period T0 = 0.04 s by using
the Fourier coefficients from Example C-1 in a MATLAB script to generate a plot of
the absolute error. Since the ideal square wave is discontinuous, the worst-case error
is always half the size of the jump in the waveform precisely at the discontinuity
point. The more interesting feature of the absolute error comes from examining the
size of the “ears” seen in Fig. C-15 on either side of the discontinuity. In Fig. C-16,
this overshoot error is found on either side of the large peaks of the error: in e7(t) at
t ≈ 0.0025 s, with size 0.092; in e13(t) the overshoot peak occurs at t ≈ 0.00143 s, and
is of height 0.09. In fact, it has been proven that as N increases, the overshoot peak
moves closer to the discontinuity, but the peak height remains at about 9% of the size
of the discontinuity. (For these examples, the size of the discontinuity jump is one.)
The mathematical analysis of this approximation error was first published by J. Willard
Gibbs8 in 1898, and is now referred to as the Gibbs phenomenon in the theory of Fourier
series.

If we perform a similar error analysis for the triangular wave, or the rectified sines, the
worst-case error is well-behaved because these signals are continuous. The worst-case

8Gibbs received the first American doctorate awarded in engineering from Yale in 1863.
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(a) Error with 1st through 7th Harmonics

(b) Error with 1st through 13th Harmonics

Figure C-16 Error magnitude when
approximating a square wave with a sum of
harmonic components xN(t) via finite Fourier
synthesis (C.10). (a) N = 7. (b) N = 13.

error will converge to zero as N →∞ (i.e., there is no Gibbs phenomenon). For the
N = 3 and N = 9 approximations of the triangular wave, the worst-case errors can be
measured by making a zoomed version of Fig. C-7. When these errors are measured, the
result is 0.0497 forN = 3 and 0.0202 forN = 9. Since there is no discontinuity involved,
these worst-case errors get smaller as N increases.

EXERCISE C.13 Carry out a measurement of the worst-case error for the full-wave rectified sine signal
when approximating with N terms for N = 3 and N = 9.

C-4.3 Minimum Mean-Square Approximation

Worst-case error only measures point-wise convergence of the approximation to the ideal
signal, but it is not the only way to measure the size of the approximation error difference.
In fact, to prove convergence of the Fourier series for all signals including the square
wave, another error measure has been developed. This is the mean-square error, where
the measurable feature of the approximation error is an averaging integral of the squared
error over the whole period. The mean-square error is the average power in the error
signal eN(t) = x(t)− xN(t), which is denoted EN and defined as

EN = 1

T0

T0∫

0

|x(t)− xN(t)|2 dt

where x(t) is a periodic signal and xN(t) is any finite Fourier series written as

xN(t) =
N
∑

k=−N
αke

jω0kt (C.41)
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Here the coefficients αk are not necessarily equal to the coefficients ak derived from x(t)

by doing the Fourier series analysis integral. The question then is the following: If we
want to minimize the error EN , how should we choose the finite set of coefficients αk for
−N ≤ k ≤ N to best approximate the periodic signal x(t), which we know is represented
exactly by the infinite Fourier series with coefficients ak? To answer this question, we
begin by writing

eN(t) = x(t)− xN(t)

=
∞
∑

k=−∞
ake

jω0kt −
N
∑

k=−N
αke

jω0kt =
∞
∑

k=−∞
(ak − αk)ejω0kt (C.42)

where, by definition, αk = 0 for |k| > N . Now using Parseval’s Theorem, we can express
the mean-square approximation error as

EN = 1

T0

T0∫

0

|x(t)− xN(t)|2 dt =
∞
∑

k=−∞
|ak − αk|2 (C.43)

Since αk = 0 for |k| > N , the error EN can be written as

EN =
N
∑

k=−N
|ak − αk|2 +

∑

|k|>N
|ak|2 (C.44)

Equation (C.44) provides the answer to our question. Since all the individual terms in the
sums on the right-hand side are positive, it follows that if we choose αk = ak for −N ≤
k ≤ N , then the first sum is zero and the second sum over all the Fourier coefficients,
where |k| > N will be the residual mean-square error of the approximation. Thus, we
can state that the choice αk = ak for |k| ≤ N minimizes the mean-square approximation
error for a finite number of terms. Since all the terms in the second sum are positive,
we conclude that the mean-square approximation error always decreases as we add more
terms (increase N ), because we have fewer terms remaining in (C.44). Thus, the infinite
Fourier series converges in the sense that the mean-square approximation error goes to
zero if we include all the terms in the Fourier series. Therefore, by using the mean-square
error measure, the theory of Fourier series can be made mathematically rigorous even for
discontinuous signals like the square wave.

Convergence in the mean-square sense may be a somewhat surprising result if we
recall the Gibbs behavior shown in Fig. C-16. However, if we increaseN to a large value,
the plot of the approximation error magnitude will retain the shape of those in Fig. C-16,
but the oscillations will be very fast over the entire period and very small except in a
narrow vicinity around the discontinuity. We can already see this from a comparison of
|e7(t)| and |e13(t)|. We can say intuitively that in the limit of large N , all of the error
occurs at the single discontinuity point and the integral of the squared error approaches
zero. Note, however, that with this interpretation, the worst-case error is still half the size
of the discontinuity, but it occurs only at one point on each period of the waveform.



558 APPENDIX C FOURIER SERIES

EXERCISE C.14 Make a plot of |e100(t)| over one period of the square wave and compare it to the plots
in Fig. C-16. In order to obtain a plot that shows the behavior of the approximation
around the discontinuity, it will be necessary to evaluate the error signal at thousands
of time instants across one period.

C-5 The Spectrum in Pulsed-Doppler Radar Waveform Design

Radar is a system for using electromagnetic wave propagation to measure the distance
from a fixed antenna to another (possibly moving) object. The design of signals for use in
radar is an example where the spectrum provides mathematical insight about trade-offs
in the selection of time-domain parameters of waveforms. The frequency-shifted pulse
wave of Fig. C-13 is the basis for the pulsed-Doppler radar waveform used in many radars.
The same waveform is used in the biomedical application of ultrasound to measure blood
flow. This waveform enables simultaneous measurement of range and velocity, and is
needed in systems where a single transducer is used to transmit and receive the signals.
This section describes how the spectrum can be used to understand the radar waveform
design problem.

C-5.1 Measuring Range

The word RADAR is an acronym for RAdio Detection And Ranging. The simplest
radar measurement is range to a target (or reflector). The basic principle of range
measurement is illustrated by Fig. C-17. A short pulse is transmitted through
the atmosphere, it reflects off of an object, and returns to the receiving antenna.
Range is determined by measuring the time elapsed from the beginning of the
pulse until the reflected pulse arrives back at the sending location. In radar
systems, a single antenna is used both to transmit and to receive the signal.9

Figure C-18 shows that the transmitted radar signal must be very short if the transmit and
receive antenna is shared, because the signal travels at the speed of light, c = 3×108 m/s,

Range = d

Figure C-17 Illustration of radar system
for tracking rain clouds.

9Ultrasound systems use high-frequency acoustic transducers.
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Figure C-18 Illustration of pulsed radar
signals: transmitted pulse and received echo
delayed by the two-way travel time.
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Figure C-19 Pulsed high-frequency radar
transmitted signal r(t) and received echoes.
The pulse repetition interval is T0 s. The radar
frequency is Fr Hz.

and we must be able to distinguish between the transmitted pulse and its echo from the
target. For example, if we want to detect a close reflecting target at 1500 m range, then
the two-way travel time (out to the target and back) is

τd = 2

(

d

c

)

= 2

(

1500

3× 108

)

= 1000× 10−8 = 10μs

In order to receive the returned pulse at this time without confusion, the transmitted pulse
signal must be off (zero) as shown in Fig. C-18, so its duration τ would have to be less than
10μs. On the other hand, a more distant target at 120 km would have a two-way travel
time of 800μs, so the close target distance at 1500 m imposes a much tighter constraint
on the duration of the transmitted pulse.

In Fig. C-18, the transmitted pulse is shown as a simple on–off waveform. However,
practical radar systems transmit periodic pulsed sine wave signals of the form

r(t) = p(t) cos(2πFrt + ϕ) (C.45)

where p(t) is the on/off periodic pulse signal as in Fig. C-13(a). Such a signal is shown in
Fig. C-19 along with the received echoes from the pulses. As suggested by Fig. C-14(d),
the spectrum of the periodic sinusoidal pulse signal r(t) in (C.45) is centered on Fr . By
adjusting the center frequency Fr of the sinusoidal pulses, the radar signal spectrum can
be positioned at frequencies where electromagnetic transmission is most efficient. Each
pulse “samples in range” the environment along a direction determined by the antenna
orientation. By sending repeated pulses and rotating the antenna, it is possible to scan a
surrounding region of space.As we will see below, the periodic sinusoidal pulse waveform
also allows the tracking of the velocity of targets.

C-5.2 Measuring Velocity from Doppler Shift

The measurement of velocity is based on the Doppler-shift principle, which is experienced
in everyday life, for example, as the changing sound of a horn on a moving train. When
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the train is coming toward the listener the frequency of the sound from the horn goes up;
after the train passes and moves away from the listener, the frequency drops. In radar,
the same frequency shift happens when the reflecting target is moving toward, or away
from, the radar antenna. Doppler shift is the basis of police radar used to catch speeders
on a highway, and also weather radar which measures wind velocity from reflections off
of rain drops and other wind-blown particles.

To understand the Doppler phenomenon, it is helpful to begin by assuming that the
transmitted radar signal is the continuous-wave (not pulsed) sinusoid

s(t) = A cos(2πFrt + ϕ) (C.46)

As depicted in Fig. C-17, the transmitted signal propagates from the radar antenna and
is reflected by a target such as a moving rain cloud at nominal range d0 and moving
with velocity v relative to the radar antenna (which is also the receiving antenna). In
other words, the target distance in Fig. C-17 varies with time as d(t) = d0 − vt , where
it is assumed for simplicity that v is positive in the radial direction from the target to
the receiving antenna. Assuming that the velocity v is small compared to the speed of
electromagnetic propagation c = 3×108 m/s, the roundtrip time delay from the antenna
to the target and back to the antenna is τd = 2(d0−vt)/c. Therefore, the continuous-wave
signal received back at the antenna is

ŝ(t) = B cos(2πFr(t − τd)+ ϕ) = B cos(2πFr(1+ 2v/c)t − 4πd0Fr/c + ϕ)
where B denotes the (usually much smaller) amplitude of the returned sinusoidal signal.
Thus, the return signal has frequencyFr+Fd = Fr(1+2v/c) and the amount of frequency
shift is seen to depend on the radial velocity of the target relative to the velocity of signal
propagation—that is, the Doppler frequency shift Fd is

Fd = 2
v

c
Fr Hz (C.47)

where v is the radial velocity of the target, and Fr is the radio frequency used by the radar.
Because c is very large compared to velocities of even supersonic aircraft, the Doppler
shift is small compared to the typical radar frequency Fr . For example, for a 1 GHz radar,
wind in a rain storm at 30 m/s (≈ 67 mph) will produce a Doppler shift of

Fd = 2(30)

3× 108
109 = 200 Hz

The model for the Doppler phenomenon is easy to state in the frequency domain.
If we assume that the radar signal (or train horn) is a pure sinusoid, then its spectrum
consists of two lines at ±Fr . When the Doppler shift is positive, Fd > 0, the spectrum
lines are shifted up to±(Fr +Fd); for negative Doppler, Fd < 0, the lines at±(Fr +Fd)
are shifted down. The radar receiver must be able to measure the amount of frequency
shift, and then the velocity can be obtained from (C.47) via

v = 1

2

c

Fr
Fd m/s (C.48)
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Because the frequency shift is extremely small compared to Fr , accurate measurement
of target velocity relies on detecting very small movement of a spectrum line from Fr to
Fr ± Fd .

Although we asserted that the spectrum consists of two lines, this is only true if the
transmitted time signal is an infinitely long sinusoid,A cos(2πFrt +ϕ), which is useless
for measuring range where a short pulse (e.g., τ = 10μs) is needed for detecting the
time delay τd . The clever solution to this dilemma is the frequency-shifted periodic pulse
signal shown in Fig. C-19. In radar, this signal is called the pulsed-Doppler waveform.

C-5.3 Pulsed-Doppler Radar Waveform

Recall that the frequency-shifted sinusoidal signal being transmitted is

r(t) = p(t) cos(2πFrt + ϕ) −∞ < t <∞ (C.49)

where p(t) is a periodic on/off signal with pulse duration τ and pulse repetition period
T0 = 1/F0. Although it is not a required condition, it simplifies our discussion here to
assume that Fr = MF0. Thus, the signal r(t) will be exactly periodic with period T0, and
the spectrum of r(t) will have an infinite set of lines at frequencies kF0 with k an integer.
This is similar to the spectrum shown in Fig. C-14(d), and is depicted for the radar case
in Fig. C-20(a), where only the spectrum lines near the peak at f = Fr are shown.

At the radar antenna, the transmitted and received signals must not overlap in time.
In order that the returned pulse be distinct from the transmitted pulse in each period,
the two-way travel time to the nearest target must be greater than the pulse width τ .
The period of the pulse wave must also obey a range constraint; the two-way travel time
to the farthest target must be within the time interval as shown in Fig. C-19. Thus, we
require T0 ≥ τ +2dmax/c where τ is the pulse length and dmax is the maximum range. For
example, if we pick T0 = 1 ms and τ = 10μs, then targets between 1500 m and 148 km
will cause echoes within the period as depicted in Fig. C-19.

If we assume that the time duration of r(t) is infinite, then the transmitted radar signal
consists of an infinite number of sinusoidal pulses spaced with period T0. Since r(t) is a
periodic signal with T0 = 1 ms, it has a Fourier series and its spectrum consists of lines
with a spacing of F0 = 1000 Hz as depicted in Fig. C-20(a).10 When Fr = 1 GHz, the
spectrum will have lines at f = Fr ± 1000� Hz, with the largest amplitude lines being
clustered near the radar’s frequency Fr Hz. With this spectrum we can detect a limited
range of frequency shifts because a Doppler shift will move the spectrum line at Fr Hz to
Fr+Fd .As long as the frequency shift up or down does not get too close to the neighboring
harmonic lines at Fr ± 1000 Hz, there is no ambiguity about the amount of frequency
shift. With a 1000 Hz spacing of harmonics, the maximum unambiguous Doppler shift
is ±500 Hz. Converting to velocity, this would be ±75 m/s (or ≈ 201 mph). Notice that
the period T0 controls both the maximum range and the maximum unambiguous velocity
interval. Making T0 smaller increases the unambiguous velocity interval while shortening
the maximum range.

10Incidentally, if Fr = 1 GHz, the spectrum line at f = Fr is, in this case, the millionth harmonic.
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Figure C-20 Spectra of (a) periodic pulse wave frequency shifted to f = Fr Hz (assuming Fr = MF0) and then
(b) Doppler shifted down by Fd Hz (i.e., Fd is negative). Only the spectrum lines near f = Fr Hz are shown. When the
number of pulses is finite, the lines become Dirichlet shapes with finite width inversely proportional to the number of
pulses.

C-5.4 Measuring the Doppler Shift

In a practical radar system, the signal length cannot be infinite, so the pulsed-Doppler
waveform would have to be truncated to a finite number of pulses (Np). As shown in
Chapter 8, this changes the spectrum by broadening the harmonic lines to have a Dirichlet
shape with nonzero width. The width of the Dirichlet peaks impacts the frequency shift
measurement which must detect the movement of the spectrum line from Fr to Fr + Fd ;
the narrower the Dirichlet width, the easier the measurement. In Chapter 8, we also show
that the width of the spectrum lines is inversely proportional to the total signal duration
NpT0. Thus, by using more pulses in the finite pulsed-Doppler waveform we can make the
spectrum lines as narrow as needed. For example, with 50 pulses and a one millisecond
pulse repetition interval, the width of the measured spectrum lines would be 20 Hz, and
it would be easy to detect frequency shifts of that size. When converted to velocity in a
1 GHz radar, a Doppler shift of 20 Hz is 3 m/s, so the measurements would be accurate
to within ±1.5 m/s.

The processing done in the radar receiver to compute the frequency shift would
require spectrum analysis with the DFT—a topic that is treated in Chapter 8. Our main
goal here has been to describe how a sufficiently complicated waveform can be used
simultaneously for two different measurements. The spectrum representation has been
central to our discussion of the many trade-offs that arise in the design of that waveform.
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C-6 Problems

The problems in this section address the major concepts of Fourier Series presented in
this appendix. On the Companion Website there are many related homework problems
which can be used for review and practice. Some of them have detailed solutions.

NOTE
Problems with Solutions P-C.1 A periodic signalx(t) = x(t+T0) is described over one period−T0/2 ≤ t ≤ T0/2

by the equation

x(t) =
{

1 for |t | < tc

0 for tc < |t | ≤ T0/2

where tc < T0/2.

(a) Sketch the periodic function x(t) over the time interval −2T0 < t < 2T0 for the
case tc = T0/4.

(b) Determine the DC coefficient a0.

(c) Determine a formula for the Fourier series coefficients ak in the finite Fourier
representation (3.37). Your final result should depend on tc and T0.

(d) Sketch the spectrum of x(t) for the case ω0 = 2π(100) and tc = T0/4. Use a
frequency range from −10ω0 to +10ω0.

(e) Sketch the spectrum of x(t) for the case ω0 = 2π(100) and tc = T0/10. Use a
frequency range from −10ω0 to +10ω0.

(f) From your results in (d) and (e), what do you conclude about the relationship
between tc and the relative size of the high-frequency components of x(t)? When
tc decreases, do the high-frequency components get bigger or smaller relative to
the size of a0?

P-C.2 The periodic waveform in Fig. P-C.2 has the property of half-wave symmetry
(i.e., the last half of the period is the negative of the first half). More precisely, signals
with half-wave symmetry have the property that

x(t + T0/2) = −x(t) −∞ < t <∞ (C.50)

1

1

x.t/

tT0
1
2
T0T0

1
2
T0

Figure P-C.2

In this problem we will show that this condition has an interesting effect on the Fourier
series coefficients for the signal.
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(a) Suppose that x(t) is a periodic signal with half-wave symmetry and is defined over
half a period by

x(t) = t for 0 ≤ t < T0/2

where T0 is the period of the signal. Plot this periodic signal for −T0 ≤ t ≤ T0.

(b) Prove that the DC coefficient a0 is zero for any periodic signal having half-wave
symmetry. Hint: Split the integral for a0 into two parts.

(c) Prove that all the even indexed Fourier series coefficients are zero for a signal with
half-wave symmetry (i.e., ak = 0 if k is an even integer).

P-C.3 A signal x(t) is periodic with period T0 = 8. Therefore, it can be represented as
a Fourier series of the form

x(t) =
∞
∑

k=−∞
ake

j (2π/8)kt

It is known that the Fourier series coefficients for this representation of a particular signal
x(t) are given by the integral

ak = 1

8

0
∫

−4

(4+ t)e−j (2π/8)ktdt

(a) In the integral expression for ak above, the integrand, the period, and the limits
define the signal x(t). Determine an equation for x(t) that is valid over one period.

(b) Using the result from part (a), draw a plot of x(t) over the range −8 ≤ t ≤ 8 s.
Label your plot carefully.

(c) Determine a0, the DC value of x(t).

P-C.4 A periodic signal x(t) with a period T0 = 10 is defined over one period,
0 ≤ t ≤ 10 as

x(t) =
{

0 0 ≤ t ≤ 5

2 5 < t ≤ 10

(a) Sketch the periodic function x(t) over the time interval −10 ≤ t ≤ 20.

(b) Determine the DC coefficient of the Fourier series, a0.

(c) Use the Fourier analysis integral (3.27) to find a1, the first Fourier series coefficient
(i.e., ak for k = 1).
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(d) If we add a constant value of one to x(t), we obtain the signal y(t) = 1+x(t)with
y(t) given over one period by

y(t) =
{

1 0 ≤ t ≤ 5

3 5 < t ≤ 10

This signal can also be represented by a Fourier series, but with different
coefficients:

y(t) =
∞
∑

k=−∞
bke

jkω0t

Explain how b0 and b1 are related to a0 and a1. Note:You should not have to evaluate
any new integrals explicitly to answer this question.

P-C.5 The following signal is the product of a sinusoid and a finite Fourier series:

x(t) = sin(7t)

(

3
∑

k=−3

3

2+ jk e
jkt

)

(a) Explain why the term in parentheses is real-valued.

(b) Use the frequency shifting property to make a sketch of the spectrum of the signal
defined above.

(c) Since the signal x(t) is real, verify that the spectrum is conjugate symmetric.

P-C.6 Suppose that a periodic signal is defined as

q(t) = cos(3πt)
2
∑

k=−2

(

j5

k + j1.5

)

ej8πkt

(a) Prove that the signal q(t) is real-valued.

(b) Determine the fundamental period of q(t).

(c) Determine the DC value of q(t).

(d) Make a table listing all the nonzero Fourier coefficients of the signal q(t).

(e) Make a spectrum plot of this signal showing only the positive frequency compo-
nents. Label all the complex amplitudes.

P-C.7 Consider the periodic function x(t) plotted in Fig. P-C.7.

(a) Find the DC value a0 and the other Fourier coefficients ak for k �= 0 in the Fourier
series representation of x(t).
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(b) Define a new signal as y(t) = 2x(t − T0/2), and then sketch the waveform of
y(t). Use the scaling and time shifting properties to write down the Fourier series
coefficients b0 and bk for k �= 0 for the periodic signal y(t) without evaluating any
integrals.

P-C.8 Suppose that a periodic signal is defined over one period as:

x(t) =
{

7 for 0 ≤ t ≤ 5

3 for 5 < t < 8

(a) Assume that the period of x(t) is 8 s. Plot x(t) over the range −10 ≤ t ≤ 10 s.

(b) Determine the DC value of x(t) from areas, or from the Fourier series integral.

(c) Write the Fourier integral expression for the coefficient ak in terms of the specific
signal x(t) defined above. Set up all the specifics of the integral (i.e., limits of
integration and the integrand).

(d) Determine a general expression for the Fourier series coefficients, {ak}, by
evaluating the Fourier integral expression. Simplify the expression into polar form,
so that the magnitude and phase are explicit.

(e) It might be true that every fifth, or every eighth, coefficient is zero for k > 0.
For example, a5 = 0, a10 = 0, a15 = 0, etc.; or, a8 = 0, a16 = 0, a24 = 0, etc.
Determine which speculation is true.

P-C.9 Make plots of the spectra for both the FWRS and HWRS signals. Use the complex
amplitudes from (3.34) and (C.26) and assume that T1 = 0.02 s for the full-wave signal
and T0 = 0.02 s for the half-wave signal. The result should be different fundamental
frequencies.

P-C.10 It turns out that the Fourier series coefficients for the signal y(t) = x(αt), which
has period T0/α, are exactly the same as the Fourier series coefficients for the signal x(t),
which has period T0. This is the time-scaling property of the Fourier series.

(a) For the pulse wave (C.11), the Fourier series coefficients are given by (C.14).
Suppose that p(t) is a periodic pulse wave with τ = 0.02 s, where T0 = 0.1 s is the
period. Make a sketch of q(t) = p(t/5); in the process, determine the period and
pulse width of q(t).
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(b) From the known Fourier series (C.14) compare the expressions for the Fourier
series coefficients of p(t) and q(t). Manipulate the expressions to show equality.

(c) Prove that the time-scaling property is true. The following Fourier analysis integral
gives the Fourier series coefficients of the time-scaled signal x(αt):

bk = 1

T0/α

T0/α
∫

0

x(αt)e−j (2π/(T0/α))ktdt

By changing the dummy variable of integration to u = αt , show that the right-hand
side is the same as the Fourier analysis integral for x(t) (i.e., bk = ak).

P-C.11 If a periodic signal has a Fourier series where all the odd-indexed coefficients
are zero, then the fundamental frequency has been chosen incorrectly. Suppose that x(t)
where f0 = 3 Hz and the Fourier coefficients are

ak =
{

j12/k for k = ±1,±2,±4,±6

0 otherwise

(a) Sketch the spectrum for x(t).

(b) Define y(t) = x(t)+ 24 sin(6πt). Sketch the spectrum for y(t).

(c) Explain why the fundamental frequency of y(t) is not 3 Hz.

(d) Determine the correct fundamental frequency for y(t), and also redefine the Fourier
coefficients of y(t) for the new f0.

P-C.12 Suppose that a periodic signal x(t) is defined by the plot in Fig. P-C.12 (only
the section −8 ≤ t ≤ 8 is shown):

0 2 4 6 8

0

1

2

3

Time (s)

1

2

2468

x.t/

t

Figure P-C.12

(a) Determine the period T0 of x(t).

(b) Determine the fundamental frequency of x(t) in Hz.
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(c) Determine the DC value of x(t).

(d) Write the Fourier integral expression for the coefficient ak in terms of the specific
signal x(t) defined above. Set up all the specifics of the integral(s) including
the limits of integration, but do not evaluate any integral. All parameters in the
integral(s) should have numeric values.
Note: more than one integral might be needed.

P-C.13 The following MATLAB code defines vectors xt and zt, which correspond to
a finite segment of the periodic signals x(t) and z(t):

tt = -1000:0.1:1000; %- in seconds
xt = zeros(size(tt));
for k = [-3,-1,0,1,3] %- loop on k for only these indices

xt = xt + (1 + abs(k) - j*k)*exp(j*0.02*pi*k*tt);
end
xt = real(xt); %- x(t) should be real-valued
zt = xt - 3.2 + 8*cos(0.06*pi*tt - pi);

(a) Determine the fundamental period of the signal x(t) defined in the MATLAB code
above.

(b) The signal x(t) has a Fourier series with coefficients {ak}, defined by the MATLAB
code. Determine the numerical values of the {ak} coefficients for |k| ≤ 3 in polar
form.

(c) The new signal defined for z(t) is also periodic with a Fourier series, so it can be
expressed in the following Fourier series with new coefficients {bk}:

z(t) =
3
∑

k=−3

bk e
j0.02πkt

Determine the numerical values of the {bk} coefficients for |k| ≤ 3 in polar form.

P-C.14 Shown in Fig. P-C.14 are spectrograms for two periodic signals, x1(t) and x2(t).
The frequency axis has units of Hz.

(a) The spectrum line at f = 2000 Hz is the same N -th harmonic of both signals;
determine N .

(b) The two signals have the same fundamental frequency. Determine the fundamental
period T0 of each signal using accurate estimates from the spectrograms.

(c) One of these signals is a 50% duty-cycle square wave; recall the harmonic structure
of its Fourier series. Determine which signal fits this description and explain your
answer.
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Figure P-C.14

P-C.15 The properties of the Fourier series can be used to avoid actual integration of
the Fourier integral.

(a) Determine the Fourier series coefficients of a full-wave rectified cosine (FWRC)
signal x(t) = | cos(2πt)| by using the time-shifting property and the known Fourier
series coefficients for the full-wave rectified sine, s(t) = | sin(2πt)|, which are

ak = 2

π(1− 4k2)

(b) Starting from the known Fourier series coefficients of the half-wave rectified sine
(HWRS) given in (C.26), determine the Fourier series coefficients of a full-wave
rectified sine (FWRS) signal by using the additive and time shifting properties.

(c) For the pulse wave (C.11), the Fourier series coefficients are given by (C.14).
Suppose that p(t) is a periodic pulse wave with τ = 0.02 s, where T0 = 0.1 s is
the period. If the Fourier series coefficients of p(t) are denoted by ak, define a new
signal q(t) by changing the sign of every other coefficient, i.e.,

q(t) =
∞
∑

k=−∞
(−1)kake

jω0kt

Make a plot of q(t). Recall that (−1)k can be written as a complex exponential.

P-C.16 The Fourier series coefficients of the triangular wave in Fig. P-C.7 can be
obtained without doing integration of the Fourier analysis integral. The key is to use
the differentiation property.
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(a) If the triangular wave is x(t), make a sketch of the derivative signal y(t) = d
dt
x(t).

(b) One way to determine the Fourier series coefficients of y(t) is by invoking the
differentiation property assuming that the Fourier coefficients of x(t) are ak. If the
Fourier coefficients of y(t) are bk, give an equation for bk in terms of ak.

(c) The result of part (a) should be a scaled square wave with zero DC. Thus, it is
relatively easy to write down the Fourier series coefficients of y(t) from the pulse
wave results.

(d) Equate the results of parts (b) and (c) and solve for ak to find the Fourier series
coefficients of the triangular wave in Fig. P-C-2.
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D

Laboratory
Projects

This appendix contains a list of the laboratories that are currently available on the
Companion Website. Each of the labs corresponds to material primarily from one chapter,
although some of the lab projects use concepts from several chapters. There are two types
of lab descriptions: lab projects which are longer and lab exercises which are short
enough to be done during a typical 2–3 hour supervised lab session. Tables D-1 and D-2
summarize 25 labs available on the Companion Website with a cross reference to the
primary chapter(s) involved in each lab. The structure of the labs is as follows:

Overview: Each lab starts with a brief review of the key concepts to be studied and
implemented.

Pre-Lab: The Pre-Lab section consists of a few exercises that introduce some simple
MATLAB commands that will be needed in the lab. These should be easy enough
that students can finish them successfully with little or no outside help.

Warm-up: The warm-up section consists of more simple exercises that introduce the
MATLAB functionality needed for the Exercises or Project of that lab. The warm-
up is intended to be completed during a supervised lab time, so that students can ask
questions of an expert. In our own use of these experiments, we have implemented

571
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Table D-1 Laboratory Projects on the Companion Website.

Lab Subject Chapter

P-1 Introduction to MATLAB 2

P-2 Complex Exponentials: Multipath 2

P-3 Complex Exponentials: Direction Finding 2

P-4 AM and FM Sinusoidal Signals 3

P-5 Synthesis of Sinusoidal Signals (Speech or Music) 3

P-6 Shepard Scale Synthesis 3

P-7 FM Synthesis for Musical Instruments 3

P-8 Digital Images: A/D and D/A 4

P-9 Sampling, Convolution, and FIR Filtering 5

P-10 Edge Detection in Images: UPC decoding 5

P-11 Hearing Test via Frequency Response 6

P-12 Frequency Response: Bandpass and Nulling Filters 6

P-13 Encoding and Decoding Touch-Tone Signals 7 and 9

P-14 Octave Band Filtering 9

P-15 Cochlear Implant Filter Bank Simulation 9 or 10

P-16 PeZ—The z, n, and ω̂ Domains 10

Table D-2 Short Laboratory Exercises on the Companion Website.

Lab Subject Chapter

S-1 Complex Exponentials: Source Localization 2

S-2 Complex Exponentials: Direction of Arrival 2

S-3 Complex Exponentials: Beamforming with Phasors 2

S-4 Convolution and FIR Filtering 5

S-5 DLTI GUI and Nulling Filters 6

S-6 FIR Filter Design 7

S-7 Spectrogram: AM and FM Signals 3 or 8

S-8 Spectrogram: Harmonic Lines and Chirp Aliasing 4 or 8

S-9 PeZ: Remove Interference from EKG Signals 10

a system in which the laboratory instructor must verify the appropriate steps by
initialing an Instructor Verification sheet for a few key steps. Examples of this
verification sheet are included in the lab writeups on the Companion Website.
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Exercises: The bulk of the work in each lab consists of exercises that require some
MATLAB programming and plotting. All of the exercises are designed to illustrate
theoretical ideas presented in the text. Furthermore, we have included numerous
processing examples that involve real signals such as speech, music, and images.
The short labs have only Exercises and Homework.

Projects: In some cases, the labs require implementations that are so large and
complicated that it is no longer fair to call them exercises. In labs such as FM
Synthesis for Musical Instruments, Synthesis of Sinusoidal Signals (Speech or
Music), Encoding and Decoding Touch-Tone Signals, and others, the problem
statement is more like that of a design project. In these cases, students should
be given some flexibility in creating an implementation that satisfies a general
objective. In addition, many individual parts must be completed to make the whole
project function correctly.

Homework: In the short labs, there are homework assignments that are extensions of
of the exercises. These could be assigned as unsupervised work that complements
the main body of the lab.

These labs can be done with a recent version of MATLAB. Since a few of the labs
require M-files that are not part of the standard MATLAB release, we also provide
a package of DSP First M-files containing functions developed for this book. The
Companion Website gives a link to instructions for installing the DSP First toolbox.

NOTE
Install DSP First Toolbox
for MATLAB
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A-to-D converter, see Analog-to-digital (A-to-D) converter
Accumulator system, 438
Adder, 190
Adding a constant to a signal, 81–82
Advanced signal, 168n1
Alias, 127–128

folded, 128
principal, 128–130, 135, 138–139

Aliasing, 129, 131–132, 134, 141, 148–149, 152, 154,
244–247, 332

(folding) distortion, 333
due to under-sampling, 135–136
folding due to under-sampling, 136–138
time, 319, 322

AM broadcast system, 81
AM radio, 74, 78, 81, 116
Amplitude, 29, 32, 34, 43, 215

complex, 45, 48–49
function, 235–236
and phase plots, 237

Amplitude modulation, 78–81
beat note, 75–78
spectrum, 79–80

Analog signals, 122–123, 129, 137, 159, 165, 245
Analog-to-digital (A-to-D) converter, 27, 31, 124, 171, 301
Angle function, 46, 106–109
Angle of complex number, 42

Angle function of cosine, 106
Argument of complex number, 42
Associative property of convolution, 202–203
Audio system, 27–28
Autocorrelation function, 278
Average value, 98, 169

Bandedges, 290–291
Bandlimited interpolation, 147
Bandlimited signal, 99, 122, 148, 267–270, 282, 331–332,

537
continuous-time, 331–334
ideal, 267–268
reconstruction, 122

Bandpass filter, 283–284, 399–401
Band-reject filter, 284
Bandwidth, 80–81, 99

3-dB, 468–470
of pulse wave, 533, 536–537
of spectrum, 80–81

Beat note, 75–78
Beating of tones in music, 77
Block-diagram notation, 190
Block diagrams, 27

of FIR systems, 190–194, 374–375
of IIR systems, 428–432

574
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C-major scale, 103
spectrogram, 104

Carrier
frequency, 78, 81
signal, 78

Cartesian form, 42–43, 49, 491 (See also Rectangular form)
Cascade connection, 202, 232, 381, 383
Cascaded LTI systems, 202–204, 232–234, 381–382
Causal filter, 171–172
Causality, 171
Centralized averager, 207
Center frequency, 75
Chirp signals, 105–109
Colon operator, 513–514
Commutative property of convolution, 186–187
Complex amplitude, 45, 48–49
Complex exponential, 42–44, 495,

orthogonality, 305, 529–530
signals, 43–45

Complex numbers, 42–43, 489–510
addition, 49, 496–497
conjugate, 497
definition, 490–494
division, 496–497
multiplication, 496–497
notation, 491–494
represented as vector, 489

Complex powers, 504–505
Complex roots, 383, 459, 504–505
Conjugate of complex number, 47–48, 497
Conjugate symmetry property, 72, 85–86, 226
Continuous-time signals, 23, 25–26, 28–29, 168, 322, 327

bandlimited, 331–332
filtering sampled, 244–249
Fourier series for, 329
sample of, 123–124, 129
sinusoidal signals, 125
spectrum representation of, 130–131, 136, 148

Continuous-time systems, 167, 245
Continuous-to-discrete (C-to-D) converter, 26–27, 124, 148

(See also Sampling)
Convolution, 184

associative property, 202
commutative property, 186–187, 200–201
computing the output of, 182
derivation of, 199–200
distributive property, 202
identity element, 201
of impulses, 201
length of, 183

and LTI systems, 198–202
in MATLAB, 184
MATLAB GUI for, 187
sum formula, 199–200
and the z-transform, 378–380

Cooley, 309n5
Cosine modulation property, 356
Cosine signals (waves), 29–30
Cubic spline interpolation, 144–145
Cutoff frequency of ideal filter, 280
Cyclic frequency, 35

DC, 37
coefficient, 538–539
component, 71, 82–83, 96, 98, 231, 535, 542, 544
of Fourier series, 98–99
power converters, 95–96
term, 78, 120
value, 82, 96, 98–100, 241, 537

Deconvolution, 384
Definition of z-transform, 368–370
Delay-compensated running-average filter, 206
Delayed signal, 191, 378
Delay system, 226–227
Delta function, 178
DeMoivre’s formula, 505
Derivative, 33, 56

of angle function, 106–107
of Fourier series, 528–531
of FWRS, 100
of HWRS, 541
of sine plus DC, 84–85
of triangular wave, 548–549

DFT, see Discrete Fourier transform
Difference equation, 170
Difference frequency, 75, 77–78
Digital-to-analog (D-to-A) converter, 27, 132, 135, 141,

143, 146
Direct current, 37n3, 71n3
Direct form FIR structure, 191
Direct form I structure, 428–429
Direct form II structure, 429–431
Dirichlet form, 235n5, 235, 236
Discrete convolution evaluation of, 378
Discrete Fourier Series (DFS), 328–330
Discrete Fourier transform, 301–358

of complex exponential, 307–308
computation of, 308–309
conjugate symmetry of, 312–314
convolution property, 324–326
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definition of, 303
frequency response plotting, 315–316
inherent periodicity of, 318–322
inverse, 304–305
L-point, 314
matrix form of, 309–310
negative frequencies of, 311–312
N -point, 314–315
pairs, 306
periodicity of, 318–321
properties, 310–314, 321–324
of real cosine signal, 316–317
of shifted impulse, 306
table of pairs, 327
table of properties, 328
time-dependent, 345–348
zero padding, 323
z-transform and, 387–389

Discrete-time cosine signal, 125, 129
Discrete-time filtering, 48
Discrete-time Fourier transform (DTFT), 259–300

bandlimited, 267–270
of a complex exponential, 273
convolution and, 275–277
definition of, 261
existence of, 265
forward, 261
frequency shift and, 273
inverse, 266–267, 270
L-point rectangular pulse, 263, 274
linearity of, 262, 272
periodicity of, 261
properties of, 271–279, 294
of a pulse, 263
of a right-sided exponential sequence, 264
of a shifted impulse sequence, 261–262
of a sinc function, 268–270
spectrum interpretation, 270–271
table of pairs, 293
table of properties, 293
time delay and, 272
uniqueness of, 263
of windows, 339–340

Discrete-time frequency (ω̂), 125
Discrete-time signal, 123
Discrete-time systems, 168–169
Discrete-to-continuous (D-to-C) converter, 27, 131–132,

135–136, 138, 140–149, 154, 244, 246–249
Discrete-to-continuous conversion, 141–147

interpolation with pulses, 141–147
oversampling in, 145–147

Domains, see Three domains
Doppler radar, 558–563
Dow-Jones industrial average, 204
DSP First toolbox, 104n15
DTFT, see Discrete-time Fourier transform (DTFT)
Dual-tone multi-frequency (DTMF) signals, 110
Dummy index of summation, 278, 305, 385
Dummy variable of integration, 95, 266

Echo, 559
Effective frequency response, 244–245
Elliptic filter, 474–476
Energy spectrum, 277

autocorrelation function and, 277–279
Envelope, 76–77, 307
Envelope detector, 79
Euler’s formula, 43, 495–496

inverse, 47–48, 496
Factoring z-polynomials, 383
Fast Fourier Transform (FFT), 309, 343, 346, 348, 354–358

derivation of, 354–357
operation count of, 357

Feed-forward coefficients, 415–416
Feed-forward difference equation, 167, 191
Feedback coefficients, 415
Feedback systems, 414
FFT, see Fast Fourier Transform
Filter design, 285

cutoff frequency, 289
practical filters, 286
passband defined 288–289
passband ripple, 288
passband edge, 288
stopband defined 289–290
stopband ripple, 290
stopband edge, 289
transition width, 290
windowed sinc, 286–287

Filter length, 175
Filters (See also Filtering)

bandpass, 399–401
complex bandpass, 399
linear-phase, 404–406
practical bandpass, 401–404

Filtering, 28, 357
convolution property of, 277
discrete-time, 48
filter design and, 284–293
FIR, 176–178, 188, 204–207, 284–285
ideal bandpass, 283
ideal highpass, 282–283
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ideal lowpass, 281–282
IIR, 415
interpretation of delay, 246–249
inverse, 384
running-sum, 234–243
of sampled continuous-time signals, 244–249
unit-step response, 185–186

Finite Fourier sum, 100, 303
Finite impulse response (FIR) system, 167, 414
Finite-length signal, 169
Finite number of sinusoids, 74
FIR filter, 174–176, 188, 204–207, 284–285

block diagrams for, 190–194
and convolution, 181
frequency response of, 215–216
implementation of, 189–190

FIR filtering, see FIR filter
examples of, 176–179, 204–207

First-difference system, 227–229
FM signals, 106 (See also Frequency modulation)
Folded aliases, 128
Folding frequency, 139
Fourier, Jean-Baptiste, 59
Fourier analysis, 95

full-wave rectified sine (FWRS), 95–100
half-wave rectified sine (HWRS), 541–544
pulse wave, 534–538
triangular wave, 538–541

Fourier analysis integral, 95, 527
Fourier series, 94–100, 527–563

approximation error, 100
coefficients, 95
convergence of, 551–558
DC value of, 98–99
derivation, 528–531
full-wave rectified sine, 95–100
Gibb’s phenomenon, 555–556
half-wave rectified sine (HWRS), 541–544
operations on, 544–551
orthogonality, 305, 554
Parseval’s theorem for, 553
pulse wave, 534–538
spectrum, 98–100
square wave, 535
synthesis equation, 270, 533
triangular wave, 538–541

Fourier series integral, 103, 327, 528–531
Fourier synthesis, 94–95, 99, 528

finite, 533
Fourier synthesis summation, 528

Fourier transform
discrete, see Discrete Fourier transform
discrete time, see Discrete-time Fourier transform

(DTFT)
fast, see Fast Fourier Transform
short-time discrete, 346

Fourier transform pairs, 292–293, 327
Fourier transforms and LTI systems, 366
Frequency

cyclic, 35
instantaneous, 105–109
radian, 35

Frequency division multiplexing, 81
Frequency modulation (FM)

angle function, 106
chirp signal, 105–109
instantaneous frequency, 106
spectrogram of, 109

Frequency resolution, 350–353
Frequency response

of cascaded LTI systems, 232–234
effective, 244
graphical representation of, 226–243
formula for, 217
of an LTI FIR filter, 216
plotting the, 235–238
properties of, 223–226
of second-order IIR filter, 466–470
sinusoidal, of FIR systems, 215–217
steady-state and transient responses, 221–223
superposition and, 218–221

Frequency scaling, 132
Frequency selective filters, 279–284
Frequency shifting property, 78, 86

Doppler shift, 560–561
property, 273–274, 328, 549–551

Frequency-domain, 59, 71, 259–260
Frequency-domain approach, 221
Frequency-domain representation, 71, 259–260, 262, 266,

342–343
Full-wave rectified sine (FWRS), 95–100

finite synthesis of, 99–100
spectrum of, 98–100

Fundamental frequency, 87, 333
Fundamental period, 87, 96, 532, 546

of discrete-time sinusoid, 331–332

Gain, 216, 220, 230, 392, 402–403, 473
of LTI system, 216

Geometric series, 234, 263–264
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Gibbs phenomenon, 555

Half-wave rectified sine (HWRS), 541
finite synthesis of, 543
Fourier series, 542
spectrum of, 544

Hamming, Richard, 285n9
Hamming window, 285–289
Hann, Julius von, 338n10
Hann window, 338–341
Harmonic frequency, 87
Hertz, Heinrich, 36n2
Hertz, unit of frequency, 36
Highpass filter, 227, 282–283

Ideal continuous-to-discrete (C-to-D) converter, 26–27,
124, 131–134, 148, 244, 247

Ideal discrete-to-continuous (D-to-C) converter, 27,
131–132, 140–149, 154, 244

Ideal filters, 279–284, 402
bandpass, 283–284
band-reject, 284
highpass, 282–283
lowpass, 280–282

Ideal reconstruction, 131–133
IIR digital filters, 414–476

block diagrams for, 428–432
definition, 415
difference equation for, 415–416
frequency response of, 440–443
impulse response of, 419–421
linearity and time invariance of, 418–419
poles and zeros for, 432–436
response to finite-length input, 421–422
stability of, 436–440
system function of, 425–428

Image smoothing example, 240–243
Imaginary part, 42
Implementation structures, 429
Impulse in MATLAB, 475
Impulse response, 179–181

finite, 167
first-order IIR system, 419–421
unit, 178–181

Impulse response sequence, 179–181
Initial rest conditions, 417, 419
Inner product, 514–515
Instantaneous frequency, 106–109
Interpolation, 123, 132

cubic spline, 144–145

ideal bandlimited, 147
linear, 40–41, 143–144
with pulses, 141
zero-order hold, 142–143

Interpretation of delay, 246–249
Inverse z-transform, 369
Inverse discrete Fourier transform (DFT), 304–306, 355
Inverse DTFT, 266–267, 270
Inverse Euler formulas, 47–48, 70, 75
Inverse filtering, 384

L-point rectangular window, 284, 338
L-point running averager, 247
L-point running sum filter, 234
Lth root of unity, 397 (See also roots of unity)
Left-sided exponential signal, 292
Line spectra, 72
Linear combination, 70, 74, 199, 260, 267, 371, 419
Linear FM signals, 106
Linear interpolation, 40
Linear phase filters, 227, 286–287, 404–406
Linear time-invariant (LTI) systems, 180, 194–198
Linearity, 167, 194, 196–198

of DFT, 316–317, 328
of DTFT, 262, 267, 272, 275, 294
and time-invariant IIR filters, 418–419
of z-transform, 371

Linearly swept frequency, 105–106
Local spectrum, 338, 343, 348
Lowpass filter, 229–231, 280–282, 474–476
LTI systems, 194–204, 232–234, 277, 373–374

cascade, 202–204, 232–234
causal, 437, 439
convolution and, 198–200
derivation of convolution sum, 199–200
properties of, 195–197, 200–202

Magnitude, 42, 216–220, 227–228, 239
of complex number, 42
squared spectrum, 278

Main lobe, 237, 286, 340
MATLAB, 511–526

array multiplication, 515
colon operator, 513–514
debugging, 521–522
figure windows, 516
functions, 518
help command, 512
M-file, 519–522
multiple plots, 517
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phasors, demo, 53
plotting, 516–517
pointwise array operations, 515
printing, 517
programming constructs, 517
reshape matrix, 467
scripts, 518–519
spectrogram, 103–104
vectorizing, 524–525
zvect, zcat, zprint, 508

MATLAB built-in functions, 518
MATLAB help, 512
MATLAB GUI

con2dis, 140
dconvdemo, 188
DLTIdemo, 249
filterdesign, 291–292
fourierseries, 100
Sine Drill, 38
zdrill, 43, 499–500

MATLAB programming, 522–526
MATLAB scripts, 518–519
MATLAB variables, 512–516
Matrix multiplication, 514–515
MP3 compression, 27
Modulating signal, 79
Modulo-N arithmetic, 322
Multipath fading, 67–68
Multiplier, 189–190
Music notation, 101–102
Musical scale, 30

Narrowband spectrogram, 415
n-domain, 367–369, 371, 388
Negative frequency, 46, 48
Newton’s second law, 55
Noise, 176
Noncausal filter, 172, 239
Nonlinear systems, 197
Non-periodic signal, 92–93
Normalized radian frequency, 35
Nulling, 257
Nulling filters, 392–393
Nyquist, Harry, 131n6
Nyquist rate, 131

Octave, 102
ω̂-domain, 367, 369
One-dimensional continuous-time system, 25
Orthogonality property, 305, 529–530

Outer product, 515
Output-signal, 25
Over-sampling, 134–135, 145–147

Parseval’s Theorem, 277, 279, 557
Partial fraction expansion, 448
Passband, 288
Period, 30, 35–37, 87
Periodic signal, 74, 87–92
Periodicity of H(ejω̂), 225
PeZ GUI, 472–474
Phase, 29, 34
Phase change in complex amplitudes of spectrum

delayed cosine, 84
derivative of sine plus DC, 84–85

Phase shift, 44, 216
Phasor, 45

addition, 48–54
MATLAB demo of, 53
rotating, 46–47

Physics of tuning fork, 54–57
Piano keyboard, 102
Pixel, 240
Plots and graphics, 516–517
Pointwise array operations, 515–516
Polar form, 42–43, 228–229, 237

of complex number, 42–43, 492
of complex roots, 459

Poles of H(z), 389–396, 432–433
Pole-zero plot, 390–391
Polynomial division, 182n11
Polynomial multiplication, 184
Positive frequency, 46
Principal aliases, 130, 132, 135
Principal value, 39, 237
Principle of superposition, 196
Property of the spectrum representation, 81
Properties of z-transform, 378, 388, 448
Pulse Wave, 534

Fourier series, 535
spectrum of, 536
finite synthesis of, 537–538
time scaling of, 546–547
sinusoidal multiplication of, 550

Radian frequency, 29, 35
Radix-2, 355
Rational function, 367, 373
Real part, 42, 151, 226, 491
Receiver, 560, 562



580 INDEX

Reconstruction, 122–123, 131, 144–149, 154
cubic spline, 144
GUI, 140–141
ideal, 147
linear, 143
spectrum view of, 132
zero-order hold, 143n10

Rectangular form, 42, 51
of complex number, 42, 491–492

Rectangular window, 284–285
Recursive filter, 414 (See also IIR digital filters)
Reducing modulo 2π , 39
Region of convergence, 373, 427
Resolution of the spectrogram, 342–343
Riemann integral, 271
Right-sided exponential signal, 264
Roots of unity, 505–506
Rotating disk, 153
Rotating phasor, 45–47
Running-average filter, 169–173
Running-average filtering, 176–178

smoothing an image, 240–243
Running-sum filtering, 234–239

Sample spacing, 39–40
Sampling, 23–24, 26, 39–41, 122–125 (See also C-to-D

conversion)
aliasing and, 129
bandlimited periodic signals, 331–334
frequency-domain, 314–316
oversampling, 134–135, 145–147
reconstruction GUI, 140–141
sinusoidal signals, 125–127
spectrum view, 133–138
under-sampling, 135–138

Sampling frequency, see Sampling rate
Sampling period, 23, 39, 123
Sampling rate, 124
Sampling theorem, 130–131, 148–149, 319
Sampler, 26
Scale factor, 81
Second-order IIR filters, 455–472
Shannon, Claude, 131n6
Shannon sampling theorem, 130–131, 142, 148–149
Shannon/Nyquist sampling theorem, 131
Short-time discrete Fourier transform, 346
Sidelobes, 236–237, 340–341, 536
Signal, 21–22

continuous-time, 23
cosine, 32–34

discrete-time, 23, 25
sine, 32–34
speech, 21–24
two-dimensional, 23–24
video, 21–22, 24

Sinc function, 147, 268–270
Sinc signal, energy of, 278
Sine-cubed signal, 91–92
Sine and cosine functions, review of, 32–34
Sinusoidal amplitude modulation

AM spectrum, 79–80
amplitude modulation, 74, 78–79
beat note waveform, 75–77
concept of bandwidth, 80–81
multiplication of sinusoids, 74

Sinusoidal response of FIR systems, 215–216
Sinusoidal steady-state component, 453
Sinusoid-in gives sinusoid-out, 214, 277
Sinusoids, 29

period of, 30, 35–37
phase and time-shift of, 37–39
plotting of, 35, 39–41
sampling, 39–41
tuning fork experiment, 30–32

Sinusoids, spectrum of sum of, 70–74
analysis vs synthesis, 73–74
graphical plot, 72–73
notation change, 72

Smoothing an image, 240–243
spectgr, 104n15
Specgram, 104
Spectral components, 70, 88
Spectral line, 72
Spectrogram, 101, 342–354

analysis, 103–105, 301
display of, 348
frequency resolution in, 350–353
interpretation of, 348–350
of chirp, 105–107, 110, 139
of a linear-FM signal, 109
MATLAB, 353–354
music notation and the, 101–103
piano, 110
of a sampled periodic signal, 327–337
of simple sounds, 75, 110

Spectrum representation, 69–109
adding signals, 82–83
bandwidth of, 80–81
complex amplitudes of, 84
DC component, 71
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definition, 70n1, 71
of a discrete-time signal, 129–130
frequency shifting behavior, 85–86
of full-wave rectified sine (FWRS), 98–100
of half-wave rectified sine (HWRS), 544
non-periodic signal, 92–93
operations on, 81–87
plot of, 72–73
of a product, 75
of a pulse wave, 536
scaling or adding constant, 81–82
of sum of sinusoids, 70–74
of sum of two equal-amplitude sinusoids, 76
time-frequency, 101–105
of a triangular wave, 540
two-sided, 71

Spectrum analysis of periodic signals, 334–337
Spectrum of discrete-time signal, 129–130
Square wave, 92, 535

bipolar, 545
zero-one, 545

Square-law system, 194–195
Squarer system, 25
Stability, 423

general definition of, 423
mathematical condition for, 423, 437, 439
from pole location, 436
region of convergence and, 438–440
steady-state response and, 451–453

Stable systems, 436
Steady-state part, 222
Steady-state response, 451–455
Step response, 423

first-order IIR system, 422–424
Stepped frequency, 103
Stopband, 289
Strobe, 149–154

demonstration, 149–154
spectrum interpretation, 153–154

Suddenly applied input, 221–222, 417, 419, 452–453, 455
Superposition, 378, 448

frequency response, 218–221
principle of, 196
property of DTFT, 272, 294
property of z-transform, 378, 448

Support of a sequence, 169, 174
Synthesis procedure, 73–74
Synthetic polynomial multiplication, 203, 234
Synthetic vowel, 88–90
System function H(z)

of cascade, 381
of FIR filter, 376
of IIR filter, 425

Systems
as building blocks, 27–28
cascading, 381–383
definition, 21
discrete-time, 168–169
FIR, 214–217
IIR, 436–440, 456–460
linear time-invariant, 194–204, 232–234, 277,

373–374
mathematical representation of, 25–26
unit-delay, 374

Three Domains
for FIR, 367–368, 384–389
for IIR, 445–446
movie, 396–397
PeZ GUI, 397, 407, 472–474

Time aliasing, 319, 322
Time-delay property of z-transforms, 371–372
Time-dependent discrete Fourier transform, 345–348 (See

also Spectrogram)
Time-domain, 221

chirp signal, 107
convolution, 378
DTFT, 293–294
DFT, 324, 327–328
operations, 81
representation, 71, 73, 76, 95, 260, 369, 374
response, 416–418
signal, 130, 278
of under-sampling, 137

Time-flip system, 195–196
Time–frequency spectrum, 101–105 (See also Spectrogram)

analysis, 103–104
stepped-frequency waveforms, 103

Time invariance, 195–196
Time shift (delay), 37–39

effect on spectrum, 84
property of DFT, 321–322
property of DTFT, 272
property of z-transform, 371–372

Time-windowing, 363
Transient response

of FIR filter, 221–223
of IIR filter, 453–455

Transition region, 222, 403
Transmitter, 103
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Transposed form
of FIR filter, 193
of IIR filter, 431–432

Triangular wave, 538
finite synthesis of, 540–541
Fourier series, 539
spectrum of, 540

Trigonometric identities, 34
Tukey, 309n5
Tuning fork, 30–32

physics of, 54–57
Two-sided spectrum, 71

Unit circle, 386–387
Unit delay, 189, 372, 374

operator, 189, 374
property of the z-transform, 372
system, 374

Unit impulse response, 179–181
Unit impulse sequence, 178–179
Unit impulse signal, see unit-impulse sequence
Unit-step, 185–186
Unstable, 423

system, 436, 438

von Hann, Julius, 338n10
Vowel signal, see Synthetic vowel

Weighted running average, 173
Windowing, 284–286, 337–342
Writing a MATLAB function, 519

z-domain, 384–386, 388
zdrill GUI, 499
z-plane, 373, 378n4, 386–390

z-transform
basic properties, 371–372
convolution and the, 378–384
definition, 368–370
DFT and, 387–389
domains, see Three Domains
general formula, 372–373
inverse, 369–370, 446–451
linear systems and, 373–377
linearity of, 371
of FIR filter, 375
of impulse response, 375–376
as an operator, 378
pair, 369
poles and zeros, 389–397, 432–436
polynomial roots, 376–378, 383
properties, 388
region of convergence, 373
of a signal, 370
of second-order filters, 455–466
superposition property of, 378, 448
table of, 447
time-delay property of, 371–372
unit circle and, 386–387
z−1 operators, 374

Zero-order hold, 142–143
interpolation, 142–143
reconstruction, 143n10

Zero padding, 314–316
Zeros, 389–391

of FIR linear-phase systems, 405–406
of H(z), 389–391
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